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Abstract

The role of fast activity as a potential biomarker in localization of the epileptogenic

zone (EZ) remains controversial due to recently reported unsatisfactory performance.

We recently identified a “fingerprint” of the EZ as a time-frequency pattern that is

defined by a combination of preictal spike(s), fast oscillatory activity, and concurrent

suppression of lower frequencies. Here we examine the generalizability of the finger-

print in application to an independent series of patients (11 seizure-free and 13 non-

seizure-free after surgery) and show that the fingerprint can also be identified in sei-

zures with lower frequency (such as beta) oscillatory activity. In the seizure-free

group, only 5 of 47 identified EZ contacts were outside the resection. In contrast, in

the non-seizure-free group, 104 of 142 identified EZ contacts were outside the

resection. We integrated the fingerprint prediction with the subject's MR images,

thus providing individualized anatomical estimates of the EZ. We show that these

fingerprint-based estimates in seizure-free patients are almost always inside the

resection. On the other hand, for a large fraction of the nonseizure-free patients the

estimated EZ was not well localized and was partially or completely outside

the resection, which may explain surgical failure in such cases. We also show that

when mapping fast activity alone onto MR images, the EZ was often over-estimated,

indicating a reduced discriminative ability for fast activity relative to the full finger-

print for localization of the EZ.
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1 | INTRODUCTION

New vistas in the pathophysiology of focal epilepsies and attempts to

improve the localization of the epileptogenic zone (EZ) in epilepsy sur-

gery converge on a common question: What is the role of high-

frequency cortical activity in seizure initiation? After the identification

of interictal fast ripples as a potential marker for epileptogenicity, sev-

eral clinical studies have investigated their possible colocalization with

the seizure onset using statistical approaches. However, a consistently

identifiable transition from interictal high-frequency activity (HFA)

and/or spikes to seizure development is far from evident in practice

(González Otárula, von Ellenrieder, Cuello-Oderiz, Dubeau, & Gotman,
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2019). Therefore, a clearer definition of the “seizure onset” is of high

importance as it is both a prerequisite to validate interictal features

and a rational basis to delineate the EZ. Even though various modes

of onset can be observed (Lagarde et al., 2019; Singh, Sandy, &

Wiebe, 2015), a feature generally acknowledged by all authors is the

sharp or progressive frequency pattern change to a higher frequency

range in some areas, often called the “seizure onset zone” (SOZ).

Defining a bio-electrical marker for the EZ is both useful for epi-

lepsy surgery and meaningful for understanding the pathophysiology

of epilepsy. An accurate marker would help to fill the gap between

“intracranial EEG” phenomenological classifications and neurophysio-

logical or modeling studies.

Several attempts to measure the EZ extent based on “stereotacti-

cally implanted EEG” (SEEG) signal processing have been made over

the past decade. Bartolomei, Chauvel, and Wendling (2008) proposed

to quantify the relative onset times of the fast activity (FA) recorded

in different areas. Detecting spectral changes during the preictal to

ictal transition, the signal energy ratio between high and low-

frequency bands was calculated and its detection time plotted in each

recording channel. Application to mesial temporal lobe epilepsies as

opposed to “lateral” temporal lobe epilepsies differentiated epi-

leptogenicity among the two localizations. David et al. (2011) under-

took a neuroimaging study to represent an epileptogenicity index

based on quantification of the HFA using statistical parametric map-

ping. This study allowed mapping of the location of the fastest activi-

ties and their “slow propagation” during peri-onset time, and

comparison with the surgically resected area. This work added to the

validation of HFA as a marker of SOZ. A different approach of “fre-

quency localization” was used by Gnatkovsky et al. (2011), considering

that frequency changes in different bands may occur successively or

simultaneously during seizure onset. Therefore, the EZ, defined as the

area of frequency changes at seizure onset, could be delineated what-

ever the peculiarity of frequency patterns recorded in different sei-

zures in a given patient. In a prospective study of patients

investigated with SEEG (Gnatkovsky et al., 2014), the same method

was applied to test three biomarkers of the EZ, namely HFA, signal

flattening, and slow potential shift. These biomarkers colocalized with

the location of the EZ as defined by standard neurophysiological

means and postsurgical seizure outcome. However, the three markers

were analyzed as discrete phenomena, even though the HFA and the

slow potential shift are probably related, the signal flattening proved

not to be discriminative.

We recently identified a “fingerprint” of the EZ via a time-

frequency (TF) approach in a series of patients who were evaluated

with SEEG and were seizure-free (SF) after surgery (Grinenko et al.,

2018). A TF pattern of the interictal to ictal transition was common

across all patients inside the resected areas. Although this pattern

included narrow-band FA, the discriminating factor was the combina-

tion of FA with preictal spike(s) and simultaneous suppression of

lower frequencies (see Supporting Information for a summary of the

feature definition and extraction procedure). Based on the EZ finger-

print pattern, a support vector machine (SVM)-based classification

algorithm was developed to automatically identify features of the fin-

gerprint pattern and distinguish EZ from non-EZ contacts.

Since the EZ fingerprint was demonstrated in SF patients with

ictal FA in the gamma band, some questions still remain unanswered:

is the EZ fingerprint a common feature of all focal seizures, even for

seizure onset patterns with oscillatory activity in a lower frequency

range? Would the EZ fingerprint be recorded outside the resected

region in nonseizure-free (NSF) patients, meaning that surgical failures

can be explained by the fact that fingerprint-positive areas were not

resected? Previous studies had treated FA as a single category,

whereas Grinenko et al. (2018) showed a distinction between broad-

band and narrow-band gamma activity. Hence, a comparison between

the accuracy of narrow-band FA identified by our method and the EZ

fingerprint in localizing the EZ is needed.

In this study we evaluate the performance of the original EZ fin-

gerprint method on a new broader population of patients, including

both SF and NSF patients. We show that the EZ fingerprint can be

identified in patients with oscillatory activities as low as beta or alpha

frequency. Classification results show substantial difference between

the SF and NSF groups, with the latter group revealing a large number

of EZ contacts predicted outside the resection region. We also extend

the EZ fingerprint method to an end-to-end classification pipeline by

interpolating the prediction scores onto individual patient's MR

images, which allows us to predict and visualize the extent of the EZ

with respect to individual anatomy. By applying this extended EZ fin-

gerprint pipeline, we demonstrate that fingerprint-based EZ anatomi-

cal estimates present as well-circumscribed areas globally located

inside the resected region in SF patients. In contrast for NSF patients,

the estimated EZ is not well localized and is located partially or

completely outside the resection, which may explain the surgical fail-

ure. Furthermore, when using only FA, but otherwise following the

same extended EZ fingerprint pipeline, we show that the extent of

the EZ can be over-estimated.

2 | METHODS

2.1 | Patient selection and data collection

Working under a protocol approved by the Institutional Review

Board, we included a consecutive series of 24 patients in year 2015

who had seizures that began with low voltage FA in the beta or

gamma bands and were operated on after SEEG evaluation. The

details of the patient selection protocol are presented in Figure S1.

SEEG is an invasive presurgical procedure for patients with

pharmaco-resistant focal epilepsy. Anatomo-electro-clinical hypothe-

ses were formulated individually for each patient during a multi-

disciplinary patient management conference based on available

noninvasive data: clinical history, video EEG, MRI, PET, ictal SPECT,

and MEG. Multilead depth electrodes (AdTech, Racine, WI; Integra,

Plainsboro, NJ; or PMT, Chanhassen, MN) were implanted according

to the Talairach stereotactic method. SEEG signals were recorded on

a Nihon Kohden (Irvine, CA) EEG machine with a sampling rate of

1,000 Hz.
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Anatomical locations of the electrode leads were identified by a

digital fusion of the postimplantation thin-sliced CT image with the

preoperative T1-weighted MR image using CURRY 7 (Compumedics

NeuroScan, Hamburg, Germany) and visualized on the preoperative

MR image using Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy,

2011). A postoperative MR image was also acquired after the surgery

(except for Subject 231 where a postoperative CT image was

acquired) and rigidly coregistered to the postimplantation CT image to

identify the positions of the electrode contacts with respect to the

location of the resected/ablated region.

2.2 | EZ fingerprint pipeline for individualized EZ
prediction

In our previous study (Grinenko et al., 2018), we described an EZ fin-

gerprint method that distinguished electrode contacts within the EZ

from non-EZ contacts (open-source software was developed and

released for research purpose only, available at: https://silencer1127.

github.io/software/EZ_Fingerprint/ezf_main. The fingerprint method

has also been integrated into the Brainstorm software: https://

neuroimage.usc.edu/brainstorm/). We approached the problem by

first transforming the raw ictal SEEG time series into TF representa-

tions using the Morlet wavelet transform, followed by an artifact

removal procedure using complex independent component analysis.

We also selected a segment of spontaneous baseline data at least

2 min before the seizure, where no obvious seizure or spiking activity

or artifacts were identified and transformed this baseline segment into

TF maps as well. We then normalized the seizure TF maps against the

baseline maps for each frequency. The normalized TF maps were then

used to extract three distinct features: FA, suppression, and preictal

spikes, illustrated in Figure 1. Finally, an SVM classifier was trained on

a combination of the three features and a leave-one-subject-out

cross-validation was performed on a set of 17 patients who had sei-

zures with sustained gamma activity and were SF after surgery. The

analysis pipeline is described in full in Grinenko et al. (2018) and an

abridged summary of the feature extraction methodology is included

here in the Supporting Information.

Here we use an extension of the EZ fingerprint method, illustrated

in Figure 1, that incorporates anatomical information into the predic-

tion by mapping the prediction scores onto the patient's MR image,

hence offering a complete end-to-end classification pipeline that

starts with preprocessing of the raw SEEG signals and yields an indi-

vidualized prediction and visualization of the EZ overlaid on the

patient's MR image. The prediction scores from the trained SVM

model in the previous EZ fingerprint pipeline offer a continuous

predicted value (a scalar-valued measure) for each contact, roughly

reflecting how likely that contact is to be in the EZ. A positive score

indicates a higher probability, a negative score indicates a lower prob-

ability, and a zero score shows maximal uncertainty about whether

the contact is in the EZ or not. The extension starts with cor-

egistration of the postimplantation CT image to the patient's preoper-

ative MR image so that the electrode contacts are aligned to the MRI

space. Then, we extract a masked brain (cerebrum and cerebellum

only) from the MR image using the skull stripping tool provided in Bra-

inSuite (Shattuck & Leahy, 2002). To perform the interpolation, we

first set the value of the brain's boundary voxels to the minimal

predicted scores across all contacts and the value of the nearest voxel

to each contact location to be the corresponding predicted score for

that contact. We then interpolate the values for all other voxels inside

the brain mask using linear interpolation between the contact loca-

tions and brain boundary values. Interpolation was computed using

Delaunay triangulation (Amidror, 2002) as provided by the “scatter-

edInterpolant” function in MATLAB (the Mathworks, Inc., Natick, MA).

See Figure 1c.

In this study we evaluate effectiveness of the EZ fingerprint on a

completely independent consecutive series of patients that under-

went SEEG evaluation in 2015, including both SF and NSF groups.

First, the SVM-based model was trained using the patient data from

our previous study (Grinenko et al., 2018). We then processed all

available seizures for the 24 patients in the current study using the

pipeline in Figure 1 to compute the SVM-based EZ scores. These

scores were then thresholded to identify EZ contacts. We also manu-

ally labeled contacts as being within or outside the resected area

based on the patient's coregistered postoperative MR image. Finally,

we compared the predicted labels with the resection labels.

Intrasubject variation of time-series characteristics of ictal pat-

terns, as exemplified in Figure 2a, can significantly affect prediction

results and lead to underestimation of the EZ. Such a variation does

not affect SEEG visual analysis as the expert classifies them as the

same seizure type but with subtle waveform alterations or different

latencies in the propagation network. However, the SVM classifier is

sensitive to such formal variation. To take this variation into consider-

ation, a clustering of seizures was performed for each subject as fol-

lows: for each seizure, we first applied the EZ fingerprint pipeline to

the ictal time series (Figure 2a) to obtain a prediction score (Figure 2b)

for each contact from the trained SVM model. We computed the

cross-correlations of the prediction scores for each subject across the

electrode array between all pairs of seizures. Figure 2c shows an

example of the cross-correlation matrix among all five seizures for

Subject 112. By visual inspection, the five seizures naturally fall into

two clusters: Seizures 1 and 3 and Seizures 2, 4, and 5 (Figure 2d).

These two groups show high intracluster correlation while the correla-

tion between the two clusters is weak. For most patients the number

of clusters and their membership is clear by inspection of the correla-

tion matrix. An automated method based on k-means clustering could

be used for this purpose, but we found that user-based clustering was

sufficient. We note that since this was done without reference to the

resected region or surgical outcomes, there is no concern that we may

be biasing our results by using manual clustering. The clustering pro-

cedure was performed for all 24 subjects. We then evaluated predic-

tion performance by identifying the EZ contacts using the EZ

fingerprint separately for each cluster and then taking the union of

the prediction results, that is, a contact is finally predicted to be in the

EZ area if it is identified as an EZ contact in any of the clusters of sei-

zures, Figure 1b.
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To address the question of whether FA alone can differentiate EZ

contacts from non-EZ contacts, as is commonly practiced in SEEG, we

compared the performance of the pipeline using the fingerprint versus

FA alone (top-right “FAs” subblock in Figure 1a) as the feature in the

SVM-based classification. Note that the features we used for FA are

based on our own characterization of the narrow-band FA as

F IGURE 1 Epileptogenic zone fingerprint pipeline. (a) Feature extraction for fast activity, suppression and preictal spikes from time-frequency
maps; (b) Classification procedures where an SVM model was trained using the original 17 subjects in the previous study and the EZ was
predicted for the 24 new subjects in the current study; (c) Interpolation of prediction scores onto patient's individual MR images. EZ,
epileptogenic zone; SVM, support vector machine
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described in Grinenko et al. (2018) rather than the energy of the

entire gamma band. In total there are 17 numerical descriptors

extracted for FA, including number of narrow bands, the maximum/

minimum frequency, the starting/ending time, and the orientation of

the FA bands (see the supplementary materials in Grinenko et al.

(2018) for complete details). We also linearly mapped the maximum

frequency (one of the 17 numerical descriptors in feature extraction

step) of the FA onto the patient's MRI space for visualization and

comparison purposes.

To statistically test the difference of the predicted EZ (in the MRI

space) between the SF and NSF group, we calculated the kurtosis of

the distribution of interpolated predicted EZ scores over the entire

masked brain for each subject. “Kurtosis” is a measure of the

“tailedness” of probability distributions (Westfall, 2014) and sensitive

to outliers. The higher the kurtosis, the more localized the predicted

EZ is and the higher prediction score within the predicted EZ area.

We also compared the anatomical prediction results with surgical

outcomes (Engel score). For each patient, we first predicted the EZ

using the extended EZ fingerprint pipeline. Then we manually

examined the relationship between the predicted EZ area and the

resected area (hereafter the “relationship”), determining either that

the predicted EZ was fully resected, partially resected, or not

resected.

3 | RESULTS

In total, 24 subjects met the patient selection criteria (Figure S1),

11 of them became SF, and the remaining 13 had seizure recurrence

after surgery, that is, NSF. Table 1 shows the clinical profiles of the

subjects included in this study. We analyzed all available seizures,

except in cases where patients had more than 10 consecutive sei-

zures, then only the first 10 seizures were analyzed. Nine subjects had

additional seizures without initial FA that were not included in the

study (additional information for these seizures is shown in Table S1).

All 24 subjects had seizure onset from low voltage FA. Figure 3

shows the statistics of the maximum and minimum frequency of

FA. The median of the maximum frequency of FA was 74 Hz with an

interquartile range (IQR) 25 Hz, and the median of the minimum

F IGURE 2 An example of the
seizure clustering procedure for
Subject 112. (a) Ictal time series
illustrating variations in ictal patterns:
Isolated preictal spiking only in channel
T0 in Seizure 1 and continuous preictal
spiking synchronous between channel
T0 and R0 in Seizures 2 and 5;
(b) Prediction scores obtained
individually for each seizure; (c) Cross-
correlations of the prediction scores
across the electrode array between all
pairs of seizures (five seizures in total
for this subject); (d) Manual clustering
of seizures according to cross-
correlation matrix
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frequency of FA was 45 Hz with an IQR 22 Hz. Of the 11 SF patients,

the full fingerprint pattern was observed from the TF plots in

9 patients and partially observed, that is, only one or two out of the

three components (FA, suppression, preictal spikes) in the other

2 patients. Of the 13 NSF patients, the full fingerprint pattern was

observed in 10 patients, partially observed in 1 patient, and missed in

the other 2 patients.

Table 2a shows classification results using the EZ fingerprint

method for all 24 subjects. These results are based on analysis in

which seizures are clustered for each subject to determine the EZ as

TABLE 1 Clinical profiles of the patients

Subject
IDa

Age
(years)

Epilepsy
duration
(years) MRI lesion Surgical pathology Resection (or ablation) details Outcome

Follow-up
duration
(months)

101 25 11 Normal Focal gliosis L lateral temporal cortexectomy Seizure-free 27

102 17 7 Normal FCD Type 1 L temporal polar and amygdala

resection

Seizure-free 36

103 30 12 Normal FCD Type 1 R anterior temporal lobectomy Seizure-free 36

106 17 9 Normal FCD Type 2B R SMA/cingulate resection Seizure-free 28

108 37 32 Suspected

FCD

FCD Type 2B R subcentral resection Seizure-free 20

111 48 6 Normal FCD Type 1 L anterior temporal lobectomy Seizure-free 28

112 21 18 Normal No due to laser surgery L insular/temporal/frontal

operculum laser ablation

Seizure-free 31

113 24 17 Suspected FCD FCD Type 1 R anterior temporal lobectomy Seizure-free 29

116 11 7 Prior resection,

otherwise normal

Gliosis R insular/ fronto-parietal and

temporal operculum

Seizure-free 22

118 33 13 Normal Gliosis R prefrontal resection Seizure-free 19

140 39 3 Normal Focal perivascular gliosis Anterior temporal lobectomy Seizure-free 21

215b 35 4 PNH No due to laser surgery Laser ablation, periventricular

nodule

Seizures

219c 30 5 Normal No due to laser surgery Laser ablation, L cingulate/SMA One-year seizure-free

then seizure recurred

220 38 22 Normal FCD Type 1 R posterior basal temporal

resection

Seizures

221 41 39 Normal Gliosis R lateral temporo-parietal

resection

Seizures

222 24 14 Normal FCD Type 1 R basal posterior temporal

resection

One-year seizure-free

then seizure recurred

223 6 2 Normal Inflammation, FCD Type 1 L anterior lateral temporal

resection

Seizures

226 24 18 Normal FCD Type 1 L prefrontal resection Seizures

228b 25 12 Multiple areas

of gliosis

Gliosis R parieto-occipital resection Seizures

231c 34 34 Normal No due to laser surgery Laser ablation, L frontal

operculum

Seizures

232b 10 10 Bilateral occipital

lesion

Ulegyria, inflammation L parieto-occipital resection Seizures

233 29 10 Heterotopic gray

matter

FCD Type 1 R temporooccipital resection Seizures

237 20 16 Normal No due to laser surgery Laser ablation, R angular gyrus Seizures

238 35 35 PMG No due to laser surgery Laser ablation, L fronto-parietal

operculum, subcentral gyrus

Seizures

Abbreviations: FCD, focal cortical dysplasia; L, left; PMG, polymicrogyria; PNH, periventricular nodular heterotopia; R, right; SMA, supplemental

motor area.
aSubjects from 101 to 140 were seizure-free (SF) after the surgery and subjects from 215 to 238 were nonseizure-free (NSF).
bPatients had seizures initiated from different area than fast activity, which influenced the surgery planning.
cSparse implantation with inadequate sampling of the epileptogenic zone.
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described above. For the SF group, we were able to achieve a sim-

ilar performance to that in our original report (Grinenko et al.,

2018). Our EZ fingerprint identified the EZ in 8 of 11 SF patients.

In total, only five electrode contacts from two subjects (Subject

102 and 113) were identified as EZ contacts outside the resected

area (in the other six subjects, the EZ was predicted strictly inside

the resection), yielding 89.4% positive predictive value (PPV) and

0.6% false positive rate (FPR). For the three remaining subjects no

EZ contact was predicted. The EZ fingerprint is apparently present

for at least one subject (Subject 103 in Figure S2) but was not

classified as such by the SVM. This missed detection is because

the feature detection and classification pipeline was trained on

the data from (Grinenko et al., 2018) which used more restrictive

inclusion criteria that may have led to failure to detect this finger-

print. The fingerprint was, at best, only partially observed in the

other two subjects (Subject 101 and 140 in Figure S2). We

hypothesize that we did not have electrode contacts inside

(or close to) the EZ area. However, a large surgical resection was

F IGURE 3 Statistics of the maximum frequency and minimum frequency of fast activity. Examples of identified fingerprint pattern with
gamma activity and beta activity are shown on the right

TABLE 2 Epileptogenic zone fingerprint prediction results and comparison with that using fast activity only

(a) Prediction results using epileptogenic zone fingerprint

Seizure-free patients Nonseizure-free patients

Prediction true Prediction false Statistics Prediction true Prediction false Statistics

Inside resection 42 (TPa) 267 (FNa) 38 (TPa) 104 (FNa)

Outside resection 5 (FPa) 838 (TNa) 0.006 (FPR) 104 (FPa) 1,276 (TNa) 0.075 (FPR)

Statistics 0.894 (PPV) 0.268 (PPV)

(b) Prediction results using features from fast activity only

Seizure-free patients Nonseizure-free patients

Prediction true Prediction false Statistics Prediction true Prediction false Statistics

Inside resection 181 (TPa) 128 (FNa) 147 (TPa) 94 (FNa)

Outside resection 281 (FPa) 562 (TNa) 0.333 (FPR) 693 (FPa) 687 (TNa) 0.502 (FPR)

Statistics 0.392 (PPV) 0.175 (PPV)

Abbreviations: FN, false negative; FP, false positive; FPR, false positive rate; PPV, positive predictive value; TN, true negative; TP, true positive.
aTP/FP/TN/FN are with respect to the resected region rather than the actual EZ.
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performed, and the two patients were SF after the surgery, indi-

cating that EZ was removed, even though not directly sampled by

the SEEG electrodes.

In contrast, for the NSF group, 104 out of 142 electrode contacts

were identified outside the resected area, resulting in a very low PPV

of 26.8%. The FPR for the NSF group was 7.5%, almost 13 times

F IGURE 4 Two exemplar cases illustrating the epileptogenic zone fingerprint prediction (bottom-left) interpolated onto individual patients
MRI in comparison with fast activity (bottom-right) and postoperative MRI (bottom-middle) with corresponding time series (top-left) and time-
frequency plot (top-right) for electrodes of interest. (a) Subject 106 from the seizure-free group; (b) Subject 220 from the nonseizure-free group.
Locations of the electrode contacts are illustrated in postoperative MRI where each color represents a distinct electrode. The boundary of the
resection was drawn manually in green for illustrative purpose
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bigger than that for the SF group (0.6%). Prediction results for each

individual patient are shown in Table S2. Results without considering

seizure clusters separately are shown in Table S3, where fewer EZ

contacts were identified inside the resection, although similar PPV

and FPR were obtained.

The true EZ is a priori unknown so we label true/false positive/

negative (TP/FP/TN/FN) contacts with respect to the resected area.

Since the resection tends to remove tissue beyond the boundaries of

the EZ, we expect a large number of contacts to be classified as “false

negatives” (FN) in both groups of patients in resected areas that are

not in the true (but unknown) EZ.

Overall, we observed a large difference in EZ prediction results

with respect to the resected regions between the SF group and the

NSF group, although the same method was applied to both groups.

Contacts identified by our EZ fingerprint were mostly localized within

the resection in the SF group, but a large fraction were outside the re-

section in the NSF group.

In this study we recruited patients with broader selection criteria

relative to our earlier work (Grinenko et al., 2018). These new results

show that the fingerprint pattern can also be identified in seizures ini-

tiated with frequencies as low as beta or even alpha band (See statis-

tics in Figure 3).

Table 2b shows the prediction results when only FA features were

used. A large number of contacts were predicted to be “EZ” but with a

low PPV of 39.2%. For the SF group, 181 “EZ” contacts were localized

inside the resection and 281 were outside the resection, suggesting

that using only FA leads to an overestimation of the EZ.

Fingerprint-based EZ prediction results interpolated onto the

patient's preoperative MRI are shown in Figure 4 for Subject 106 from

the SF group, illustrating a complete resection of the predicted EZ,

and Subject 220 from the NSF group, illustrating an incomplete re-

section of the predicted EZ. Similar results for all other subjects are

shown in Figure S3. Additionally, Table 3 shows the relationships

between the predicted EZ and resected areas (the predicted EZ was

either fully resected or partially resected or not resected) and the sur-

gical outcomes. Compared to the SF patients where the predicted EZ

was almost always inside the resected area, hence they became SF

after surgery, we observe that, for most of the NSF patients, the

predicted EZ was either partially resected or not resected, which may

explain the reason for the surgical failure in those cases.

In contrast to the EZ fingerprint, the FA was often more widely

propagated and extended far beyond the EZ, although the EZ finger-

print and FA maps are partially colocalized (most often the EZ

TABLE 3 Comparison of the resection/laser ablation and surgical

outcomes

Subject ID

Concordance of
resection

and predicted EZa Outcome (Engel)

101 (no EZ predicted) 1A

102b Complete 1A

103 (no EZ predicted) 1A

106 Complete 1A

108 Complete 1A

111 Complete 1A

112 Complete 1A

113 Partial 1A

116 Complete 1A

118 Complete 1A

140 (no EZ predicted) 1A

215 Predicted EZ not resected 2A

219 Partial 2A

220 Partial 4

221 (no EZ predicted) 3

222 Partial 2

223 Complete 3

226 Partial 2B

228 Predicted EZ not resected 4

231 Predicted EZ not resected 4

232 (no EZ predicted) 4

233 Complete 2

237 (no EZ predicted) 4

238 Partial 3

aThe relationship between the resection and the predicted EZ was

determined by visualization and manual inspection of the interpolated EZ

prediction scores in the patient's MRI space.
bThe false positive contact (only one) predicted in this patient (see

Table S2) has a very low score relative to the true positive contacts, hence

does not affect the overall estimate of the EZ. (See Figure S3 for details).

F IGURE 5 Boxplot of the kurtosis of the interpolated prediction
scores for the seizure-free group on the left and the nonseizure-free
group on the right. Example of the appearance of the epileptogenic
zone fingerprint prediction that correspond to low and high kurtosis
are shown on the right
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fingerprint is a subset of the FA-identified EZ). For example, in

Figure 4a, the fingerprint-based EZ area was unilateral and localized

within the resected region while the FA-based EZ was in bilateral

homotopic areas. This phenomenon can also be verified from the

SEEG time series as well as the TF plots, with FA exhibited recorded

from both electrodes N and N0, although the appearance of fast activi-

ties differs across contacts. Since this patient (Figure 4a) was SF after

surgery, the EZ was situated only in the right hemisphere. Hence, as

noted above, it is very difficult to delineate EZ purely based on FA

alone.

Overall, anatomical visualization of the predicted EZ showed a

substantial difference in appearance between the SF group and the

NSF group. In the SF group, the identified EZ usually presents as a

restricted region within the resected area. On the other hand, in the

NSF group the predicted EZ is usually more diffuse. Statistically,

Figure 5 shows boxplots of the kurtosis across all subjects in the SF

group on the left and the NSF group on the right. The kurtosis for the

SF group is significantly higher than that for the NSF group with a

one-sided p value of 3.8 × 10−3 for a student t test with 22 degree of

freedom, indicating that the predicted EZ is more focal.

4 | DISCUSSION

4.1 | Validation of an EZ biomarker

Even though the concept of the “EZ” has been used for more than

50 years (Bancaud et al., 1965), its precise definition remains contro-

versial, and a reliable biomarker is still missing. Several algorithms

have been proposed to assess the extent of the EZ and compare it

with either the EZ area identified by an expert clinician or the

resected region (Andrzejak et al., 2014; Bartolomei et al., 2008; David

et al., 2011; Gnatkovsky et al., 2011, 2014; Varatharajah et al., 2018).

Some of these studies showed high concordance between the two.

However, the lack of ground truth and a precise definition of the

EZ poses a significant challenge for us to validate the localization per-

formance of a particular biomarker. First, there can be a large variation

in ictal patterns across different subjects. Some waveform or time

interval alterations may occur even across different seizures within

subjects (see Figure 2a). Those latter alterations may not affect visual

analysis based on the SEEG time series because an expert clinician will

treat them as the same type with subtle differences in waveform. But

they can significantly affect prediction results using machine-based

algorithms and lead to underestimation of the EZ. Indeed, (Andrzejak

et al., 2014) compared the performance of four earlier proposed

approaches for automatic identification of the EZ (Andrzejak et al.,

2014; Bartolomei et al., 2008; David et al., 2011; Gnatkovsky et al.,

2011) and found that these methods produced highly discordant

results depending on particular ictal patterns.

Moreover, the resected region is not an ideal ground truth for EZ

either, because, as we discussed previously, the resected region is typ-

ically larger, sometimes much larger, than the actual EZ, resulting in a

large number of FN predictions when using machine-based algorithms

(Table 2), regardless of the seizure freedom of patients after surgery.

Instead of using the clinically defined EZ or the resected region as

the ground truth, it would be more meaningful to compare the

computer-assisted localization or prediction against long-term seizure

outcomes after surgical treatment as it provides an objective criterion

for evaluation of the accuracy of the EZ identification. Previous stud-

ies have shown that some features extracted from EEG and ECoG

recordings, such as HFA (Jacobs et al., 2010) and phase-locked high

gamma activity (PLHG) (Weiss et al., 2013), are correlated with Engel

scores. Weiss et al. (2015) showed statistically significant difference

of the Engel scores between the group of subjects where the area

with early appearance of PLHG was resected and the group of sub-

jects where that area was not resected. However, contradictory

results have also been reported. For example, Blauwblomme et al.

(2013) has shown that the epileptogenicity of insular cortex, mea-

sured with an earlier proposed algorithm (David et al., 2011), did not

influence the outcome of temporal lobectomy, suggesting the diffi-

culty of finding a reliable biomarker of the EZ.

Therefore, if a biomarker of EZ is a reliable one, the EZ should be

identified or predicted exclusively within the resected region in

patients that become long-term SF after surgery. On the other hand,

the EZ should be either completely missed or only partially resected in

NSF patients. The aim of this study was to validate the EZ fingerprint

method on a completely independent set of patients that have been

drawn with broader selection criteria including both SF and NSF sub-

jects. To get a more realistic representation of the surgical plan, ana-

tomical information was incorporated and the predicted EZ scores

were mapped onto the patient's MRI space. Finally, we compared our

fingerprint-based EZ prediction results with surgical outcome. The EZ

prediction results (both the binary classification results and the inter-

polated imaging results) showed a substantial difference between the

SF group and the NSF group. The predicted EZ was well localized

inside the resected area in SF patients while it was not fully resected

or completely missed in NSF patients. The contrast between the

results for SF patients and that for NSF patients correlates with their

surgical outcomes thus providing a posteriori explanation of the surgi-

cal success or failure in those cases.

4.2 | Fast activities yield EZ blurred images

FA has been increasingly used as a potential biomarker of the EZ since

growing use of SEEG in presurgical evaluation. However, previous

studies did not perform TF analysis so they could not differentiate

between broad-band and narrow-band FAs. The former was fre-

quently measured as the power of gamma activity that is much less

discriminative than the latter in terms of EZ localization. For example,

the epileptogenicity index (Bartolomei et al., 2008) emphasizes the

analysis of FA and is calculated as the energy ratio between the fast

frequencies (beta + gamma) and slow frequencies (theta + alpha).

However, our TF analysis showed that beta and low gamma frequen-

cies were often suppressed and the power in FA was highly variable.

Also the epileptogenicity index mixes these two phenomena (high-

frequency oscillations and low-frequency suppression) and does not

account for the fact that frequency range and duration can vary
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significantly both across subjects and between EZ and non-EZ areas.

David et al. (2011) identified the EZ based on the maximal frequency

of FA during early seizure spread. Gnatkovsky et al. (2011, 2014) mea-

sured the power of FA in a high gamma range and found that maxi-

mum power of high gamma activity correlated with a slow polarizing

shift and less with EEG flattening. However, these studies either used

FA solely or treated FA independently from other features.

To address the question of whether narrow-band FA, one of the

three components of the fingerprint, can be an equally discriminative

factor in localization of the EZ, we numerically classified EZ using fea-

tures from FA only and mapped FA onto patient's MRI space using

the same EZ fingerprint pipeline (Figure 1). Classification results

showed a large number of false positive contacts outside the resected

region (Table 2b). On the other hand, imaging results showed that the

FA could extend/propagate to areas far beyond the EZ (Figure 4).

Both results confirmed that the EZ was very difficult to localize and

significantly over-estimated when (even narrow-band) FA only is used

as a biomarker.

Moreover, as opposed to the previous studies where FA was usu-

ally defined as gamma activities or beyond, our analysis showed that

the fingerprint patterns can be identified with frequency activities as

low as beta or even alpha band (Figure 3), indicating the difficulty of

EZ localization when using FA-based biomarkers with conventional

but heuristic choice of frequency range.

4.3 | Automated EZ fingerprint classification pipeline

The proposed EZ fingerprint pipeline consists of four major parts: data

preprocessing, fingerprint feature extraction, SVM-based classifica-

tion, and MRI interpolation (Figure 1). To the best of our knowledge,

this pipeline is the first complete end-to-end EZ prediction or estima-

tion procedure that was validated based on long-term seizure out-

come on a representative series of patients.

This machine-learning-based EZ fingerprint classification pipeline

is crucial for successful application of the fingerprint method to delin-

eate EZ from other areas because in many cases it is very difficult to

distinguish EZ contacts from non-EZ contacts only by visual inspec-

tion of the TF plots. For example, the fingerprint pattern is clearly

shown on the electrode N in Figure 4a, while the TF plots of electrode

N0 seem to have a blurred/vague version of the fingerprint. Based on

visualization of this type of TF plots, it is not easy to deny the hypoth-

esis that contacts on N0 belong to the EZ area (while in fact N0 is out-

side the EZ). The reason for this is because we are often looking for

the existence of the fingerprint pattern during visual inspection but

lack a proper evaluation of the typicality of the pattern (e.g., the nar-

row bands of FA are blurred, and the lower frequencies are not well

suppressed on N0 relative to N). In contrast, by taking all aspects of

the fingerprint into account (i.e., all different types of features

extracted from the TF plot), the SVM-based classification system is

able to distinguish the pattern on N apart from that on N0, hence

yielding an accurate prediction of the EZ.

4.4 | Potential pitfalls in application of the EZ
fingerprint method

Among all the steps in the EZ fingerprint pipeline, feature extraction is

of particular importance due to the high complexity in the fingerprint

patterns across subjects. As a result, the originally designed feature

extraction steps might have been biased toward the set of 17 SF

patients used in our previous study (Grinenko et al., 2018), in the

sense that the parameters are tuned based on that set of patients and

may not generalize well to other patients. For example, in Figure S2,

the TF plot for Subject 103 shows a clear fingerprint pattern with a

downchirping narrow-band FA. However, the slope of this banding is

too steep to fall into the reasonable range (±45� away from positive

x-axis) that was designed to rule out false positive detections in the

original dataset. Therefore, this FA was not successfully identified

resulting in a missing prediction of the EZ.

Although the fingerprint pattern (the combination of preictal spike,

narrow-band FA, and suppression) is very consistent across subjects,

the individual features may vary substantially across subjects as well

as across different seizures within subjects. For this reason, we found

that prediction-score-based seizure clustering is an important step in

the pipeline for good outcomes. In our original EZ fingerprint model

an EZ contact predicted from a single cluster of seizures will yield no

prediction if there is inconsistency in identified contacts from seizures

in a different cluster. Results when considering different seizure clus-

ters showed improved performance of EZ prediction over that with-

out clustering. Here we use manual clustering. A systematic approach

to clustering seizures and investigating the pathophysiological mean-

ing behind different clusters may be of interest for future research.

Another possible pitfall of the fingerprint method may occur when

the SEEG electrodes are not optimally placed. In that case it is almost

impossible to delineate EZ from other areas based on the fingerprint

method as the fingerprint pattern does not present or only partially

presents if the electrode contact is not too distant from the core EZ

area (e.g., Subject 101 and 140 in Figure S2). Nevertheless, in these

cases, large resections may still include the EZ, hence patients may

become SF after surgery even though no fingerprint has been identi-

fied. In fact, both the accuracy and the density of electrode implanta-

tions strongly affect and can be the bottleneck limiting the

performance of the application of the fingerprint method to the EZ

identification problem. Therefore, identifying a relatively accurate

estimate of the EZ using presurgical noninvasive data, thus providing

good guidance for electrode implantation, poses a challenging prob-

lem for the future.

Our observations in Figure 5 show that higher kurtosis is highly

correlated with SF outcomes. In contrast, there may be multiple rea-

sons for low kurtosis to occur in the interpolated EZ prediction

images. For example, when the electrodes are not well placed so that

the EZ is not sampled, the prediction scores will be low all over the

brain. In other cases, the EZ may be large and diffuse but well sam-

pled. There will then be a significant fraction of the brain that has high

prediction values leading to a low kurtosis value. Conversely, when

the kurtosis is high, then we have strong indication that the EZ is both
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well sampled and resectable, leading to a higher chance of seizure

freedom.

This study shows that the TF pattern described as a fingerprint of

the EZ is a real marker of the cortical region, which should be resected

or ablated to achieve seizure freedom for a given patient. FAs, as it

spreads out of the EZ area, cannot be utilized separately from the

other two elements of the fingerprint pattern for an accurate localiza-

tion. Such inter-dependence reinforces the pathophysiological signifi-

cance of the marker. As we discuss in more detail in Grinenko et al.

(2018), this fits well with the model proposed by Avoli and de Curtis

(Avoli & de Curtis, 2011; De Curtis & Avoli, 2016): progressive syn-

chronized activation of pyramidal cells (low-frequency component of

the preictal spikes) that excites disinhibited fast somatic inhibitory

interneurons (FSIN) (fast-frequency component of the preictal spikes)

leading to a sustained FSIN activation (ictal FAs) with pyramidal silenc-

ing as a consequence (suppression of low frequencies) (Avoli & de

Curtis, 2011; Elahian, Yeasin, Mudigoudar, Wheless, & Babajani-

Feremi, 2017; Fujiwara-Tsukamoto et al., 2010; Gnatkovsky, Librizzi,

Trombin, & De Curtis, 2008; Truccolo et al., 2014; Weiss et al., 2016).

At the end of the sustained FSIN discharge, rebound activation of

pyramidal cells and interneurons occurs before the seizure stops. How

the FAs resonate in a more extended network remains to be

elucidated.
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