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Identification‑detection group 
testing protocols for COVID‑19 
at high prevalence
Marco Chiani1*, Gianluigi Liva2 & Enrico Paolini1

Group testing allows saving chemical reagents, analysis time, and costs, by testing pools of samples 
instead of individual samples. We introduce a class of group testing protocols with small dilution, 
suited to operate even at high prevalence (5–10% ), and maximizing the fraction of samples classified 
positive/negative within the first round of tests. Precisely, if the tested group has exactly one positive 
sample then the protocols identify it without further individual tests. The protocols also detect the 
presence of two or more positives in the group, in which case a second round could be applied to 
identify the positive individuals. With a prevalence of 5% and maximum dilution 6, with 100 tests 
we classify 242 individuals, 92% of them in one round and 8% requiring a second individual test. In 
comparison, the Dorfman’s scheme can test 229 individuals with 100 tests, with a second round for 
18.5% of the individuals.

We consider those situations where it is necessary to check if some individuals are positive with respect to a given 
disease. With a direct approach, samples taken from the individuals can be tested one by one, with a number 
of tests equal to the number of individuals under test. In many cases, however, it is possible to pool samples 
taken from different individuals and test the pool: if the pool is negative then all the corresponding individuals 
are declared as negative, while if the pool is positive it means that at least one is positive. Several group testing 
(GT) techniques based on pooling to reduce the number of tests have been proposed, starting from the work by 
Dorfman1. When the disease prevalence is not too large, this brings considerable savings in terms of tests and 
therefore chemical reagents, analysis time, effort, and costs. Recently, due also to the cost of sophisticated tests 
like those based on polymerase chain reaction or transcription mediated amplification, the use of group testing 
has been advocated to enable mass screening in the context of the SARS-CoV-2 pandemic, with experimental 
campaigns implemented in a few countries2. In adaptive group testing, the tests are performed in sequence, 
with pools that are created based on the outcomes of the previous tests3,4. On the contrary, in non-adaptive 
group testing all pools are a-priori set, and tests are carried out in parallel. Both approaches have advantages 
and shortcomings: adaptive strategies can identify the status of individuals with fewer tests. Nevertheless, con-
sidering the time required to carry out each test, a pure adaptive strategy may require an excessive amount of 
time. Non-adaptive schemes require typically more tests to succeed, but they are faster as tests can be performed 
in parallel. To combine the advantages of both techniques, while mitigating their limitations, it is sometimes 
preferable to implement a hybrid approach, where a first screening is performed via a non-adaptive testing step, 
followed by an adaptive (or even individual) one for the population members that are identified as potentially 
infected. Approaches of this kind, which date back to the original work of Dorfman1, enable remarkable savings 
in the number of tests. Several current investigations on the use of group testing for SARS-CoV-2 screening 
follow this line5–12. In particular, in the context of group testing for SARS-CoV-2, the simple Dorfman approach 
has been validated by verifying the sensibility of polymerase chain reaction tests with respect to the size n of the 
pools6,7. Non-adaptive protocols relying on Reed-Solomon error correcting codes to design the pools have been 
used to target low infection rate regime (e.g., prevalence below 1.3%)8. Bayesian approaches to identify the set 
of infected samples in a non-adaptive group testing approach have also been addressed9, as well as schemes that 
exploit a quantitative knowledge on the viral load in the pools10,11. Other approaches to group testing in the low 
prevalence regime exploit a geometrical construction of the pools in a non-adaptive setting12.

Differently from previous works, we here are not limited to low prevalence. Specifically, in this paper we 
describe a new class of protocols for group testing where the main objective is to maximize the probability that 
classification of samples is completed within the first round of tests. If the tested group has exactly one positive 
sample, then the protocols detect that there is only one positive and identify it without the need for a second 
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round of individual testing. The protocols also detect the presence (without identification) of two or more 
positives in the group, in which case a second round must be applied to identify the positive individuals. These 
protocols are thus analogous to error control codes able to correct one error and detect two or more errors occur-
ring in a group13. Due to this capability to directly identify one positive in the first round, this work is specially 
suited for high prevalence (5–10% ) scenarios, differently from other methods which address the low prevalence 
case2,6–8,12. Also, due to the problem of dilution which can lead to false negatives, this work is particularly focused 
on those pool sizes which can be realistically used in a diagnostic laboratory2,5,7,14–16. We present next the main 
results of the investigation, based on the probabilistic analysis detailed at the end of the paper.

Results
In the following we will refer to polymerase chain reaction (PCR) for the test, but the procedure is general for any 
possible test. With “prevalence” we will indicate the probability that an individual is positive. The direct approach 
to testing consists of performing individual tests, with one PCR for each individual sample, to determine if it is 
positive or negative. The number of tests in this case equals the number of samples to classify.

In (GT), individual samples are grouped (pooling), and the pools are tested: if a pool is negative it is assumed 
that all individuals participating to that pool are negative. Thus, the number of PCR tests can be reduced with 
respect to individual testing, if the prevalence is not too high. The saving is more marked for low prevalence. In 
this paper we will refer to GT with a first round of pooled tests, possibly followed by a second round of some 
(hopefully few) individual tests to complete the classification. While the advantage is clear, it must be considered 
that implementing GT imposes a reorganization of the testing process, whose impact should not be under-
estimated. In fact, with GT a phase of preparation of the pools is necessary. This phase should be automated 
to avoid errors in the processing: this is already possible, as machines currently available in many diagnostic 
laboratories can be suitably reprogrammed for pooling. Also, while individual testing ends in a single round 
of PCR, in the case of GT it is sometimes necessary to carry out a second round of PCRs for some individuals 
(thus requiring additional time). If the number of samples to retest is large, managing the second round, where 
individual samples needing an individual PCR must be reexamined, should be automated to avoid errors and 
contamination. When full automation of the process is not available, it would be preferred to adopt GT schemes 
with a low fraction of samples needing an individual retest. Also, it must be remarked that large pool sizes can 
lead to a dilution of the viral load affecting the sensitivity of the test, therefore causing false negatives. For this 
reason, we will concentrate on schemes with limited pool sizes, which justifies our assumption that the false 
negative rate is negligible.

The baseline protocol is that originally proposed by Dorfman in 1943, where: individuals are grouped into 
groups of n; one pool is used to analyze all n individuals (dilution n); the mother tubes of the n individuals are 
set aside; the single pool is tested. If the pool is negative, all n individuals are declared negative, and no other 
tests are needed. If, on the contrary, the pool is positive, it is necessary to carry out a second round of individual 
tests on all n individuals1.

Identification‑detection for group testing: the Pnp protocols.  We propose a new class of pool-
ing schemes with small dilution, for high prevalence testing scenarios. Assume a group test employing p pools 
P1, P2, . . . ,Pp to test a group of n > p individuals I1, I2, . . . , In . The pooling can be described by a test matrix, 
where each row is a pool and each column is an individual. The matrix elements are 0 or 1, where a 1 in row i and 
column j indicates that individual Ij participates in pool Pi.

For identification-detection we propose to use test matrices composed by columns all with a fixed number 
c of 1s, so that each individual sample is copied into exactly c pools. With this choice, there would be c positive 
pools if and only if the group has exactly one positive individual. A number of positive pools larger than c indi-
cates that there are two or more positive individuals in the group. The largest group size n for a given number 
of copies c and pools p is

We will assume always the largest n, as for GT the objective is to test the largest possible number of individuals 
for a given p. The pooling matrix columns are thus all possible vectors with p− c elements to 0 and c elements 
to 1. The number of individuals per pool (dilution) is indicated as d. It can be checked that the dilution for p 
pools and n individuals, each participating in c pools, is

Hence, by testing the p pools (first round), the scheme allows to classify immediately the cases of zero positives 
per group or one positive per group. Therefore, for up to one positive per group there is no need for individual 
tests. The scheme also detects the presence of two or more positives per group, in which case a second round of 
individual tests is required.

To keep the dilution as small as possible, we investigate in particular the case c = 2 , where each sample is 
copied in two pools. With this choice, from (2) the dilution is d = p− 1 . We now explicit the test matrices for 
dilution up to d = 6.

(1)n =

(

p
c

)

.

(2)d =

(

p− 1

c − 1

)

.
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Protocol P64.  From Eq. (1), the smallest group size for which n > p is obtained with p = 4 pools, each 
individual participating in c = 2 pools, and therefore with a number of individuals per group n = 6 . The test 
matrix for P64 is reported in Fig. 1.

Each pool contains the samples from exactly three individuals, so the dilution is d = 3 , as given by Eq. (2). 
The protocol is described as follows: individuals are arranged into groups of n = 6 (indicated in the figure as 
I1, ..., I6 ); p = 4 pools are used to analyze the 6 individuals; each individual participates in c = 2 pools according 
to the scheme in the figure, with exactly 3 individuals in each pool; the mother tubes of the 6 individuals are set 
aside; the four pools are tested (e.g., by PCR).

Based on the results of the 4 tests, the following cases may arise (see Table 1):

•	 All 4 pools are negative: in this case all six individuals are declared as negative. No other tests are needed.
•	 Exactly 2 out of the 4 pools are negative: in this case only one individual is positive, uniquely identified 

according to the decoding table. No other tests are needed.
•	 One pool is negative and the other 3 are positive: a second round of individual tests is required for three 

individuals according to the scheme of Table 1 (or, to simplify, individual test on all six individuals).
•	 All 4 pools are positive: a second round of individual tests is required for all six individuals.

Protocol P105.  With p = 5 pools and c = 2 we have groups of n = 10 individuals, pooled according to the 
test matrix

In this case the dilution is d = 4 . This matrix identifies one positive and detects two or more positives per group 
of n = 10 individuals.

Protocol P156.  With p = 6 pools and c = 2 we have groups of n = 15 individuals, pooled according to the 
test matrix
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Figure 1.   Pooling matrix and its interpretation for the P64 protocol. I1, ..., I6 : individuals.

Table 1.   Decision rule for P64 ( 1 = positive pool, 0 = negative pool).

Pools result Positive individual Further test

0 0 0 0 None No

1 1 0 0 I1 No

1 0 1 0 I2 No

1 0 0 1 I3 No

0 1 1 0 I4 No

0 1 0 1 I5 No

0 0 1 1 I6 No

0 1 1 1 I4, I5, I6

1 0 1 1 I2, I3, I6

1 1 0 1 I1, I3, I5

1 1 1 0 I1, I2, I4

1 1 1 1 I1, I2, I3, I4, I5, I6
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In this case the dilution is d = 5 . This matrix identifies one positive and detects two or more positives per group 
of n = 15 individuals.

Protocol P217.  With p = 7 pools and c = 2 we have groups of n = 21 individuals, pooled according to the 
test matrix

In this case the dilution is d = 6 . This matrix identifies one positive and detects two or more positives per group 
of n = 21 individuals.

Other protocols, even for different values of c, can be similarly designed. For all protocols, the decoding rule 
can be reformulated succinctly as follows: in the first round, classify as negative all individuals participating in 
a negative pool, and test individually the others.

Performance.  We present the performance of our protocol compared with the Dorfman’s protocol, for dilu-
tions ranging from d = 3 up to d = 6 . Considering both the first round of test on p pools and the occasional 
second round on some or all individuals, for a generic protocol we define the performance in terms of:

•	 efficiency, quantified by the average number of individuals tested with 100 PCR tests;
•	 probability that an individual is tested in a second round, indicated as PSR.

We assume a prevalence ǫ and independent positivity from individual to individual. To calculate efficiency, let 
us denote with Tg the number of tests needed to identify all positives in the group. By indicating with E{} the 
statistical expectation, the average number of tests per individual is E

{

Tg

}

/n . Therefore, on the average, with 
100 PCRs we classify a number of individuals equal to:

The statistical characterization of Tg is provided in the Methods section, and leads to Eq. (9). About PSR , we 
observe that a second round is needed if the number of positive pools, indicated as Y, is greater than 2. The 
statistic of Y, provided in the Methods section, leads to Eq. (8).

Results as functions of the prevalence are shown in Figs. 2 and  3, where the probability of a second testing for 
an individual, given by Eqs. (6) and (8), and the efficiency, given by Eqs. (3) and (9), are reported. For example, 
with P64 we find that, with a prevalence ǫ = 5% , about 146 individuals are classified with 100 PCR tests. Of all 
individuals, 98% are classified in the first round, and only 2% need a second round.
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Figure 2.   Probability of a second testing round for an individual, as a function of the prevalence. Dn = 
Dorfman with n individuals and one pool; Pnp = protocol P with n individuals and p pools.
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For the Dorfman’s scheme the results, shown in Figs. 2 and  3, have been derived by using Eqs. (10) and 
(11). The exact numbers are shown for prevalence of 5% and 10% in Table 2. For example, with a pool of n = 4 
individuals and a prevalence ǫ = 5% , an average of 229 individuals are tested with 100 PCR tests with Dorfman’s 
scheme. However, about 18.5% of all individuals need a second round of individual tests.

Discussion
We have investigated group testing consisting of a first round of pooled tests, followed by individual testing, 
applied to a population with high prevalence, to save resources.

Two main issues must be discussed for a practical usage of group testing. First, one should consider that the 
maximum pool size is limited due to the dilution of the sample viral load and the consequent problem of false 
negatives. For COVID-19, a conservative current estimation suggests that dilutions in the order of 5–8 would 
still allow a negligible false negative rate, although higher dilutions have been investigated, with some conflicting 
reports2,5,7,14–16. Second, for group testing the diagnostic laboratory must be organized to handle the whole process 
(pooling, first round of tests, reopening and second round of tests). Automation systems and robots, currently 
available in many diagnostic laboratories, can be suitably reprogrammed for pooling. The main issue is related 
to the management of the second rounds of tests. If the fraction of samples to retest is large, picking back the 
original samples of some individual to be reexamined should be automated, to avoid errors and contamination. 
When the process is not fully automated it could be necessary to use protocols able to complete the positive 
identification mostly within the first round of tests, with a small rate of individuals to be retested. In fact, with 
low rates of second rounds it may be possible to handle the retesting process even manually, thus simplifying the 
organization of a diagnostic laboratory. Reducing the second round tests will also have the advantage of giving 
a faster classification.

Limiting the discussion to dilutions up to 6, we have found that in the range of prevalence 5–10% the best 
choice is represented by the identification-detection scheme P217, which outperforms all the others in terms of 
efficiency while still having a low rate of second round tests. For example, at ǫ = 5% it allows to classify 242 indi-
viduals with 100 tests, with a rate of second round individual tests of about 8% . The scheme also performs better 
than the Dorfman’s scheme both in terms of efficiency and rate of second round individual tests. Compared with 
the proposal, the Dorfman’s schemes are in fact less efficient and have much larger rates of individuals tested twice 
(one time in group, then individually). They are therefore not suitable at high prevalence. Identification-detection 
schemes with dilutions 3− 5 give less advantages in terms of number of tests, but offer a smaller rate of second 

Figure 3.   Average number of individuals tested with 100 tests as a function of the prevalence. Dn = Dorfman 
with n individuals and one pool; Pnp = protocol P with n individuals and p pools.

Table 2.   Performance of the analyzed protocols, dilutions d = 3, . . . , 6.

Prevalence 5% Prevalence 10%

tested with retested tested with retested

100 tests rate 100 tests rate

P64 146 2% 135 7.3%

P105 186 3.7% 159 12.7%

P156 218 5.8% 171 18.4%

P217 242 8% 175 23.9%

D3 210 14.2% 165 27.1%

D4 229 18.5% 168 34.4%

D5 235 22.6% 164 40.9%

D6 232 26.5% 157 46.8%



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3250  | https://doi.org/10.1038/s41598-022-07205-4

www.nature.com/scientificreports/

round tests. The scheme P64, with dilution 3, is the one with the smallest rate of retested individuals, having a 
rate of individual retest of 0.088% at ǫ = 1% , of 2% at ǫ = 5% , and of 7% at ǫ = 10% . The choice of the specific 
protocol imposes therefore, for a given maximum dilution, a trade-off among efficiency and second round rates.

Having to handle few second round tests, all new protocols seems suitable even for non automated laborato-
ries at prevalence up to 5% , with few percent of the individuals needing a second round. At prevalence 10% the 
only protocols with small probability of second round are P105 and P64, with respectively 12.7% and 7% of the 
individuals which need retesting.

We derived also analytical expressions for the performance of the new protocols, allowing the design of iden-
tification-detection group testing pooling schemes for arbitrary dilutions and for the targeted prevalence rates.

Methods
Performance of the Pnp protocols.  In this section we derive expressions for the performance of the pro-
posed protocols assuming c = 2 , which is the most effective value of c to limit dilution. The analysis can however 
be generalized to other values of c.

Let us denote as X the number of positive individuals in a group of n individuals, and as Y the number of 
positive pools out of the p pools. For an identification-detection protocol able to identify one single positive in a 
group of n and detect two or more positives, the probability that the group must be reopened for a second round is

The average number of tests per group can be bounded by assuming that the second round is taken on all n 
individuals

To derive a precise analysis we must consider that the second round occurs on subsets of the group, depending 
on the number of positive pools. To this aim, we observe that the probability that y pools are positive is

where a(x, y) is the number of group configurations with x positive individuals and y positive pools, so that, 
for example, it is a(1, 2) = n . The values of a(x, y) for arbitrary x, y can be derived by combinatorial analysis. 
Specifically, we prove at the end of the paper that a(x, y) is given by the recursion

Values of a(x, y) needed to evaluate Pr
{

Y = y
}

 are those for y > 2 , which are reported for some protocols of 
interest in Tables 3, 4, 5 and 6.

Then, we observe that if there are Y = y positive pools the number of individuals to retest in a second round 

is 
(

y
2

)

 . Therefore, the probability that an individual needs a second round is

The exact average number of tests needed to classify all n individuals in a group is then

and the number of individuals tested with 100 tests, defined by (3), is rewritten as 100/(p/n+ PSR).

(4)PGR = Pr {X ≥ 2} =

n
∑

x=2

(

n
x

)

ǫx(1− ǫ)n−x .

(5)E
{

Tg

}

≤ p+ n

n
∑

x=2

(

n
x

)

ǫx(1− ǫ)n−x .

(6)Pr
{

Y = y
}

=

n
∑

x=0

Pr
{

Y = y|X = x
}

Pr {X = x} =

n
∑

x=0

a(x, y)ǫx(1− ǫ)n−x

(7)a(x, y) =

(

p
y

)(

(y − 1)y/2
x

)

−

y−1
∑

ℓ=1

a(x, ℓ)

(

p− ℓ

p− y

)

.

(8)PSR =
1

n

p
∑

y=3

(

y
2

)

Pr
{

Y = y
}

.

(9)E
{

Tg

}

= p+

p
∑

y=3

(

y
2

)

Pr
{

Y = y
}

= p+ nPSR

Table 3.   a(x, y) for P64.

x�y 3 4

2 12 3

3 4 16

4 0 15

5 0 6

6 0 1
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Table 4.   a(x, y) for P105.

x�y 3 4 5

2 30 15 0

3 10 80 30

4 0 75 135

5 0 30 222

6 0 5 205

7 0 0 120

8 0 0 45

9 0 0 10

10 0 0 1

Table 5.   a(x, y) for P156.

x�y 3 4 5 6

2 60 45 0 0

3 20 240 180 15

4 0 225 810 330

5 0 90 1332 1581

6 0 15 1230 3760

7 0 0 720 5715

8 0 0 270 6165

9 0 0 60 4945

10 0 0 6 2997

11 0 0 0 1365

12 0 0 0 455

13 0 0 0 105

14 0 0 0 15

15 0 0 0 1

Table 6.   a(x, y) for P217.

x�y 3 4 5 6 7

2 105 105 0 0 0

3 35 560 630 105 0

4 0 525 2835 2310 315

5 0 210 4662 11067 4410

6 0 35 4305 26320 23604

7 0 0 2520 40005 73755

8 0 0 945 43155 159390

9 0 0 210 34615 259105

10 0 0 21 20979 331716

11 0 0 0 9555 343161

12 0 0 0 3185 290745

13 0 0 0 735 202755

14 0 0 0 105 116175

15 0 0 0 7 54257

16 0 0 0 0 20349

17 0 0 0 0 5985

18 0 0 0 0 1330

19 0 0 0 0 210

20 0 0 0 0 21

21 0 0 0 0 1
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Performance of the Dorfman’s scheme.  For completeness, we review also the performance for the 
Dorfman’s protocol1. In the same hypothesis above, the probability that a second round is needed for the Dorf-
man’s scheme (in this case all individuals have to be retested) is

and the average number of tests per group is

The number of individuals tested with 100 tests is then 100/(1/n+ PSR).

Recursive computation of a(x, y).  When c = 2 , the pooling matrix is amenable of a simple graphical 
description. In particular, a pooling matrix with p rows and n columns can be represented as a graph G with p 
vertices, each one associated with a matrix row (equivalent, with a pool), and n edges, each one associated with 
a matrix column (equivalently, with an individual). An edge connects two vertices if and only if the individual 
corresponding to the edge participates in the two pools corresponding to the vertices. An example is provided 
in Fig. 4 for the P64 pooling matrix.

The value of a(x, y) equals the number of sub-graphs of G having having y vertices (with nonzero degree) and 
x edges. Since the pooling matrix columns are all length-p binary vectors with two 1s, we can focus on a specific 
subset S of vertices with cardinality y and search for the number of sub-graphs of G with y vertices (with nonzero 
degree) and x edges, all vertices belonging to S. This number is denoted by ã(x, y) and is related to a(x, y) by

The value of ã(x, y) equals the number of ways in which, given the set S of y vertices, we can place x edges in such 
a way that each vertex is connected to at least one edge. This is equal to the total number of ways in which the x 
edges can be placed, y(y − 1)/2 , minus the number of edge configurations in which only ℓ nodes are “touched”, 
for ℓ ∈ {1, 2, . . . , y − 1} . This yields

which in particular gives ã(x, 2) = 1 if x = 1 and ã(x, 2) = 0 otherwise. Incorporating Eq. (13) into Eq. (12) 
gives, after some simplifications, Eq. (7).
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ã(x, ℓ)

(

y
ℓ

)

Figure 4.   Left graph: the P64 matrix with four pools (vertices) and six individuals (edges). The four graphs 
on the right represent the cases with three positive individuals (red edges) producing three positive pools (red 
vertices).



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3250  | https://doi.org/10.1038/s41598-022-07205-4

www.nature.com/scientificreports/

	11.	 Heidarzadeh, A. & Narayanan, K. Two-stage adaptive pooling with RT-QPCR for Covid-19 screening. in Proceedings of the IEEE 
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2021).

	12.	 Mutesa, L. et al. A pooled testing strategy for identifying SARS-CoV-2 at low prevalence. Nature 589, 276–280 (2021).
	13.	 Ryan, W. & Lin, S. Channel Codes - Classical and Modern (Cambridge University Press, New York, 2009).
	14.	 Ben-Ami, R. et al. Large-scale implementation of pooled RNA extraction and RT-PCR for SARS-CoV-2 detection. Clin. Microbiol. 

Infect. 26, 1248–1253 (2020).
	15.	 Abid, S. et al. Assessment of sample pooling for SARS-CoV-2 molecular testing for screening of asymptomatic persons in Tunisia. 

Diagn. Microbiol. Infect. Dis. 98, 113 (2020).
	16.	 Barak, N. et al. Lessons from applied large-scale pooling of 133,816 SARS-CoV-2 RT-PCR tests. Sci. Transl. Med. (2021).

Acknowledgements
The authors would like to thank Prof. Vittorio Sambri for discussions and comments about COVID-19 diagnostic 
laboratory activities. This work was supported in part by Ministero dell’Istruzione, dell’Università e della Ricerca 
(MIUR) under the program "Departments of Excellence (2018-2022) - Precise-CPS".

Author contributions
The authors contributed equally to this work.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Identification-detection group testing protocols for COVID-19 at high prevalence
	Results
	Identification-detection for group testing: the Pnp protocols. 
	Protocol P64. 
	Protocol P105. 
	Protocol P156. 
	Protocol P217. 
	Performance. 

	Discussion
	Methods
	Performance of the Pnp protocols. 
	Performance of the Dorfman’s scheme. 
	Recursive computation of a(x, y). 

	References
	Acknowledgements


