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Constraint satisfaction problems (CSP) are at the core of numerous scientific and

technological applications. However, CSPs belong to the NP-complete complexity class,

for which the existence (or not) of efficient algorithms remains a major unsolved question

in computational complexity theory. In the face of this fundamental difficulty heuristics and

approximation methods are used to approach instances of NP (e.g., decision and hard

optimization problems). The human brain efficiently handles CSPs both in perception and

behavior using spiking neural networks (SNNs), and recent studies have demonstrated

that the noise embedded within an SNN can be used as a computational resource to

solve CSPs. Here, we provide a software framework for the implementation of such

noisy neural solvers on the SpiNNaker massively parallel neuromorphic hardware, further

demonstrating their potential to implement a stochastic search that solves instances of P

and NP problems expressed as CSPs. This facilitates the exploration of new optimization

strategies and the understanding of the computational abilities of SNNs. We demonstrate

the basic principles of the framework by solving difficult instances of the Sudoku puzzle

and of the map color problem, and explore its application to spin glasses. The solver

works as a stochastic dynamical system, which is attracted by the configuration that

solves the CSP. The noise allows an optimal exploration of the space of configurations,

looking for the satisfiability of all the constraints; if applied discontinuously, it can also

force the system to leap to a new random configuration effectively causing a restart.

Keywords: SpiNNaker, constraint satisfaction, spiking neural networks, stochastic search, spiking neurons

1. INTRODUCTION

Most practical problems and natural phenomena can be abstracted as systems composed of smaller
elements interacting with each other, an element being able to assume one of many states and
the global configuration of states governed by the nature of the interactions. In practice, each
interaction imposes a restriction on the behavior of the units (a constraint). Such a description
allows the interpretation of the phenomena as a constraint satisfaction problem (CSP), which is
defined by the tuple 〈X,D,C〉. Here, X = {x1, ..., xN} is a set of N variables defined over the
respective set of non-empty domains D = {D1, ...,DN}, each xi represents an element of the system
which can take Di possible states. The constraints C = {C1, ...,Cm} are 〈Si,Ri〉 tuples defined over
m subsets S = {S1, ..., Sm : Si ⊆ X}, and k relations R = {R1, ...,Rk} (Russell and Norvig, 2009). In
general, each Ri is a tuple defined over the Cartesian product of the variable domains, if however,
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all relations Ri are defined as 2-tuples, the CSP is called binary.
With this definition, and without taking into account symmetry

considerations, one has on the order of D
N
possible evaluations

for the values of the set X. (Here D is the average size of
the domains). In the case of a Sudoku puzzle, for example, X
represents the grid cells, the set D consists of the nine possible
digits for each cell and C defines the game rules. In this case one
has 981 possible configurations which after puzzle equivalency
reduction define ≈6.67×1021 possible puzzles (Felgenhauer and
Jarvis, 2005).

A solution to the CSP (if it exists) is an evaluation of X that
is consistent (satisfies all the constraints ci in C) and complete
(includes all variables xi in X). To find such a solution one
implements a search algorithm that explores the state space of
all these configurations. The strategy of searching the whole
state space, known as the brute-force algorithm, quickly becomes
unfeasible as N increases (e.g., requiring more computing time
than the age of the universe; Norvig, 2009), demanding the
development of cleverer algorithms. The efficiency of such a
computing algorithm is conventionally determined with the
definition of its asymptotic time complexity T(n), expressed
as a function of the input size of the problem n ∝ N
for a particular encoding language (Gary and Johnson, 1979).
Notice that for a given problem two different instances of the
same size n could reveal different performance, so T refers
to the worst-case complexity. According to Cobham’s thesis,
an algorithm is conventionally considered efficient if it admits
worst-case polynomial time solutions on a deterministic Turing
machine (DTM). Such algorithms build up the P complexity
class, corresponding to T(n) ∈ O(nκ ), where κ is determined
by the nature of the problem (Cobham, 1965). A broader class,
the NP complexity, contains all decision problems for which a
proposed solution can be verified in polynomial time (Cook,
1971).

The problem of determining the existence of efficient
algorithms for solving every NP problem, known as the P versus
NP problem, remains unsolved since its establishment by Cook
(1971). When a problem does demand algorithms outside P,
it is said to be intractable, and it is a widely held view that
this is the case for a large subset of NP. Thus, instances of
NP are recognized as very hard problems (Fortnow, 2009), the
hardest of which are referred to as NP-Complete, which are
NP problems to which any other NP problem can be reduced
in polynomial time, hence completeness (Karp, 1972)1. If P 6=
NP, NP-complete problems are tractable only by an ideal non-
deterministic version of the Turing machine (NDTM) (Cook,
1971; Karp, 1972; Gary and Johnson, 1979). We can think of
Turing machines as abstract devices endowed with a set of
rules to act on a string of symbols, such actions depending on
both, the machine’s internal state(s) and the input symbol(s).
While at each computation node a DTM has a specific action
to perform (thus defining a computation path) an NDTM can
follow a whole family of actions (thus defining a computation

1A set of yet harder problems form the NP-Hard class of which P, NP, and NP-

Complete problems are subsets, though NP-Hard problems are not necessarily

NP.

tree; Hopcroft et al., 2006). At each computation step, either the
NDTM takes an action biased toward configurations that lead
to accepting states or it branches executing all of the allowed
actions (Maruoka, 2011). In any case, an NDTM is guaranteed to
find a solution if it exists. Although the biased action description
is unrealistic, the replicative interpretation is only limited by
the available space and time resources (increasing resources
are needed as the NDTM advances through the computation
tree). Despite the apparent impracticability of manufacturing an
NDTM, very recently, and based on the replicative properties
of the deoxyribonucleic acid (DNA) molecule, Currin et al.
(2017) reported the first physical design of the embodiment
of an NDTM. The practicability of NDTM remains, however,
uncertain in the near future. Therefore, with a high possibility
of P 6= NP and no NDTMs available, NP problems stay as a
hard task to be tackled. Importantly, the determination of the
existence (or not) of solutions for a CSP constitutes an NP-
complete problem. Therefore, (1) there are no known efficient
algorithms that work for general CSPs, despite the fact that there
are polynomial time subcases; and (2) any other NP problem can
be expressed as a CSP in polynomial time.

NP-Complete problems find applications in a wide range
of fields, from spin glass systems, resources allocation, and
combinatorial mathematics, to Atari games and public key
cryptography (Gary and Johnson, 1979; Barahona, 1982;
Fortnow, 2009; Aloupis et al., 2015). Thus, in the absence of
known efficient algorithms for solving general NP problems,
and the need for at least an approximate solution, the
standard strategy is to find either an adequate heuristic or
an approximation algorithm for the particular instances of
the given problem. The success of such non-neural strategies
makes them ideal for some practical applications. Here, our
interest is rather in the way in which biological organisms use
neuronal networks to efficiently cope with CSPs, in this case
even the limitations found are enlightening i.e., it could be more
convenient for an animal to prioritize a nearly-optimal but quick
solution, especially if the system is unsolvable. Hopfield and
Tank (1985) firstly proposed stochastic analog neural networks to
solve decision and optimization problems, they had realized the
CSP nature of their previously implemented content addressable
memory (Hopfield, 1982), and of the optimization of perceptual
inference by Hinton and Sejnowski (1983), both of which
used networks of binary neurons. More recently, an alternative
approach based on deterministic multistable neural oscillators
and synaptic plasticity was proposed (Mostafa et al., 2013). All the
neural models above are liable to getting stuck in local minima, a
cleaver solution was achieved by enhancing the model of Mostafa
et al. (2013) with the use of gamma-band rhythmic oscillations
of incommensurable frequencies (not rational multiples of each
other) (Mostafa et al., 2015b), which further allowed the network
dynamics to stabilize when all constraints are satisfied. The latter
gave rise to an event-driven, mixed analog/digital prototype
chip of incommensurable oscillators which, bespoken to the
distributed nature of CSPs, promises to yield state-of-the-art
performance (Mostafa et al., 2015a).

In the middle of the 90s, more biologically plausible versions
of neural networks, the SNNs, were demonstrated to present
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equal or superior computational capabilities than those of
analog neurons (Maass, 1995, 1996, 1997). Despite promising
advantages, their implementation demands a high computational
expense in conventional hardware. Regarding CSPs, Malaka and
Buck (2000) achieved an SNN solution of an 8 cities traveling
salesman problem (TSP). More than a decade later, Habenschuss
et al. (2013) demonstrated that the stationary distribution of a
stochastic SNN visits the solution of a hard Sudoku puzzle on
average 2% of the time once it acquires a performance where
90% of the constraints are satisfied, and finally Jonke et al. (2016),
formalized the application of SNNs to general CSPs, postulating
a methodology which allows the shaping of the energy landscape,
using a modularity principle, controlling the network dynamics
and causing it to visit the solution to the problem.

The models above suggest that the noisy, distributed and
asynchronous nature of the brain’s processes could be behind
its computational properties, contrasting with the conventional
trends in commercial computer architectures. The brain itself is
constantly facing conflicting situations where it should decide
actions that best satisfy a number of constraints (Churchland,
2008). Hence, we can take advantage of the brain-inspired
computers (neuromorphics) to design new strategies for solving
CSPs and gain understanding about which of such strategies
are biologically plausible. Given the NP-complete nature of
CSPs, it seems natural to consider the research on SNN-solvers
to be at an early stage, with the need for an even deeper
exploration of their dynamics. It is the aim of this work to
provide a tool for the exploration of high-dimensional networks
running in biological real time, facilitating the further evolution
of SNN-solvers for CSPs, allowing, for example, the study of the
non-Boltzmann and non-Markovian dynamics of the network
(Crair and Bialek, 1990; Clarke et al., 2015). For this, we
use the Spiking Neural Network Architecture (SpiNNaker), a
neuromorphic computer which presents a nice balance between
the very large number of neurons it is able to simulate, its energy
efficiency and the biological real-time feature of the simulations.
Neuromorphic computers are electronic devices emulating the
working mechanisms of the brain in the search for alternative
models of computation. They aim to overcome the limitations
offered by conventional computational architectures especially
(but not only) with regard to brain simulations (Mead, 1990;
Furber S., 2016; Furber S.B., 2016). Similarly to the prototype
chip of incommensurable oscillators of Mostafa et al. (2015a),
neuromorphics provide a distributed architecture that resembles
that of CSPs. They also share the local nature of the constraint
graph in which generally a constraint relates only a few variables.
SpiNNaker is a real-time asynchronous, multicast, and event-
driven machine (Furber et al., 2013, 2014), features that favor
the implementation of stochastic computations. Furthermore,
it is designed to compute with spiking neurons, overcoming
the computational cost that historically limited implementations
of SNNs compared to artificial neural networks. Through the
following sections, we are going to show how SpiNNaker is able to
implement a stochastic search that solves constraint satisfaction
problems (CSP). Besides running in biological time our approach
improves previous stochastic SNN implementations with the
ability to converge into a stable (long-lasting) solution.

2. MATERIALS AND METHODS

2.1. From Constraint Satisfaction Problems
to Spiking Neural Networks
In order to implement the stochastic search we first need to map
our CSP into an SNN. Formally, a spiking neural network can be
defined as a set of spiking neurons N , each one with a threshold
function θi, and with connections between two arbitrary neurons
Ni and Nj established by the set of synapses S ⊆ N XN .
For each element Si,j ∈ S there is a weight parameter wi,j

and a response function Ri,j :R
+ → R (Maass, 1997). In our

implementation each neuronNi corresponds to a leaky integrate
and fire (LIF) neuron (Stein, 1967). In this model the dynamics
of the membrane potential u are given by:

τm
du

dt
= −u(t)+ RI(t). (1)

Here, τm is the membrane time constant, R is the membrane
resistance and I an external input current. Each time u reaches
a threshold value uth a spike is elicited; such events are fully

characterized by the firing times {tf | u(tf ) = uth and
du
dt
|t=tf >

0}. Immediately after a spike the potential is reset to a value
ur , such that lim

t→tf
+ u(t) = ur . In our network synapses are

uniquely characterized by ωij and the inter-neural separation is
introduced by means of a delay 1ij. In biological neurons each
spike event generates an electrochemical response on the post-
synaptic neurons characterized byRi,j. We use the same function
for every pair (i, j), this is defined by the post-synaptic current:

j(t) =
q

τ
e−

t−t0
τ 2(t − t0), (2)

where q is the total electric charge transferred through the
synapse, τ is the characteristic decaying time of the exponential
function, t0 = tf + 1ij is the arrival time of the spike and
2 represents the Heaviside step function. The choice of Ri,j

potentially affects the network dynamics, and although there
are more biologically realistic functions for the post-synaptic
response, the use of the exponential function in Equation (2)
constitutes one of our improvements over the previous studies
on CSP through SSNs which used a simple square function.

In an SNN each neuron is part of a large population. Thus,
besides the background current I(t), it receives input from
the other neurons, as well as a stochastic stimulation from
noisy neurons implementing a Poisson process. In this case,
the temporal evolution of the membrane potential (Equation 1)
generalizes to:

τm
d

dt
u = −u(t)+ R



I(t)+
∑

j

ωj

∑

f

j(t − t
f
j )+

∑

k

�kj(t − Tk)





(3)

where the index f accounts for the spike times of principal
neuron j in the SNN, �k is the strength of the kth random
spike, which occurs at time Tk, and J(.) is the response function
of Equation (2). An SNN has the advantage that its microstate
ψt = {n1, n2..., nN} at any time t can be defined by the binary
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firing state ni ∈ {0, 1} of each neuron Ni, instead of their
continuous membrane potential ui ∈ R. Then, the set of firing

times {t
f
i } for every neuron Ni, or equivalently the set of states

{ψt}, corresponds to the trajectory (dynamics) of the network on
the state space. The simulations in this work happen in discrete
time (time step = 1ms), so in practice, ψt defines a discrete
stochastic process (e.g., a random walk). If the next network
state ψti+1 depends on ψti but is conditionally independent of
any ψtj with j < i, the set {ψt} also corresponds to a Markov
chain. Habenschuss et al. (2013) demonstrated that this is the
case when using rectangular PSPs and a generalized definition
of the network state, the validity of the Markov property for
general SNNs could still depend on the dynamical regime and
be affected by the presence of a non-zero probability current for
the stationary distribution (Crair and Bialek, 1990). Each possible
configuration of the system, amicrostateψi, happens with certain
probability pi and, in general, it is possible to characterize the
macroscopic state of the network with the Shannon entropy (in
units of bits) (Shannon, 1948):

S = −
∑

i

pi log2 pi (4)

and the network activity:

A(t) =
1

N

N
∑

j

∑

f

δ(t − t
f
j ) (5)

To compute pi and hence Equation (4) we binned the spikes
from each simulation with time windows of 200 ms. In this
type of high-dimensional dynamical system, sometimes the
particular behavior of a single unit is not as relevant as the
collective behavior of the network, described for example by
Equations (4, 5).

A constraint satisfaction problem 〈X,D,C〉 can now be
expressed as an SNN as shown in the pseudo-code of algorithm 1.
We can do it in three basic steps: (a) create SNNs for each
domain di of each variable, every neuron is then excited by
its associated noise source, providing the necessary energy to
begin exploration of the states {ψ}. (b) create lateral-inhibition
circuits between all domains that belong to the same variable.
(c) create lateral-inhibition circuits between equivalent domains
of all variables appearing in a negative constraint and lateral-
excitation circuits for domains in a positive constraint. With
these steps, the resulting network will be a dynamical system
representation of the original CSP. Different strategies can now
be implemented to enforce the random process over states ψt

to find the configuration ψ0 that satisfies all the constraints.
The easiest and proposed way of implementing such strategies
is through the functional dependence of the noise intensity with
time. The size of each domain population should be large enough
to average out the stochastic spike activity. Otherwise, the system
will not be stable and will not represent quasi-equilibrium states.
As will be shown it is the size of the domain populations what
allows the system to converge into a stable solution.

The ensemble of populations assigned to every CSP variable
xi works as winner-take-all circuits through inhibitory synapses

between domain populations, which tends to allow a single
population to be active. However, the last restriction should not
be over-imposed, because it could generate saturation and our
network will be trapped in local minimum. Instead, the network
should constantly explore configurations in an unstable fashion
converging to equilibrium only when satisfiability is found. The
random connections between populations, together with the
noisy excitatory populations and the network topology, provide
the necessary stochasticity that allows the system to search for
satisfiable states. However, this same behavior traps some of the
energy inside the network. For some problems, a dissipation
population could be created to balance the input and output
of energy or to control the entropy level during the stochastic
search. In general, there may be situations in which the input
noise acquired through stimulation can stay permanently in
the SNN. Thus, the inclusion of more excitatory stimuli will
saturate the dynamics in very high firing rates, which potentially
reaches the limit of the SpiNNaker communication fabric. In
these cases, inhibitory noise is essential too and allows us to
include arbitrarily many stimulation pulses.

We demonstrate in the next section that the simple approach
of controlling the dynamics with the stimulation intensities and
times of the Poisson sources provides an efficient strategy for a
stochastic search for solutions to the studied CSPs.

2.2. The Spiking Neural Network
Architecture (SpiNNaker)
With large CSPs the equivalent SNN becomes computationally
too expensive for conventional computers, so one of the
important contributions of our work is the implementation
of the SNN-solver on a computer architecture especially
designed for computations with spiking neurons. Conventional
supercomputers physically embody a deterministic universal
Turing machine and are designed to do computations
transferring a high quantity of data in deterministic,
synchronous, repeatable and reliable ways. Although under
specif circumstances neuromorphic computers can be described
by a DTM, they are devices inspired by the working principles
of the brain, which is rather asynchronous and unreliable and
thus has additional features. Although conventional machines
have achieved impressive performance in automatic computing
tasks—in part due to the great progress in miniaturization—
when facing the complex inference and cognitive tasks solved
naturally by living organisms, biology outperforms them
by several orders of magnitude, especially with regard to
energy efficiency. We believe that such features can provide
advantages in the solution of unsolved problems such as the ones
in NP.

Neuromorphic computing was first introduced by Carver
Mead in the 1980s, originally intended for analogue very-
large-scale integration systems. Almost 30 years after Mead’s
work and after a decade of parallel efforts, there are but a
few very powerful, massively parallel neuromorphic computers:
TrueNorth (Merolla et al., 2014), Neurogrid (Benjamin et al.,
2014), BrainScaleS (Schemmel et al., 2010), and SpiNNaker
(Painkras et al., 2013). The latter is endowed with the ability
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Algorithm 1 | Translation of a CSP into an SNN

# d e f i n e t h e CSP = <X ,D, C> th r ough a s e t o f l i s t s .
X= l i s t ( v a r i a b l e s )
D= l i s t ( domains )
S= l i s t ( s u b s e t s _ o f (X ) )
R= l i s t ( r e l a t i o n s _ o v e r ( s _ i in S ) )
C= l i s t ( c o n s t r a i n t s = t up l e ( s _ i , r _ i ) )

#a ) c r e a t e an SNN f o r each v a r i a b l e w i th sub−p o p u l a t i o n s f o r each
domain .
n = s i z e _ o f _ e n s emb l e
f o r v a r i a b l e x_ i in X :

f o r domain d_ i in D:
popu l a t i o n [ x_ i ] [ d_ i ] = c r e a t e an SNN wi th n neurons
no i s e _ e x c [ x_ i ] [ d_ i ] = c r e a t e a s e t o f no i s e
s t im u l a t i o n p opu l a t i o n s .
a p p l y _ s t imu l i ( n o i s e [ x _ i ] [ d_ i ] , p opu l a t i o n [ x_ i ] [ d_ i ] )
no i s e _ i nh [ x_ i ] [ d_ i ] = c r e a t e a s e t o f no i s e
d i s s i p a t i o n p opu l a t i o n s .
a p p l y _ d i s s i p a t i o n ( no i s e _ i nh [ x_ i ] [ d_ i ] , p opu l a t i o n [ x_ i ] [ d_ i ] )

#b ) u s e i n h i b i t o r y s y n a p s e s t o a c t i v a t e , on av e ra g e , a s i n g l e domain p e r
v a r i a b l e

f o r domain d_ i in D:
f o r domain d_ j in D

i n h i b i t o r y ( popu l a t i o n [ x_ i ] [ d_ i ] , p opu l a t i o n [ x_ i ] [ d_ j ] )
# c ) map each c o n s t r a i n t t o an i n h i b i t o r y o r e x c i t a t o r y s y n a p s e .

f o r c o n s t r a i n t c _ i in C :
r ead s u b s e t s _ i and r e l a t i o n r _ i from c _ i
f o r v a r i a b l e s x _ i and x_ j in s _ i :

f o r domain d_ i in D:
i f c o n s t r a i n t r e l a t i o n r _ i <0 :

i n h i b i t i o n ( popu l a t i o n [ x_ i ] [ d_ i ] , p opu l a t i o n [ x _ j ] [ d_ i ] )
e l i f c o n s t r a i n t r e l a t i o n r _ i >0 :

e x c i t a t i o n ( popu l a t i o n [ x_ i ] [ d_ i ] , p opu l a t i o n [ x _ j ] [ d_ i ] )

to model high-dimensional spiking neural networks, low energy
requirements, and a multicast communication protocol. It is
based on a globally asynchronous and locally synchronous
(GALS) multi-core System-on-Chip, being event-driven and able
to run in biological time. SpiNNaker is built using a million ARM
968 processor cores (of which 60% are currently available). Each
chip on the machine includes 18 processor cores connected by
a network on chip (NoC) communication system (Grymel and
Furber, 2011; Furber, 2012; Furber et al., 2013, 2014; Goodman
et al., 2013; Painkras et al., 2013). This fundamentally different
architecture paradigm, besides bespoke design for neurobiology
simulations, makes the SpiNNaker system interesting for
exploring new implementations of stochastic searches. Here we
explore the computing power of the machine for these more
general computing problems, exploiting the neuromorphic’s
ability to overcome the conventional difficulties of dealing with
computationally expensive spiking neurons when implemented
on conventional clusters and GPUs. In summary: (i) for
SpiNNaker spiking neurons are the fundamental modeling units
and (ii) it is a machine intrinsically able to implement stochastic

computations on hardware.We will show in the next section how
these two features bring new opportunities to solve hard CSPs.

3. RESULTS

In order to demonstrate the implementation of the SNN
solver, we present solutions to some instances of NP problems.
Among the NP-complete problems, we have chosen to showcase
instances of graph coloring, Latin squares and Ising spin glasses.
Our aim is to offer a tool for the development of stochastic
search algorithms in large SNNs. We are interested in CSPs to
gain understanding of the dynamics of SNNs under constraints,
how they choose a particular state and their computational
abilities. Ultimately, SNNs embedded in neuromorphic hardware
are intended for the development of new technologies such as
robotics and neuroprosthetics, constantly interacting with both
the external devices and the environment. In such applications
the network needs to adapt itself to time-varying constraints
taking one or multiple decisions accordingly, making the

Frontiers in Neuroscience | www.frontiersin.org 5 December 2017 | Volume 11 | Article 714

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fonseca Guerra and Furber Stochastic SNNs on SpiNNaker to Solve CSPs

advancement in stochastic searches with SNNs a fundamental
requirement for neuromorphics.

3.1. Graph Coloring
Considering a graph G defined by the ordered pair {V ,E}, with
V a set of vertices and E the set of edges connecting them, the
graph coloring problem consists of finding an assignments of k
colors to the elements of the graph (either V , E or both) such that
certain conditions are satisfied (Dailey, 1980). In vertex coloring,
for example, the colors are assigned to the elements ofV in such a
way that no adjacent nodes (those connected by an edge) have the
same color. A particularly useful applications of this problem is
the process of register allocation in compiler optimization which
is isomorphic to graph coloring (Chaitin, 1982). Regarding time
complexity, general graph coloring is NP-complete for k > 2.
In the case of planar graphs, three-coloring is NP-complete and,
thanks to the four color theorem proved by Kenneth Appel and
Wolfgang Haken, four-coloring is in P (Appel and Haken, 1989).

A division of a plane into several regions can be represented
by a planar graph, familiar versions of which are the geographic
maps. In Figure 1Awe show the SNN-solver result of a satisfying
four-coloring of the map of the world where colors are assigned
to countries such that no bordering countries have the same
color. We have followed the list of countries and borders
from the United Nations available in Mathematica Wolfram
(Wolfram Research, 2017). The corresponding connectivity
graph of the world map in Figure 1A is shown in Figure 1B.
The insets in Figure 1A, show the results of our solver for three-
coloring of the maps of the territories of Australia (bottom-
right) and of Canada (top-left). Figures 1C,D show the time
dependence of the entropy (top), firing rate (middle), and
number of visited states (bottom) for the map of the world
and of Australia, respectively. The color code we use in these
and the following figures is as follows: red means that the state
in the current time bin is different from the one just visited,
green represents the network staying in the same state, and blue
means that all constraints are satisfied. The dashed vertical lines
mark the times at which noise stimulating (blue) or depressing
(red) populations began to be active. The normalized spiking
activity of the four color populations for four randomly selected
countries of the world map is shown in Figure 1E evidencing
the competing behavior along the stochastic search. Interestingly,
although the network has converged to satisfaction during the
last 20 s (blue region in Figure 1C), the bottom right plot in
Figure 1E reveals that due to the last stimulation the network has
swapped states preserving satisfaction, evidencing the stability of
the convergence. Furthermore, it is noticeable in Figure 1D that
new states are visited after convergence to satisfiability, this is
due to the fact that, when multiple solutions exist, all satisfying
configurations have the same probability of happening. Although
we choose planar graphs here, the SNN can implement any
general graph, hencemore complicated P andNP examples could
be explored.

3.1.1. Latin Squares
A Latin square is defined as an array of n × n cells in which
n groups of n different symbols are distributed in such a way

that each digit appears only once in each row or column. The
NP-completeness of completing a partially filled Latin square
was demonstrated by Colbourn (1984), and among the useful
applications of such a problem, one can list authentication, error-
detection and error-correction in coding theory. Here we choose
the Sudoku puzzle as an instance of a Latin square, in this case,
n = 9 and in addition to the column and row constraints
of Latin squares, Sudoku requires the uniqueness of the digits
in each 3 × 3 sub-grid. We show in Figure 2 the solution to
an easy puzzle (Ercsey-Ravasz and Toroczkai, 2012), to a hard
Sudoku (Habenschuss et al., 2013) and to the AI Escargot puzzle
which has been claimed to be the world hardest Sudoku. The
temporal dependence of the network entropy H, firing rate ν,
and states count� is shown in Figures 2A–C, respectively for the
easy (Figure 2G), hard (Figure 2H) and AI escargot (Figure 2I)
puzzles. In Figure 2E we show a schematic representation of the
dimensionality of the network for the easy puzzle (Figure 2G),
each sphere represents a single neuron and synaptic connections
have been omitted for clarity, the layer for digit 5 is represented
also showing the inhibitory effect of a single cell in position (1,3)
over its row, column, subgrid and other digits in the cell. In this
case, the total number of neurons is≈37 k and they form≈86M
synapses.

One major improvement of our implementation with respect
to the work of Habenschuss et al. (2013) is the convergence to
a stable solution, it is arguably due to the use of subpopulations
instead of single neurons to represent the domains of the CSP
variables as these populations were required to provide stability
to the network. The use of the more realistic exponential post-
synaptic potentials instead of the rectangular ones used in
Habenschuss et al. (2013) is also reflecting a good performance of
the search as shown in the bottom plots in Figures 2A–C, where
the solution is found after visiting only 3, 12 and 26 different
states and requiring 0.8, 2.8, and 6.6 s, respectively, relating well
also with the puzzle hardness. It is important to highlight that
the measurement of the difficulty level of a Sudoku puzzle is still
ambiguous and our solver could need more complex strategies
for different puzzles, for example in the transient chaos based
rating of Ercsey-Ravasz and Toroczkai (2012) the “platinum
blonde” Sudoku is rated as one of the hardest to solve, and
although we have been able to find a solution for it, it is not stable,
which means one should control the noisy network dynamics in
order to survive the long escape rate of the model presented by
Ercsey-Ravasz and Toroczkai (2012). We show in Figures 2D,F

the competing activity of individual digit populations of some
randomly chosen cell in both the easy and the AI escargot puzzles,
the dynamic behavior resembles that of Figure 2 in Ercsey-Ravasz
and Toroczkai (2012) when comparing their dynamic solver for
this same easy puzzle and the platinum blonde. Further analysis
would bring insights into the chaotic dynamics of SNNs when
facing constraints.

3.1.2. Ising Spin Systems
For each atom that constitutes a solid, it is possible to define a
net spin magnetic moment Eµ which results from the intrinsic
spin of the subatomic particles and the orbital motion of
electrons around their atomic nucleus. Such magnetic moments

Frontiers in Neuroscience | www.frontiersin.org 6 December 2017 | Volume 11 | Article 714

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fonseca Guerra and Furber Stochastic SNNs on SpiNNaker to Solve CSPs

FIGURE 1 | (A) Solution to the map coloring problem of the world with four colors and of Australia and Canada with three colors (insets). (B) shows the graph of

bordering countries from (A). The plots of the entropy H (top), mean firing spike rate ν (middle), and states count � (bottom) v.s. simulation time are shown in (C,D) for

the world and Australia maps, evidencing the convergence of the network to satisfying stationary distributions. In the entropy curve red codes for changes of state

between successive time bins, green for no change and blue for the network satisfying the CSP. In the states count line, black dots mean exploration of new states;

the dots are yellow if the network returns to states visited before. In (E) we have plotted the population activity for four randomly chosen CSP variables from (A), each

line represents a color domain.

interact in complex ways giving rise to a range of microscopic
and macroscopic phenomena. A simple description of such
interactions is given by the Ising model, where each Eµ in a
crystal is represented by a spin ES taking values from {+1,−1}
on a regular discrete grid of points {i, j, k}. Furthermore, the
interaction of the spins {ESi} is considered only between nearest
neighbors and represented by a constant Ji,j which determines
if the two neighboring spins will tend to align parallel Ji,j > 0
or anti-parallel Ji,j < 0 with each other. Given a particular
configuration of spin orientations 9 , the energy of the system is
then given by the Hamiltonian operator:

Ĥ = −
∑

i,j

Ji,jESiESj − Eh
∑

i

ESi (6)

where Eh is an external magnetic field which tends to align
the spins in a preferential orientation (Barahona, 1982). In
this form each Ji,j defines a constraint Ci,j between the values

D = {+1,−1} taken by the variables ESi and ESj. It is easy to
see that the more constraints are satisfied the lower becomes
the value of Ĥ in Equation (6). This simple model allows the
study of phase transitions between disordered configurations

at high temperature and ordered ones at low temperature. For
ferromagnetic Ji,j > 0 and antiferromagnetic Ji,j < 0 interactions
the configurations are similar to those in Figures 3D,E for 3D
lattices, which correspond to the stable states of our SNN solver
when the Ising models for Ji,j > 0 and Ji,j < 0 are mapped
to an SNN using algorithm 1 and a 3D grid of 1,000 spins.
Figure 3G shows the result for a 1D antiferromagnetic spin
chain. It is interesting to note that the statistical mechanics of
spin systems has been extensively used to understand the firing
dynamics of SNNs, presenting a striking correspondence between
their behavior even in complex regimes. Our framework allows
the inverse problem of mapping the SNN dynamics to spin
interactions. This equivalence between dynamical systems and
algorithms has largely been accepted and we see an advantage
in computing directly between equivalent dynamical systems.
However, it is clear that the network parameters should be
adequately chosen in order to keep the computation valid.

If instead of fixing Ji,j to some value U for all spin pairs
{(i, j)} one allows it to take random values from {U,−U}
with probabilities pAF and pFM , it will be found that certain
interactions would be frustrated (unsatisfiable constraints).
Figure 3F illustrates the frustration with three antiferromagnetic
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FIGURE 2 | Spiking neural network solution to Sudoku puzzles. (A–C) Show the temporal dependence of the network entropy H, firing rate ν and states count � for

the easy (G), hard (H), and AI escargot (I) puzzles. The color code is the same as that of Figure 1. In (G–I) red is used for clues and blue for digits found by the solver.

(D,F) Illustrate the activity for a random selected cell from (A,C), respectively, evidencing competition between the digits, the lines correspond to a smoothing spline fit.

(E) Schematic representation of the network architecture for the puzzle in (A).

interacting spins in a way that any choice of orientation for the
third spin will conflict with one or the other. This extension
of the Ising model when the grid of interactions is a random
mixture of AF and FM interactions was described by Edwards
and Anderson (1975). The model is the representation of the
spin glass systems found in nature, these are crystals with
low concentrations of magnetic impurities which, due to the
frustrated interactions, are quenched into a frozen random
configuration when the temperature is lowered (at room or high
temperatures the magnetic moments of a material are constantly
and randomly precessing around their average orientation). The
statistical analysis of those systems was fundamental for the
evolution of artificial neural networks and machine learning.
Furthermore, the optimization problem of finding the minimum
energy configuration of a spin glass has been shown to be
NP-complete by Barahona (1982). The quenching of the grid
happens when it gets trapped in a local minimum of the state

space of all possible configurations. In Figures 3A,B we show
a quenched state found by our SNN with pAF = 0.5 and
pAF = 0.1, respectively. A spin glass in nature will often be
trapped in local minima and will need specific temperature
variations to approach a lower energy state; our SNNs replicate
this behavior and allow for the study of thermal processes,
controlling the time variation and intensity of the excitatory
and inhibitory stimulations. If the underlying stochastic process
of such stimulations is a good representative of heat in solids,
they will correspond to increase and decrease of temperature,
respectively, allowing, for example, the implementation of
simulated annealing optimization. Figure 3C shows the time
evolution of the entropy, firing rate and states count for the
antiferromagnetic 3D lattice of Figure 3D, similar plots but
converging to unsatisfying states are found for the spin glasses
in Figures 3A,B. In the case of the ferromagnetic lattice in
Figure 3E with a very low noise, the network immediately
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FIGURE 3 | Spiking neural network simulation of Ising spin systems. (A,B) Show two 2-dimensional spin glass quenched states obtained with interaction probabilities

pAF = 0.5 and pAF = 0.1. The results for the 3-dimensional lattices for CSPs of 1,000 spins with ferromagnetic and antiferromagnetic coupling constant are shown in

(D,E), respectively. In (C) are plotted the temporal dependence of the network entropy, firing rate ν and states count � during the stochastic search for the system in

(D). (F) Illustrates the origin of frustrated interactions in spin glasses. (G) Depicts the result for the 1-dimensional chain. The parameters for the SNNs used are shown

in Table 1.

converges to a solution, if the noise is high, however, it is
necessary to stimulate the network several times to have a perfect
ordering. This is because more noise implies more energy to
violate constraints, even in nature magnetic ordering is lost at
high temperatures.

4. DISCUSSION

The examples of the last section show the basic features of the
stochastic search and the use of the entropy, firing rate and the
number of states to track the behavior of the network. In order
to evaluate the performance of the search, we have performed
a series of runs for each simulation until the network has
been successful 100 times. The histograms of the corresponding
convergence times for each example are shown in Figure 4,
displaying also the mean µ, standard deviation σ , skewness γ1,
success ratio ξ (defined as the number of times the simulation
converged to satisfaction over the total number of runs) and the
best convergence time tmin of each underlying distribution. The
dimensions of the SNNs and simulation parameters for the three
CSPs shown here are summarized, respectively in Tables 1, 2.

The hard Sudoku puzzle of Figure 2 was previously solved
using spiking (Habenschuss et al., 2013) and rate-based (Mostafa

et al., 2015b) neural networks with mean solving times of 29 and
153 s, respectively. The solver presented here reduces the mean
solving time for this puzzle to 6.36 s implying a considerable
improvement in performance for Sudoku neural solvers. The
same network parameters were used to solve the three Sudoku
puzzles in order to show the relation between the stochastic
search and the puzzle difficulty. Clearly, the average time for
convergence increases with the difficulty, but more significant is
the strong decrease of the success ratio. Thus, to avoid overfitting,
a trade-off between exploratory and greedy behavior needs to
be found for the problem at hand. The state of the art Sudoku
solvers (see for example Norvig, 2009; Dong, 2012) are able to
solve puzzles in tens to hundreds of microseconds. Such solvers
use backtracking together with deductive methods specific for
Sudoku. Consequently, they are not general purpose as the one
presented here, it is precisely the specificity what provides their
speed-up.

The solution to the map of the territories of Canada, as
defined in Figure 1, was presented by D-Wave systems to
demonstrate the applicability of their quantum computer. To
find the solution they executed a quantum machine instruction
which can return 10, 000 samples/s from which≈25% solved the
problem (Headquarters, 2013). This means an effective time to
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FIGURE 4 | Histograms of the convergence time to a solution for the Sudoku, map coloring and spin system problems of Figures 1–3. For each histogram data from

100 simulations were used. The mean µ, standard deviation σ , skewness γ1, success ratio ξ and the best convergence time tmin are indicated for each problem. The

success ratio is defined as the number of times the simulation converged to satisfaction over the total number of simulations.

TABLE 1 | Network sizes of the SNN solvers of the CMP, Sudoku, and Spin Systems.

Network parameters

CSP Number of neurons Number of synapses Populations (number of variables) Sub-populations (domain size)

World CMP 212,400 14,422,300 193 4

Australia CMP 450 22,920 7 3

Canada CMP 810 39,480 13 3

Sudoku easy 36,675 86,154,125 81 9

Sudoku hard 36,675 86,154,125 81 9

AI escargot 36,675 86,153,250 81 9

AF ring 1,050 975,500 10 2

Spin 2D lattices 10,050 2,160,000 100 2

Spin AF 3D lattices 100,050 31,050,000 1,000 2

Spin FM 3D lattices 100,050 31,050,000 1,000 2

solution of 0.4ms. The power consumption of the machine is
25 kW and it operates at a temperature of 0.015K. For this same
map, our solver uses three SpiNNaker chips each one consuming
atmost 1Wof power and it finds the solution with amean time of
0.87 s. Additionally, classical techniques like simulated annealing

(Chams et al., 1987), genetic algorithms (Gwee et al., 1993), and
tabu search (Dorne and Hao, 1999) as well as the more elaborated
state-of-the-art algorithms (Chams et al., 1987; Gwee et al., 1993;
Dorne and Hao, 1999; Fotakis et al., 2001; Chiarandini and
Stützle, 2002; Galinier and Hertz, 2006; Blöchliger and Zufferey,
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TABLE 2 | Simulation parameters for the SNN solvers of the CMP, Sudoku, and Spin Systems.

Simulation parameters

CSP Noise populations stimulation (depression) Internal inhibition weights Constraints strength weights External current

World CMP 10 [−0.08, 0.0] [−0.08, 0.0] 0.3

Australia CMP 1 (1) [−1.2, -1.5] [ 1.2, 1.4] 0.2

Canada CMP 1 (1) [−1.2, -1.5] [ 1.2, 1.4] 0.17

Sudoku easy 1 (0) [−0.08, 0.0] [−0.08, 0.0] 0.3

Sudoku hard 1 (0) [−0.08, 0.0] [−0.08, 0.0] 0.3

AI Escargot 1 (0) [−0.03, -0.02] [−0.03, −0.02] 0.3

AF Ring 1 (0) [−0.2, 0.0] [−0.2, −0.0] 0.0

Spin 2D lattices 1 (1) [−0.2, 0.0] [−0.2, −0.0] 0.0

Spin AF 3D lattice 1 (0) [−0.2, 0.0] [−0.2, −0.0] 0.0

Spin FM 3D lattice 1 (0) [−0.2, 0.0] [−0.2, −0.0] 0.0

2008; Hertz et al., 2008; Ge et al., 2010; Lü and Hao, 2010; Titiloye
and Crispin, 2011), solve coloring map problems in time scales
ranging from tens of seconds to tens of thousands of seconds and
conventionally have a success ratio below 1 for the allocated time.
As seen in Figure 4, this is the same order of magnitude for the
time that our SNNs needed to solve the coloring map problems
of Figure 1.

It is then verified that the solutions found by the SNNs
in SpiNNaker are on the order of magnitude of the systems
of interest. Our performance is however not competitive with
problem-specific solvers which are able to find solutions in a
few microseconds. Although such algorithms are extremely fast,
they do not perform well if the problem is not solvable by
the presumed strategies. If one still desires to find solutions in
the order of microseconds, one could resource to accelerated
hardware e.g., BrainScales (Schemmel et al., 2010) which runs
10, 000 times faster than real-time (resolution of milliseconds).
Unfortunately, these systems are still limited by the number of
neurons and synapses they are able to handle. Better performance
is also expected from the second generation of SpiNNaker which
is currently under development. It is also important to highlight
that the NP feature of an algorithm refers to its increasing
complexity with the size of the problem, and that the problems
presented here correspond to instances of expressly modest sizes.
Nevertheless, the number of variables for most problems in
robotics and perception have an order of magnitude comparable
to that of these CSPs.

The main advantage of stochastic search algorithms is that
they are general purpose, able to find satisfactory solutions
without needing much detail about the specific problem at hand.
Moreover, the exploration of solutions to constraint satisfaction
situations never seen before is the typical way in which organisms
explore the environment and acquire knowledge about it. To
build the solvers of the previous section, we have used only
the number of variables, domain size, and constraints list,
nevertheless the network showed good performance. Thus if a
system of SNNs is able to collect this kind of information from
its environment, it will easily take beneficial decisions.

Future work involves the extension of the framework to
solve optimization problems where the constraints are defined
by inequalities (e.g., to solve the traveling salesman problem or

to find the minimum energy configuration of a spin glass), or
other more general non-linear constraints. The main concern
with such class of problems is that the network is not able to
recognize the best option among all the configurations that satisfy
the constraints. This is a typical disadvantage of stochastic search
algorithms. Thus, the network may visit the optimal solution
but will not stay in it. To achieve convergence more complex
techniques or even non-stochastic strategies could be needed.
The techniques from nonlinear programming could guide the
improvement of SNN solvers in decision making under more
complex constraints.

In summary, we have presented a neuromorphic
implementation of SNNs stimulated with Poisson spike
sources which solve CSPs. The network dynamics implements
a stochastic search over the problem’s space of states which,
with an adequate choice of parameters, is able to converge to
a stable configuration (or set of configurations) that satisfy
all the constraints. A satisfactory performance was found and
further research is needed for CSPs defined by more complex
constraints. Furthermore, we presented a software framework
to explore new strategies for stochastic searches with SNNs.
The code of the framework and examples presented here
is made available at https://github.com/GAFonsecaGuerra/
SpiNNakerCSPs.
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