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Abstract: The neuromuscular junction (NMJ) is a specialized synapse that bridges the motor neuron
and the skeletal muscle fiber and is crucial for conversion of electrical impulses originating in the mo-
tor neuron to action potentials in the muscle fiber. The consideration of contributing factors to skeletal
muscle injury, muscular dystrophy and sarcopenia cannot be restricted only to processes intrinsic to
the muscle, as data show that these conditions incur denervation-like findings, such as fragmented
NMJ morphology and corresponding functional changes in neuromuscular transmission. Primary
defects in the NMJ also influence functional loss in motor neuron disease, congenital myasthenic
syndromes and myasthenia gravis, resulting in skeletal muscle weakness and heightened fatigue.
Such findings underscore the role that the NMJ plays in neuromuscular performance. Regardless of
cause or effect, functional denervation is now an accepted consequence of sarcopenia and muscle
disease. In this short review, we provide an overview of the pathologic etiology, symptoms, and
therapeutic strategies related to the NMJ. In particular, we examine the role of the NMJ as a disease
modifier and a potential therapeutic target in neuromuscular injury and disease.
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1. Introduction

The area of synaptic contact between motor neurons and their target muscle fibers
is the neuromuscular junction (NMJ). This synapse occurs at a specialized area of the sar-
colemma called the endplate (Figure 1). The “pretzel-shape” of a typical, healthy endplate
in mammalian muscle results from the local arborization of the motor neuron at its terminal.
The distal aspect of each branch of the motor neuron is enlarged and forms pre-synaptic
boutons, which contain synaptic vesicles filled with the neurotransmitter acetylcholine
(ACh). Boutons directly overlie post-synaptic invaginations of the sarcolemma called junc-
tional folds [1], upon which high-density clusters of acetylcholine receptors (AChRs) reside.
Interdigitated between post-junctional folds are the perisynaptic Schwann cells (PSCs),
which are glial regulators of NMJ structure and function [2]. When released into the synap-
tic cleft, ACh binds to AChRs, causing an endplate potential (EPP), a local depolarization
that then propagates throughout the muscle fiber as a conducted action potential.

Accumulating evidence has made it clear that the NMJ in mature skeletal muscle is not
a fixed permanent structure [3,4] but instead is continually remodeling, thereby possessing
a large degree of functional plasticity [5]. Most dramatically, the NMJ becomes fragmented
and ultimately dissolves following nerve transection (denervation), concurrent with axon
withdrawal [6,7]. PSC ablation also results in rapid axonal retraction and NMJ destabiliza-
tion, both structurally and functionally [8]. PSCs play a crucial role in muscle remodeling,
with increased integration at the NMJ during development [9] and their intimate contact
with perisynaptic satellite cells [10]. However, the morphology, ultrastructure and physiol-
ogy of the NMJ can also display less substantial alterations in synaptic organization during
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a number of other stressors, such as exercise [1,11], inactivity/disuse [12–14], aging [15–17],
crushing of the nerve/muscle [18,19], injury due to volumetric muscle loss (VML) [20] or
the absence of associated proteins [21–25].
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Figure 1. The neuromuscular junction (NMJ) in skeletal muscle. (A) Representative electron mi-
croscopy image showing ultrastructure of the NMJ. (B) Representative confocal microscopy image 
of fluorescent stain with an acetylcholine receptor binding neurotoxin (α-Bungarotoxin, BTX, red). 
(C) Illustration describing the components of the NMJ. Perisynaptic Schwann cells are glial regula-
tors of NMJ structure and function. Agrin interacts with lipoprotein receptor-related protein 4 
(Lrp4), which activates muscle-specific kinase (MuSK). MuSK, a transmembrane tyrosine kinase, 
through signaling of Dok-7 and rapsyn, drives acetylcholine receptor (AChR) clustering. Dystro-
phin and its associated glycoprotein complex (DGC), which is present throughout the muscle fiber 
membrane, accumulate underneath the post-synaptic membrane. 

Figure 1. The neuromuscular junction (NMJ) in skeletal muscle. (A) Representative electron microscopy image showing
ultrastructure of the NMJ. (B) Representative confocal microscopy image of fluorescent stain with an acetylcholine receptor
binding neurotoxin (α-Bungarotoxin, BTX, red). (C) Illustration describing the components of the NMJ. Perisynaptic
Schwann cells are glial regulators of NMJ structure and function. Agrin interacts with lipoprotein receptor-related protein 4
(Lrp4), which activates muscle-specific kinase (MuSK). MuSK, a transmembrane tyrosine kinase, through signaling of Dok-7
and rapsyn, drives acetylcholine receptor (AChR) clustering. Dystrophin and its associated glycoprotein complex (DGC),
which is present throughout the muscle fiber membrane, accumulate underneath the post-synaptic membrane.

Functionally, NMJ remodeling ultimately affects neuromuscular transmission. Neu-
romuscular transmission is normally highly reliable, as each nerve impulse results in the
release of more neurotransmitter (acetylcholine) than is required for evoking an action
potential in the muscle fiber. This release of surplus transmitter and consequent excess
depolarization of the post-synaptic membrane via AChRs is often referred to as the ‘safety
factor’ [26], which ensures that a post-synaptic action potential will occur in response to
each nerve impulse, at least in healthy tissue. A number of pathological conditions affecting
the distribution of AChRs can lead to a reduction in the safety factor and impairment of
neuromuscular transmission [26,27]. In an analogous manner, improper development,
organization and remodeling at the NMJ can also impair the reliability and efficiency of
neuromuscular transmission [28,29]. This review examines several such impacts on NMJ
structure and function in the context of muscle disease, motor neuron disease, and aging.

2. The NMJ in Muscular Dystrophies

Muscular dystrophies are a group of degenerative skeletal muscle disorders, char-
acterized by progressive skeletal muscle weakness, involving more than 40 genes and
proteins in the extracellular matrix and basement membrane, sarcolemma-associated pro-
teins, enzymes or proteins with putative enzymatic function or proteins in the nuclear
envelope, sarcomere or endoplasmic reticulum [30]. Duchenne muscular dystrophy (DMD),
the most common form of muscular dystrophy, is caused by the absence of the protein
dystrophin, which plays a mechanical role in linking the contractile apparatus inside the
muscle fiber to the extracellular matrix outside the muscle fiber. Dystrophin also binds
directly or indirectly to a group of proteins at the sarcolemma collectively known as the
dystrophin-associated protein complex (DAPC or DPC) or the dystrophin-glycoprotein
complex (DGC). Dystrophin and the DGC play crucial roles in the regulation of various
signaling pathways and accumulate at the NMJ post-synaptic membrane [31]. Dystrophin
regulates synaptic homeostasis [32,33], endplate maintenance [25] and remodeling; how-
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ever, it is not required for NMJ formation. EMG changes and abnormal NMJ morphology
(increased fragmentation and discontinuity) have been identified in DMD patients [34–37].

The increased susceptibility to injury and muscle weakness is often attributed to the
weakened muscle fiber cytoskeleton and abnormal intra-fiber signaling secondary to the
loss of dystrophin and DGC organization. However, in the mdx mouse (the mouse model
for DMD, which also lacks the protein dystrophin), muscle weakness has been linked to
the NMJ [22,38–41], and a further loss in muscle function after injury is associated with
additional changes in NMJ morphology (increased fragmentation and discontinuity). Such
changes at the NMJ correspond to a reduction in synaptic transmission, such as decreased
EMG amplitudes and increased neuromuscular transmission failure [42–44]. DMD patients
also experience increased sensitivity and prolonged duration to neuromuscular blockage,
further implicating NMJ abnormalities in the DMD pathophysiology [45,46]. Pre-synaptic
structures in dystrophic muscles can also contribute to the disease phenotype, with in-
creased discontinuity and branching of terminal nerves seen in mdx mice [44]. PSCs could
also play a crucial role in driving disease pathology in mdx muscle, with a failure to cap the
pre-synaptic nerve terminal, and abnormal organization of its extended processes [47].

Changes to the DGC, such as due to aberrant glycosylation of α-dystroglycan (asso-
ciated with Fukuyama-type congenital muscular dystrophy), or absence of components
of the DGC, such as α-dystrobrevin, dystroglycan (associated with dystroglycanopathy,
limb girdle muscular dystrophy and congenital muscular dystrophy) [30] or syntrophin,
results in altered NMJ morphology and function [21,31,48–51]. Animal models lacking
some components of the DGC also display neuropathy [52]. However, absence of other
DGC components, such as α- or γ-sarcoglycan (mutations of which are associated with
limb-girdle muscular dystrophy) [53], does not appear to affect NMJ morphology [54,55].
Thus, alterations of the DGC alone do not predict NMJ morphology or function. It has
been proposed that abnormal NMJ morphology results from cyclic muscle degeneration,
local denervation, and reinnervation [56,57]; such hypotheses are compelling but remain to
be thoroughly tested.

The activity of synaptic nuclei represents an alternative potential node for regulating
NMJ structure and function. Separate from the many nuclei located along the myofiber
(extra-synaptic nuclei), synaptic nuclei are a group of three to six functionally specialized
nuclei that are anchored underneath the post-synaptic membrane of the NMJ and guide the
expression of proteins supporting NMJ structure and function (reviewed in [58,59]). Key
proteins in the nuclear envelope such as nesprin-1 (nuclear envelope spectrin repeat protein)
and Sun-1 (Sad1 and UNC-84 domain containing protein) are involved in positioning
and anchoring of the synaptic nuclei [60,61]. When these nuclear envelope proteins are
experimentally deleted, the clustering of synaptic nuclei is altered (reduction in number
of synaptic nuclei), but the NMJs appear normal [60]. On the other hand, concurrent
with the neuromuscular remodeling and transmission deficits noted above, mdx mouse
muscles display a marked increase in the number of synaptic nuclei [44]. Conversely, there
is a reduction in the number of synaptic nuclei in patients with laminopathies (a class of
dystrophies typically caused by mutations in the LMNA gene encoding Lamin A and C,
which are nuclear scaffold proteins). These patients also display NMJ fragmentation and
disorganization, often have abnormal EMG indicative of myopathy [62,63], and sometimes
present axonal neuropathy [64]. In mouse models with LMNA mutations, NMJ morphology
is similarly disorganized and fragmented, with mislocalized synaptic nuclei in addition to
pathological axon histology [62,65].

The interactive roles of pre-synaptic and post-synaptic structures in driving dystrophic
pathophysiology must be examined further. What is clear, though, is that although the NMJ
may be unaffected in some dystrophies, it is clearly a significant disease modifier/driver
in others.
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3. The NMJ in Aging Muscle

Adult skeletal muscles decline in size with age [66], resulting in a loss of muscle
mass (sarcopenia) and consequent weakness. The impact of muscle loss is exacerbated
by the corresponding decline in the quality of the preserved muscle (e.g., amount of force
per unit volume). These deficits, together with increased susceptibility to injury, reduced
recovery, and proprioceptive decline [59,67–69], predispose the risk of falls and related
injuries [70,71], which are linked to morbidity and mortality [72,73]. Sarcopenia has
enormous social and economic benefits: a 10% reduction in prevalence alone would result
in savings of well over a billion dollars [74]. Despite significant advances in understanding
the molecular alterations in aging, the pathophysiology of age-associated muscle weakness
remains unclear.

Some describe sarcopenia as a primary muscular pathology, with only minimal
changes in the peripheral nerves and motor units occurring much later than the onset of
sarcopenia [75]. Indeed, aging muscles share several similarities to the muscle dystrophies
described above. Synaptic nuclei in aged muscle have abnormal expression of nuclear
proteins, such as reduced LMNA gene expression, suggesting that muscle dysfunction with
aging may be similar to that seen in laminopathies [76]. Other similarities between aging
muscle and dystrophic muscle include a loss of dystrophin with age. However, there is
no consensus on other components of the DGC, with reports of increased, decreased and
unchanged expression of DGC components [77,78].

However, the diminished muscle quality suggests additional neural contributions of
to muscle wasting. A number of age-associated pathological changes have been reported
in peripheral nerves and NMJs, which have even been posited to initiate and drive the
muscle pathology in sarcopenia [79]. There are strong correlations between aging and
deficits in axonal transport in peripheral neurons [16,19,80,81]. These deficits impair the
delivery of vital synaptic and energetic cargoes to the pre-synaptic terminal and occur
concurrent with age-associated changes in the neuronal cytoskeleton. Neurofilaments, the
primary structural components of motor neurons and a key regulator of axonal caliber and
cytoskeletal transport [82,83], appear particularly susceptible to age, based on observed
changes in their density, organization, and phosphorylation state in aged mice [56,84,85].

Just as the NMJ dictates muscle physiology, it also influences muscle pathology. Sev-
eral lines of evidence suggest that age-related changes in the NMJ play a key role in
musculoskeletal impairment with aging [15,16,56,79,80,86–88]. Indeed there is increasing
consensus that functional muscle denervation is a principal factor leading to sarcope-
nia [56,89], and some even describe sarcopenia primarily as a “disorder of the NMJ” [80].
Despite the continuing ambiguity of sarcopenia etiology, it is clear that, at a minimum, age-
dependent changes in the peripheral nerve and NMJ contribute to the muscle pathology in
sarcopenia [16,56,81,84].

Animal and human studies show that with aging, the pre-synaptic structures un-
dergo degenerative changes typified by axonal denervation, reinnervation and remodel-
ing [90–92] as well as altered intramuscular branching. NMJs in aged rodents are increas-
ingly fragmented and lose their junctional folds [93,94]. They also contain a decrease in
the number of pre-synaptic vesicles and number of nerve terminals [90,95] and dispersion
in the area of motor endplates [95], as well as reductions in the number of AChRs [96]
and binding affinity to the AChRs [97]. Although changes in the NMJ can depend on the
muscle [95] and perhaps even its activity level [11,91,98], gradual deterioration with aging
likely underlies changes in synaptic transmission, resulting in a functional denervation
described for aged muscle. The preferential denervation of fast fibers with reinnervation
via axonal sprouting from slow motor neurons results in a conversion from Type II (fast)
fibers to Type I (slow) fibers [16]. Whether this motor unit remodeling is a cause or effect of
sarcopenia is not clear.

PSCs may be additionally sensitive to age; with aging, concurrent to shallowing of
junctional folds, PSCs have also been observed to retract [99] or aberrantly infiltrate into
the synaptic cleft [88]. Both of these phenomena would serve to destabilize NMJ structure
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and transmission. The interplay among neurons, muscle fibers, and glial cells at the NMJ
remains an important and growing focus of current and future research [87].

4. Neuromuscular Junction Disorders

Congenital myasthenic syndromes (CMS) and myasthenia gravis (MG) are inherited
and autoimmune conditions, respectively, that affect the NMJ and result in weak and/or
fatigable muscle weakness. There are many types of CMS caused by errors in different genes
encoding NMJ proteins, only some of which are known. The onset and severity of CMS is
variable. CMS muscle weakness typically begins in early childhood but can also appear
in adolescence or adulthood; CMS can result in death in childhood due to respiratory
difficulties or result in mild skeletal muscle weakness and fatigue [84]. Approximately
60% of patients with CMS have mutations in the genes encoding the AChR subunits,
although patients with CMS have mutations in the genes encoding the pre-, intra- and post-
synaptic components of the NMJ [84]. The functional impact of NMJ instability is a reduced
muscle endplate potential, an increased threshold for post-synaptic activation and, thus, a
decreased safety factor for neuromuscular transmission, despite normal sodium channel
activity [100]. PSCs may also play a role in the pathology of these diseases, with invasion
of synaptic space by PSC processes or absence of PSCs in patients with CMS [101,102].

Animal models of CMS include mice with the same specific NMJ gene mutations found
in patients with CMS and with manipulations of genes encoding NMJ protein for replicating
aspects of the disease phenotype (such as expression of AChR-γ in AChR-ε knockout mice
to model AChR-deficiency) [103]. While mouse models allow for the examination of
mechanisms underlying pathology and the testing of therapeutics, sometimes they do
not accurately model the disease severity (i.e., in some CMS models the mice display a
more severe, lethal phenotype than humans with the same mutations in Dok-7, loss of
AChR-ε) [104,105].

Analogously, the most common type of myasthenia, MG, is an autoimmune neuro-
logical disorder characterized by defective transmission at the NMJ. The cause of MG is
thought to be the breakdown of self-tolerance in the thymus [106,107]. The autoantibodies
are produced by autoreactive B cells, but activation of CD4+ T cells is also required for
the autoimmune process [108]. Thus, MG is a B cell- and T cell-dependent disease. The
clinical presentation is heterogeneous, running the spectrum from affecting only muscles
in certain groups, particularly those of the eyes (ocular myasthenia, the most common
finding), to more generalized weakness involving multiple muscle groups (generalized
MG). MG can result in significant morbidity, including respiratory weakness that requires
ventilation, and even mortality (~5–9%), with more male patients than female [109]. MG is
a rare disease, with incidence of approximately 3–9 cases per million. Onset of MG usually
becomes apparent during adulthood, but symptom onset may occur at any age.

A possible pathway targeted during the progression of MG is post-synaptic endplate
stability, which is in large part due to controlled AChR clustering (Figure 1C), a well-
studied phenomenon. Briefly, muscle-specific kinase (MuSK) is a transmembrane tyrosine
kinase crucial for forming and maintaining the neuromuscular junction, and activation of
the MuSK complex drives AChR clustering [110,111]. Agrin, which is secreted from the pre-
synaptic terminal, interacts with low-density lipoprotein receptor-related protein 4 (Lrp4),
which results in the repositioning of the Lrp4-MuSK complex, leading to the activation of
MuSK through phosphorylation. Phosphorylated MuSK activates a downstream signaling
pathway that leads to the focused clustering of AChRs. A collective attack on AChRs
directly as well as their clustering has the potential to dramatically destabilize the NMJ.

Consistent with such destabilization, most patients with MG raise autoantibodies
against the acetylcholine receptors (AChRs) and sometimes to MuSK, Lrp4 and agrin [112,113].
AChR antibodies are found in most MG patients (~80%), predominantly of the IgG1 and
IgG3 subclasses [114]. In addition to binding the AChRs, they activate the complement
cascade, leading to the formation of the membrane attack complex, which causes damage
of the post-synaptic membrane along the synaptic folds that contain AChRs and associated
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proteins, including voltage gated sodium channels [114]. Antibodies against MuSK are
found in a small percent of MG patients (7–10%), with most being female [115]. Antibodies
to MuSK interfere with the described role for MuSK in AChR clustering; however, they
are of the IgG4 subclass and do not elicit a complement response or cell-mediated toxicity.
There are some patients who do not have AChR or MuSK antibodies (double-seronegative
MG) but likely have antibodies against yet unknown targets [116]. Lrp4 antibodies are
present in some patients, often in females and with antibodies to agrin as well [112].
Structurally, changes to AChR density and localization result in reduced endplate size and
complexity [100,117].

Animal models of MG produce key features of human disease, including antigenic
modulation of the AChR, complement-mediated damage of the NMJ, and muscle weak-
ness [108]. There are essentially two experimental models, either EAMG (experimental
autoimmune MG) in which injected antigens elicit an ‘active’ immune response, or PTMG
(passive transfer MG), in which injecting antibodies (either from a MG patient or EAMG an-
imal) results in the ‘passive’ transfer of autoimmunity [108,118]. The antibodies for PTMG
are administered by intravenous or intraperitoneal injection, especially into rats where dis-
ease symptoms are more distinguishable compared to mice [107,108]. Passive transfer has
been often used to study the efficacy of new therapeutic interventions, given advantages
such as ease of use (a single injection) and quick manifestation of symptoms (within days);
however, the cellular mechanisms that drive antibody production are not present with
PTMG. Although antibodies produce post-synaptic injury similar to the human disorder,
there also can be extensive inflammation not seen in patients with MG [118]. Complement,
part of the innate immune response, augments the adaptive immune response in MG, and
there is evidence that it plays a central role in pathology. There is no consensus regarding
which component(s) of the complement cascade is/are the optimal target; thus, targets
have included a range of components in the complement cascade [118]. Despite their clear
relevance to human pathophysiological progression and improvements in phenotype with
some treatments, there is a dearth of information regarding NMJ morphology and function
in animal models; such studies may allow us to better understand molecular mechanisms
underlying neuromuscular failure in MG.

Another disease of the NMJ includes Lambert-Eaton myasthenic syndrome (LEMS).
LEMS is a rare neuromuscular immune disorder, with patients suffering from muscle weak-
ness and autonomic dysfunction [119]. Patients with LEMS typically express antibodies
against the pre-synaptic voltage gated calcium channels (VGCC), disrupting the ability
of nerves to release acetylcholine. LEMS is paraneoplastic (i.e., an immune response to
cancerous tumor) in more than half of the patients, with most patients associated with small
cell lung carcinoma. Animal models include passive transfer of human VGCC antibodies
into mice to elicit impaired neuromuscular transmission [120]. Other disorders of the NMJ
also include illness from exogenous toxins that target the NMJ (such as botulism) and
additional antibody-mediated disorders of the NMJ (such as neuromyotonia and Guillain
Barre syndrome, among others) [121].

5. NMJ in Motor Neuron Diseases

Motor neuron diseases (MNDs) are a group of progressive neurological disorders that
destroy motor neurons (reviewed in [122,123]). The pathogenesis of motor neuron diseases,
which typically result in the loss/degeneration of upper or lower motor neurons, is still
not fully elucidated. In this section, we will address the role of the NMJ in the two most
common motor neuron disorders, amyotrophic lateral sclerosis (ALS) and spinal muscular
atrophy (SMA).

ALS is a progressive and fatal neurodegenerative disease affecting upper and lower
motor neurons [124,125]. Patients with ALS have a broad clinical spectrum, with pa-
tients presenting either upper or lower motor neuron predominant symptoms. While a
majority of ALS cases are sporadic, 5–10% of ALS cases are inherited (familial or fALS).
The genetic defects that cause ALS are still being elucidated, although 50% of ALS cases
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result due to mutations in chromosome 9 open reading frame 72 (C9orf72), superoxide
dismutase 1 (SOD1), transactive response DNA-binding protein (TARDBP) or fused in
sarcoma (FUS) [126–129]. One hypothesis for ALS is that motor neuronal loss starts in
a “dying-forward” process in the brain [130]. A contrary hypothesis is the “dying-back”
process, in which the disease pathology begins at the NMJ [131]. In mouse models of ALS
(SOD1G93A mice, which overexpress human mutant SOD1, and TDP-43Q331K mice, which
express human mutant TDP-43), NMJ alterations occur prior to symptom onset [132,133].
In a FUS-ALS model, which is also characterized by NMJ defects, the enrichment of FUS
protein in synaptic nuclei is disrupted [134]. Thus, irrespective of initiating factors, the
NMJ dysfunction is a key early event in the pathogenesis of ALS.

SMA is a neuromuscular gene caused by mutations in the survival motor neuron 1
gene (SMN1). The variability of age of onset and disease severity is due to the presence
of its homolog, SMN2. Mouse models of SMA display NMJ abnormalities before a severe
phenotype ensues [135]. The loss of SMN in mice with fully mature NMJ resulted in
pathology only with injury and aging [136], while the loss of SMN before NMJ maturation
resulted in a severe SMA-like phenotype. Thus, abnormal NMJ formation and maturation,
due to the loss of SMN, play a crucial role in the pathogenesis of SMA [137].

Overall, it is clear that the NMJ plays a significant role in a plethora of conditions that
result in neuromuscular pathology (Figure 2).
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Figure 2. The neuromuscular junction (NMJ) as a central node in neuromuscular function. There
are many conditions in which the NMJ plays a critical role or at least as a mediator of disease
(red). However, some interventions can minimize NMJ dysfunction (green). LEMS: Lambert-Eaton
Myasthenic Syndrome.

6. Therapeutic Approaches to NMJ Function

Gene therapy approaches are being investigated for ameliorating the pathophysiology
of various muscular dystrophies. The hope is that gene and cell therapy strategies will
continue to improve for treatment of DMD and other muscle diseases and will, as a
consequence, also restore NMJ form and function [138]. For mdx mice, the correction of NMJ
fragmentation requires a threshold of dystrophin restoration between 19% and 50% [40].
Restoration thresholds for other targets likely vary depending on their physiological roles.
Inactivation of one target, MuSK, causes a reduction in AChR density and a change in
the gross synaptic arborization of the endplate, which can lead to the complete loss of
AChRs and disappearance of the synaptic structure [139]. In our previous work, we found
a significant decrease in expression of MuSK in mdx mice [43], and others have shown that
increasing expression of MuSK or rapsyn (a cytoplasmic MuSK effector protein) with adeno-
associated viral vectors or transgenic overexpression of LRP-4 (which forms a complex
with MuSK and binds to agrin) improves NMJ structure and protects mdx muscles from
contraction-induced injury [38,140]. Gene therapy to increase expression of mini-agrins in
mouse models of congenital muscular dystrophy improves survivability, motor and skeletal
muscle function and skeletal muscle histopathology [141–143]. Utrophin upregulation
through artificial transcription factors in mdx muscles results in an increase in the number
of AChRs and reduced NMJ fragmentation [39]. This is accompanied by an improvement
in muscle contractility, but it is difficult to tease apart the contribution of the NMJ versus
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other changes in the cell (e.g., improvement in sarcolemma stability, mechanotransduction
of force, etc.).

NMJ fragmentation and denervation, and consequent decreased skeletal muscle con-
tractility in aging skeletal muscle have also been mitigated by stabilizing endplates: for
example, via transgenic expression of LRP-4 and α-sarcoglycan (which delays LRP-4 degra-
dation). Gene therapy to increase expression of Dok-7 (a cytoplasmic adapter protein,
which is a substrate of MuSK and activates MuSK kinase activity) [144] in aging skeletal
muscle also improves the acetylcholine receptor area, innervation and consequent skeletal
muscle contractility, further implicating the role of NMJ pathology in sarcopenia [145,146].
An engineered agrin (a C-terminal fragment of mouse agrin) improved skeletal muscle
strength in a sarcopenia-like murine muscle model (neurotrypsin-overexpression) [147].

Interventions to stabilize the NMJ in mouse models of ALS and SMA (such as activa-
tion of MuSK using agonist antibodies and increasing agrin function using a synthetic agrin
fragments) do not rescue the neuromuscular pathology but provide modest delays in NMJ
decline [148,149]. Thus, therapeutic interventions to the NMJ in these motor neuron dis-
eases could be a disease modifying therapy. Gene therapy approaches have been developed
to ameliorate symptoms in patients with SMA. Gene therapy and other pharmacological
therapies are currently being investigated for patients with ALS [123].

Caloric restriction (a consistent pattern of reducing average daily caloric intake) has
been shown to extend life span and slow age-related chronic diseases in a variety of animal
models, and there is growing enthusiasm about the potential for calorie restriction to
possibly improve human longevity. The concept that a reduction in food intake retards the
aging process and extends the life span of organisms of diverse phylogenetic groups is
one of the leading paradigms in gerontology [150]. Caloric restriction lessens age-related
declines in most physiological systems including the neuromuscular system [66,151–153].
This ability to delay the onset of age-related diseases appears to extend to age-related
loss of motor neurons [154] and even changes in the NMJ [93]. Specifically, caloric re-
striction in mice up to 24 months of age shows that the NMJ is remarkably preserved,
with damage to postsynaptic NMJ and axonal degeneration observed less frequently than
in age-matched controls [93]. Fragmented and denervated post-synaptic sites were all
significantly lower in these calorically restricted mice than in controls. Caloric restriction
and the associated lowering of oxidative stress may help identify targets to preserve the
NMJ with aging [16]. In addition, various diets can manipulate the activity of epigenetic
modifying enzymes, allowing for changes in miRNA expression, DNA methylation and
histone acetylation/deacetylation. Whether prolonged CR increases life span (or improves
biomarkers of aging) in humans is unknown.

Pharmacological treatment strategies for MG include drugs for immunomodulation
through immunosuppressants and steroids, thymectomy and drugs to improve neuro-
muscular transmission. Acetylcholinesterase inhibitors are also used to treat patients with
MG, although this is not effective for all patients [155]. An engineered agrin, recalcitrant
to anti-agrin antibodies, has been used to treat an animal model of MG, and the recombi-
nant agrin fragment improves NMJ morphology (reduced NMJ fragmentation and nerve
sprouting), transmission and increased MuSK in animal models of MG [113]. Complement
inhibitors and targeted monoclonal antibody agents are being investigated in treating
MG as well [155]. Treatment strategies for LEMS include drugs for immunomodulation,
tumor resection and 3,4-diaminopyridine, which prolongs the duration of depolarization
by blocking potassium ion efflux, improving the release of ACh vesicles [119,122].

Thus, there are numerous examples demonstrating the potential for targeting NMJ
stability to improve muscle function or slow muscle decline. On the other hand, there is
considerable diversity in whether a given molecular target directly impacts NMJ stability or
may indirectly (and possibly less efficiently) stabilize NMJs by improving muscle structure
and function or reducing muscle degeneration.
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7. Exercise

It is now clear that the NMJ in mature skeletal muscle is not a fixed permanent struc-
ture [3,4] but instead possesses a large degree of structural plasticity [1,5,56], remodeling in
response to a variety of cues. This includes exercise, which can result in physiological adap-
tations (increased quantal content or neurotransmitter released), as well as morphological
adaptations (larger number and length of terminal branches or changes in post-synaptic
endplate size) that affect performance [86,156–158]. Resistance training can diminish func-
tional loss in muscles despite only moderate increases in muscle mass, suggesting that
the improvements are via neural adaptation [80,159]. Aging interferes with the ability of
NMJs to adapt to exercise [86], but overall age-related changes in the NMJ are reduced
with exercise [11,56,93,157,160].

The highly conserved Hippo pathway regulates several cellular processes. The main
effectors of this pathway, Yap (Yes-Associated Protein) and Taz (Transcriptional co-activator
with PDZ binding motif) are activated by exercise and interact with various signaling
pathways to increase skeletal muscle size [161–165]. Muscles lacking Yap result in de-
creased muscle strength due to poor neuromuscular transmission, consistent with reduced
AChR density and impaired clustering, reduced endplate occupancy, and reduced minia-
ture endplate potential frequency [166]. Paradoxically, overexpression of Yap induces
skeletal muscle atrophy [167], and increased Yap is seen in dystrophic and aged skeletal
muscle [168–171]. Aging interferes with the ability of NMJs to adapt to exercise [86], and
overall age-related changes in the NMJ are reduced with exercise. Yap activity in response
to skeletal muscle loading is also altered in laminopathies and congenital dystrophies, with
an absence of skeletal muscle hypertrophy with functional overload [172–174]. Thus, the
blunted response to exercise in diseased or aging skeletal muscle [175] could be due to the
Hippo pathway-mediated regulation of the NMJ.

Due to the increased frailty of dystrophic muscles, exercise-mediated adaptations may
be suppressed in patients with DMD compared to healthy subjects, and studies exploring
the use of exercise as a therapeutic approach to improve skeletal muscle strength have
been limited [176–178]. It is unclear whether exercise-mediated improvement in skeletal
muscle strength and function [179] is due to neural adaptation or the NMJ, as is the case
with improvements seen with an isometric exercise program in the mdx mouse [180].
Whole body low-intensity vibration improved skeletal muscle strength in a small study
of DMD and BMD patients, presumably due to neural changes [181]. Exercise in mdx
muscle increases utrophin expression [182], and increased utrophin expression in mdx
muscle has been shown to decrease NMJ fragmentation and increase skeletal muscle
strength [183,184]. Improvements in skeletal muscle following exercise were also seen in
patients with FSHD, limb girdle muscular dystrophies, myotonic dystrophy and metabolic
myopathies [185–191], although the role of neural adaptation remains unclear in these
studies. For patients with MG, exercise has been shown to improve muscle strength,
although it is not clear whether fatigability is improved, which could be due to the various
exercise protocols used [192–197]. Caution must be used in appropriate use of exercise,
with careful determination of intensity of exercise determined for each condition [185].

Exercise in healthy muscles can exert beneficial effects not only on muscle but also
on NMJ morphology and function [56,86]. Endurance training affects the morphology
of NMJs in young adults and has been studied as a measure to counter changes in the
NMJ with aging [157]. Specific adaptations to exercise training include increases in the
length and number of nerve terminal branches, a higher number of pre-synaptic vesicles,
and an increased number and distribution of AChRs [1,56,86,198]. Exercise can induce
activation of neurotrophic factors and other molecules, which also have a positive impact
on NMJ morphology [199,200]. Furthermore, alterations of structure induced by endurance
training are associated with significant NMJ functional changes, such as synaptic trans-
mission. Resistance exercise appears to yield similar benefits for the NMJ, but to a lesser
degree [156,201].
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8. Conclusions

The focus on the NMJ as a contributor to weakness incurred with muscle injury,
aging and muscle disease represents a shift from predominantly myo-centric views. While
changes in both pre-synaptic motor neurons and the post-synaptic muscle fiber likely
contribute to denervation in aging and muscle diseases, other cell types (e.g., Schwann
cells, satellite cells, etc.) and other factors (trophic factors, mitochondrial function and
oxidative stress) may also contribute to a functional decline of the neuromuscular system.
The interplay between muscle health, nerve health and NMJ structure and function remain
exciting areas of research in the context of aging and muscle disease.
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