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Abstract: In the last few years, substantial progress has been made in the treatment of ovarian cancer,
with increased knowledge about the biology of the disease. Ovarian cancer is a neoplasm strongly
linked to defects in DNA repair mechanisms, where deficiency in the homologous recombination
(HR) system results in a better response of ovarian cancers to therapy, whether platinum-based
chemotherapy, anthracyclines, or poly (ADP-ribose) polymerase (PARP) inhibitors. More recently,
it has been demonstrated that different ovarian cancer histotypes may have different immunogenicity.
Interestingly, defects in HR systems are associated more frequently with higher tumor infiltrating
lymphocytes, providing a rationale for developing combination therapy with immune-modulating
agents and PARP inhibitors. Again, locoregional therapies combining heat shock and chemotherapy
delivery have been shown to induce an anticancer immune response in vitro. Thus, the potential for
locoregional therapeutic approaches that may impact the immune system, perhaps in combination
with immune-modulating agents or PARP inhibitors, needs to be further explored. With this premise,
we reviewed the main biological and clinical data demonstrating a strict interplay between the
immune system, DNA repair mechanisms, and intraperitoneal therapies in ovarian cancer, with a
focus on potential future therapeutic implications.

Keywords: DNA repair defects; inflammation; immune system; immunotherapy; ovarian cancer;
PARP-inhibitors

1. Introduction

Ovarian cancer is the second cause of death from gynecological malignancies, and the seventh
most common cause of cancer death worldwide [1]. The median progression-free survival (PFS)
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and overall survival (OS) for advanced ovarian cancer range between 12 and 24 months and 29 and
65 months, respectively [2,3]. The most common ovarian neoplasm is a high-grade serous histological
subtype, accounting for about 70% of cases and causing the majority (90%) of ovarian cancer deaths.

Other histologic subtypes include low-grade serous, endometrioid, clear-cell, and mucinous
ovarian cancers (Table 1) [4–6]. Mucinous ovarian cancer is a rare tumor, probably accounting for 3% of
all epithelial ovarian cancers. Stage III or IV mucinous ovarian cancer patients have a poorer prognosis
than women with other, more common subtypes (particularly serous or endometrioid ovarian cancer),
and may be related to a poorer response to chemotherapy [7].

Table 1. Characteristics of different ovarian cancer histological types.

Clinical
Characteristics

High-grade
Serous

Low-grade
Serous Clear Cell Endometrioid Mucinous

Prevalence 65%–70% 3% 5%–10% 10%–15% 2%–8%

Hereditary
risk

18%–20%
present
germline
BRCA1/2
mutations

unknown unknown

10%–14%
endometrioid
tumors are
associated with
HNPCC
syndrome

unknown

Stage at
diagnosis Advanced Early

Advanced Early Early Early

Genetic
alterations

p53
p16
pRb pathway
Homologous
recombination
defects
(BRCA1/2,
RAD51)

BRAF or
KRAS

HNF-1β
IL6/JAK2/STAT3
PI3K
MSI
ARID1A

PTEN
β-Catenin
KRAS
MSI
ARID1A

K-ras
c-MYC
HER2

Chemotherapy
response 80% 26–28% 15% unknown 15%

Immune
infiltrate

High, more
commonly
associated with
BRCA1 defects

Low

Generally low,
higher when
associated with
MSI

Generally low,
higher when
associated with
MSI

Low

High-grade serous ovarian cancer is frequently associated with DNA repair deficiencies [8].
Alterations in DNA repair pathways represent a common feature of carcinogenesis, as they can drive
malignant transformation with the accumulation of genomic alterations in cancer cells [9]. Conversely,
the presence of multiple DNA repair systems allows cancer cells to have a compensating mechanism
to avoid non-viable amounts of genotoxic stress that would ultimately lead to cell death [10].

In around 18% of ovarian cancer patients, it is possible to identify germline mutations in BRCA1
and BRCA2, especially in those with high-grade serous carcinoma [11,12]. When combined with BRCA
deficiencies resulting from somatic mutations or epigenetic silencing, it appears that up to half of all
high-grade serous ovarian cancers have a BRCA dysfunction [13–16]. About 10%–14% of ovarian
endometrioid carcinomas present deficiencies in mismatch repair proteins by immunohistochemistry,
accounting for the microsatellite instability phenotype [17]. Conversely to high-grade serous ovarian
cancer, mucinous ovarian cancers are not associated with BRCA mutations or defects in homologous
recombination. The most frequent alterations are KRAS mutations (in 40% to 65% of cases), c-MYC
amplifications (65% of cases), HER2 amplifications (20% to 38% of cases), and TP53 mutations (50%
to 75% of cases). In addition, other alterations have been identified at lower frequencies, such as
homozygous deletions in CDKN2A/B (in 25% of cases), mutations in PI3KCA (13%), and mutations in
PTEN, BRAF, FGFR, KIT, or STK11 (2% to 5% of cases) [18].

Although the tumor stage, residual disease after surgical debulking, response to chemotherapy,
and BRCA1/2-mutation status all affect the outcome of ovarian cancer, the variability in PFS and
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OS among patients with similar clinical and pathological characteristics makes it difficult to reliably
predict outcome. In 2003, Coukos and coworkers reported for the first time that the presence of
tumor-infiltrating lymphocytes (TIL) CD3+ correlated with improved clinical outcome in advanced
ovarian carcinoma [19].

Peritoneal carcinomatosis (PC) is the major cause of treatment failure in the management of
ovarian cancer. However, the finding that ovarian-related PC is a regional disease rather than a systemic
disease has led to the development of locoregional approaches to improve ovarian cancer patient
outcome. In this context, intraperitoneal chemotherapy, endowing direct exposure of chemotherapy
to the peritoneal surface plus intravenous chemotherapy, compared with intravenous chemotherapy
alone after complete or optimal primary cytoreductive surgery (CRS), showed a 16-month increase in
survival. Nevertheless, this strategy is limited in clinical practice by increased side effects, including
catheter-related complications, and the inconvenience of administering therapy intraperitoneally [3].
Even if intraperitoneal chemotherapy has shown benefits as a primary treatment of ovarian cancer [3],
this route of administration has not been explored carefully in the context of interval CRS. The results
of the randomized trial of interval CRS, with or without hyperthermic intraperitoneal chemotherapy
(HIPEC), in ovarian cancer patients who had at least stable disease after three cycles of neoadjuvant
chemotherapy with carboplatin and paclitaxel, demonstrated a median overall survival longer in
the surgery-plus-HIPEC group than in the surgery group by nearly a year (45.7 versus 33.9 months;
HR = 0.67; 95% CI, 0.48 to 0.94; stratified p = 0.02) [20,21]. Interestingly, hyperthermia has been
shown to increase the cytotoxic effect of cisplatin in preclinical trials, by increasing the tumor
penetration, promoting DNA cross-linking, impairing DNA repair pathways, and consequently
promoting apoptosis [22].

Thus, in this review, we analyze the strict interplay between DNA repair pathway alterations,
the immune system, and inflammation in an attempt to identify unique challenges and opportunities
for new treatment strategies.

2. DNA Repair Systems

Potentially harmful agents, comprising oxidative stress, ultraviolet light and ionizing radiation,
and the use of alkylating and anti-tumor agents, continuously interact with human DNA. Five
DNA repair mechanisms are exploited by cells: base excision repair (BER), mismatch repair (MMR),
nucleotide excision repair (NER), homologous recombination (HR), and non-homologous end-joining
(NHEJ). We briefly described the main characteristics of DNA repair mechanisms below.

BER protects against single-base DNA damage caused by spontaneous depurinations, methylating
and oxidizing agents, or other genotoxicants [23]. BER consists of the removal of damaged bases by
DNA glycosylases. There are 11 of these enzymes in humans, and each identifies specific lesions; they
bind the altered deoxynucleoside in an extrahelical position and catalyze the cleavage of the base–sugar
bond. APE-1 is a protein with an endonuclease activity that makes a 5’ nick in the DNA structure and a
3’ hydroxyl that is recognized by DNA repair polymerase β. Poly (ADP-ribose) polymerase-1 (PARP1)
binds to the 5’ nick, acting as a nick surveillance protein. PARP1 is one of the BER complex proteins
involved in DNA interruption detection and DNA repair [24]. BER consists of different steps: excision
of the base, incision, end processing, and repair synthesis (gap filling and ligation).

Slyskova et al. found that DNA repair capacity (DRC) linked to BER is similar in tumor tissues
and adjacent healthy epithelium, suggesting that alterations of BER may be not the crucial events in
malignant transformation; however, they could be involved in chemical sensitivity of tumor cells to
drugs [25].

The MMR system acts against DNA damaging agents in post-replication correction of extra-helical
loops and nucleotide mispairs. MMR includes the MLH1, PMS2, MSH2, and MSH6 genes. Alterations
in MMR genes cause microsatellite instability, a mutator phenotype, and a predisposition to colorectal
cancer [26]. Moreover, tumors with MMR deficiency show significantly more somatic alterations than
MMR efficiency, resulting in an increased neoantigen burden and immunogenicity. Indeed, it has
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been demonstrated that tumors with MMR deficiency are responsive to anti PD-1 antibodies like
pembrolizumab and nivolumab [27].

NER consists of about 30 peptides and is involved in the repair of DNA with helix distorting
damages, including that caused by UV light, environmental mutagens, and chemotherapeutic
agents [28]. The main steps in NER are as follows: recognition of a DNA defect; recruitment
of a repair complex; involvement of helicases for DNA repair; incision of the damaged strand, which
results in a single-strand fragment of 24–32 nucleotides; DNA synthesis to fill in the gap; and ligation
to form the final phosphodiester bond [29]. Indeed, lesions are recognized by XPC-RAD23B, which
interacts with TFIIH, a transcription initiation complex, prying the DNA open with an XPD subunit.
XPB recruits XPA, RPA, and XPG, allowing the formation of a pre-incision complex. XPA interacts
with ERCC1-XPF, making a 5’ incision of the lesion. DNA ligase IIIa/XRCC1 or DNA ligase I concludes
the NER process [30].

Slyskova et al. identified alterations of DRC in sporadic colorectal cancer and hypothesized a role
of NER in carcinogenesis [31,32].

A double strand break (DSB) is the most lethal damage to the genome that can derive from
anti-cancer treatments (e.g., ionizing radiation or the topoisomerase inhibitors) [33] or physiologic
pathways (e.g., genetic recombination during meiosis) [34].

The HR system is an error-free mechanism that repairs DSBs using a homologous DNA template;
during the S/G2 phase of the cell cycle, cyclin-dependent kinases stimulate DNA end resection and
activate the HR pathway. The HR process initiates by the end resection generating a long stretch of
single-strand DNA from DNA break ends. The HR pathway includes BRCA1 as part of BASC, a large
complex linked to genome surveillance composed of MLH1, MSH2, and MSH6 (mismatch repair
proteins), an MRN (Mre11–Rad50–Nbs1) complex, and ATM and Bloom (BLM) syndrome helicase [35].
The HR system also involves BRCA2, which forms a complex with Rad51, binding the exposed DNA
and permitting Rad51 to load onto the break and assemble the presynaptic filament [36]. The main
reactions in HR are catalyzed by the Rad51/RecA family DNA recombinases [37].

RAD51 mutations have been identified in ovarian cancer; specifically, deleterious variants were
shown in RAD51B, RAD51C, and RAD51D (nonsense, frameshift, and splice), with a predominance for
RAD51C and RAD51D mutations [38]. Literature data shows that tumors with RAD51C and RAD51D
mutations presented sensitivity to PARP inhibitors, suggesting a novel therapeutic option for this
setting of patients [39,40].

The NHEJ system is active during all phases of the cell cycle and ligates DSBs ends without
a template. In NHEJ, the DSBs are first recognized by a heterodimer consisting of Ku70 and Ku80
(Ku). The degradation of short regions of the 5’ or 3’ ends by both exonuclease or endonuclease
enzymes (e.g., Artemis) is included in the end resection that generates or exposes small regions of
microhomology (≤4 nucleotides) between the strands, facilitating end joining. Artemis is recruited
with DNA-dependent protein kinase catalytic subunits, which have a high affinity for DNA ends.
Nucleotide addition can occur by the Pol X family polymerases. The DNA ligase IV complex, consisting
of XRCC4, XLF, and perhaps PAXX, performs the ligation step for either strand of the DSBs. Alternative
joining pathways can be involved in DSBs: backup NHEJ (B-NHEJ) makes use of PARP1, PARP2, and
ligase III; and microhomology-mediated end-joining (MMEJ) can be considered as a form of B-NHEJ
other than alternative end joining (Alt-EJ) [41]. PARP1 could compete with RAD51 and BRCA2 for the
further processing of resected ends at DSBs, after the initial phase of end resection. The activation
of Alt-EJ is mediated by PARP1, and this determines the aligning of short homologous sequences
(i.e., microhomology) in the broken ends of DSBs. The repair pathway mediated by microhomology
translates into the generation of small deletions, surrounded by microhomologies. The activity of
PARP inhibitors inducing synthetic lethality in BRCA1/2-null cells suggests that PARP1-mediated
Alt-EJ compensates for HR in HR-deficient cells [42].

Checkpoints in G1/S, intra-S, and G2/M phases control the progression of cell cycle. The type of
DNA lesions activates different DNA damage response proteins [43]. NHEJ is prevalent throughout
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the cell cycle, whereas HR is dominant during the S and G2 phases, when factors promoting extensive
end resection are more effective [44]. Cyclin-dependent kinases favor extensive resection during cell
cycle, through enzymes and DNA damage response checkpoint proteins, such as ATM and ataxia
telangiectasia and Rad-3 related. Moreover, ATM phosphorylation is demonstrated to be involved
in the pathway that allows HR or NHEJ activation [45]. In this context, end processing developing a
long 3’ single strand DNA depends on how long DSBs remain unrepaired, which leads to activation of
single-strand annealing (SSA). SSA consists of a non-conservative, homology-directed repair pathway
that necessitates >20 bp of homology and presents a loss of nucleotides [46]. RAD52 protein is required
for the annealing of complementary single strand DNA in the SSA pathway.

Direct DNA repair of base alkylations lesions involves MGMT protein, which repairs the
O6-methylguanine (highly mutagenic) and human AlkB homologues (ALKBH1, ALKBH2, and ALKBH3).
These kinds of lesions can occur during all phases of the cell cycle, so there is no cell cycle regulation
for the genes involved in direct repair [47].

Germ line mutations in genes of repair cause a predisposition to cancer. In particular, germ
line mutations in BRCA1 and BRCA2 are associated mainly with ovarian and breast carcinoma [48],
but sporadic cancers also show alterations in BRCA genes. Indeed, BRCA1 interacts with BRCA2,
and similar phenotypic effects result from BRCA1 and BRCA2 mutations [49]. Thus, BRCA1 and
BRCA2 are two genes that are crucial for repairing DNA damage and for ensuring genomic stability,
preventing the accumulation of gross chromosomal rearrangements that would ultimately lead to
either cellular apoptosis or tumor formation [50].

3. Consequence of DNA Repair Deficiencies in Ovarian Cancer

Based on epidemiologic studies, about 65% to 75% of all cases of hereditary ovarian cancer are
caused by gene mutations in BRCA1 or BRCA2. The third major cause of hereditary ovarian cancer is
hereditary nonpolyposis colorectal cancer (HNPCC) syndrome, which accounts for an additional 10%
to 15% of all inherited cases [51]. HNPCC is caused by mutations in genes involved in the MMR system.

It is widely acknowledged that HR-deficient ovarian cancers are enriched for high-grade serous
histology (Table 1). BRCA abnormalities seldom occur in non-high-grade serous ovarian carcinoma
subtypes [52]. HR deficiency endows ovarian cancers with a clinical phenotype that is characterized
by visceral relapse, a slightly younger age at diagnosis, and a better response to platinum-based
chemotherapy, PARP inhibitors, and anthracyclines [42].

Usually, only one mutated allele results from inherited germline defects (typically mutations),
and loss of the other allele occurs somatically, as in Lynch syndrome (or HNPCC), an autosomal
dominant condition that predisposes the patient to cancer development (especially colorectal, ovarian,
and endometrial cancer) [53]. Alternatively, sporadic MMR deficient tumors are often due to
hypermethylation of the MLH1 promoter resulting in epigenetic silencing [54].

The distribution of ovarian cancer histotypes in MMR-deficient patients differs considerably from
that generally observed: non-serous histologies are more common, and often show endometrioid or a
clear cell differentiation (Table 1) [55]. Ovarian endometrioid cancers, accounting for ~10%–25% of all
ovarian carcinomas, is predominantly seen in perimenopausal women, and arises from endometriosis,
which appears to act as a precursor. Endometrioid histology frequently harbors AT-rich interactive
domain 1A (ARID1A) mutations, leading to loss of ARID1A protein expression, B-catenin (CTNNB1)
somatic mutations, PTEN mutations, and microsatellite instability [56,57]. In particular, defective
mismatch repair protein immunohistochemistry, accounting for the microsatellite instability phenotype,
has been reported in 10%–14% of ovarian endometrioid carcinomas. Primarily, loss of MSH2 and/or
MSH6 accounts for over 50% of MMR-deficient ovarian endometrioid carcinomas [17,58].

Clear-cell ovarian cancer is a rare subtype characterized by a worse prognosis when diagnosed at
an advanced stage, due to low chemosensitivity. Howitt and coworkers demonstrated that 10% of
clear-cell ovarian cancer exhibited microsatellite instability and roughly 27% ARID1A loss [59].
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Immune-Consequence of DNA Repair Defects

The first evidence of a relationship between ovarian cancer and the immune environment was
reported by Zhang and coworkers in 2003. The authors demonstrated that the presence of intratumoral
T cells correlated with the clinical outcome of advanced ovarian carcinoma [19]. Of note, TIL are more
frequently present in serous carcinomas, compared to either endometrioid or clear-cell carcinomas
(Table 1). Clarke and coworkers also performed an exploratory analysis in a small case series,
observing a significant association between intraepithelial TIL and BRCA1 mutations or promoter
methylation causing loss of expression, mainly in high-grade serous ovarian cancer [60]. Since then,
others authors have identified “prominent intraepithelial lymphocytes” as a distinguishing feature of
BRCA1/2-mutated tumors, with a higher mutational load [61].

Although both genes encode proteins that participate in the HR pathway, the reason why
germline BRCA1 mutations seem to confer a higher risk of developing ovarian cancer than germline
BRCA2 mutations is probably related to their earlier and more substantial role in DNA damage
response and cell-cycle regulation. Indeed, BRCA1-mutant, high-grade serous ovarian cancers present
a specific molecular subtype with a distinct gene expression signature, which seems related to
specific amplification events at 8q24 and on the X chromosome. Conversely, BRCA2-mutant tumors
more closely resemble “wild-type” high-grade serous ovarian cancer [62]. Consequently, it seems
that BRCA2-disrupted tumors, although harboring similar numbers of point mutations, are less
immunogenic than BRCA1-disrupted tumors [63].

Strickland and coworkers demonstrated that a higher neoantigen load in the BRCA1/2-mutated
ovarian cancers compared to HR-proficient tumors translates to a significantly higher number of
CD3+ TILs compared to HR-proficient tumors. Moreover, HR-proficient tumors showed a lower
PD-L1 expression on the surface of intraepithelial and peritumoral immune cells compared to the
BRCA1/2-mutated tumors, supporting a link between BRCA1/2-mutation status, immunogenicity,
and improved survival in high grade serous ovarian cancer [64].

With regard to defects in the MMR system, it has been demonstrated that mismatch repair–deficient
cancers are associated with 10- to 100-fold more somatic mutations as MMR–proficient cancers,
and contain prominent lymphocyte infiltrates, a finding consistent with an immune response. In an
unselected series of ovarian clear cell carcinoma, with around 6% of MMR deficiency, peritumoral
lymphocytes were more frequent in MMR-deficient tumors [65]. Indeed, it has been seen that an
MMR–deficient tumor microenvironment strongly expresses several immune checkpoint ligands,
(e.g., PD-1, PD-L1, CTLA-4, LAG-3, and IDO), indicating an immune escape process where their active
immune microenvironment is counterbalanced by immune inhibitory signals [66].

MMR-deficient tumors were shown to be more frequently resistant to chemotherapy, and in
particular to methylating agents and platinum compounds [67]. A possible explanation may be related
to the incapability of MMR proteins involved in DNA damage response to recruit ATM/ATR, which in
turn leads to cell cycle arrest, DNA repair, or apoptosis [68].

Alterations in DNA repair pathways are not the only events that may have immune consequences.
In fact, inflammation is the process where reactive oxygen and nitrogen species (RONS) and other
mediators, including cytokines, metalloproteinases (MMPs), and PGE2, are produced by inflammatory
cells. The same inflammatory signals may, in turn, amplify and perpetuate the inflammatory
cascade—e.g., MMPs induce reactive oxygen intermediates, whereas cytokines induce PGE2. The
cGAS/STING pathway consists of the activation of a cGAS enzyme by aberrant cytosolic DNA that
produces cGAMP, activating the STING protein, leading to the production of pro-inflammatory
cytokines, such as type I interferon (IFN), that boost the immune response [69].

Inflammation has the capability to induce the production of HIF-1α in cancer cells, as a consequence
of inflammatory cytokines (TNF and IL-1β), prostaglandin (PGE2), and RONS. HIF-1α in turn
downregulates MMR proteins, such as MSH2 and MSH6, by displacing c-Myc from MSH2/MSH6
promoters. A potent RONS, hydrogen peroxide, may damage several proteins and enzymes, including
MMR members, disrupting their function and ultimately inactivating this DNA-repair pathway. The
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BER pathway, which serves to repair DNA damage caused by UV exposure and chemotherapeutic
agents, appears to be affected by IL-6, which induces hypermethylation in multiple myeloma cells,
leading to dysfunction of the key nucleotide excision repair component hHR23B [70]. Moreover, HIF-1α
induces microRNA-373, which downregulates the expression of the NER component RAD23B [71].

4. Effect of Locoregional Therapeutic Approaches on the Immune System

The aim of locoregional treatments is to deliver higher concentrations of chemotherapy
(e.g., cisplatin or paclitaxel) to the peritoneal cavity than that measured in plasma after intravenous
administration [72,73], permitting continuous and prolonged exposure of high drug concentrations
with lower peak plasma levels over time [74], and thus causing fewer adverse events. Intraperitoneal
chemotherapy has been shown to enhance OS and PFS with respect to intravenous administration [75,76],
and HIPEC plus complete or optimal interval CRS resulted in longer OS than CRS alone [20].

The proposed advantages of HIPEC over intraperitoneal administration are a single-dose approach
with direct observation of intraoperative drug exposure, without the risk of barriers due to postoperative
adhesions, and a high-proportion cisplatin dose absorbed by target tumor cells; hyperthermia that
has been shown to increase tumor penetration of chemotherapy, and thus enhances cyotoxicity
synergistically [77]. This was confirmed by the presence of cisplatin-induced DNA adducts in tumor
samples treated with HIPEC [22].

The results obtained with this procedure in terms of improvement in OS can be attributed to the
potential interaction between intraperitoneal chemotherapy, the immune system, and inflammatory
processes [78–80]. In vivo and in vitro studies have shown that the hyperthermic phase of the procedure
is characterized by a sharp and predictable increase of inflammatory markers. Cisplatin is a DNA
damaging agent, known to cause G2 arrest. It has been seen that HIPEC leads to an increase in Cyclin A1
(up to 53-fold more) and in SSX-4 (up to 30-fold more), with respect to intravenous chemotherapy [79].
Thus, HIPEC causes cell cycle arrest thanks to CDKN1A expression, which in response to DNA damage
through p53 activation, binds and inhibits the CDK2/cyclin E complex, preventing the phosphorylation
of Rb and thus arresting cancer cells in the G1 phase [81]. Furthermore, serum levels of Interleukine-6
and procalcitonin showed clinically relevant variation during HIPEC [80].

Systemic inflammatory indexes, such as the neutrophil-to-lymphocyte ratio (NLR),
platelet-to-lymphocyte ratio (PLR), and systemic inflammatory index (SII) (calculated as (platelet
count × neutrophil count)/lymphocyte count) have been investigated in several tumors, displaying a
potential prognostic and predictive role [82–85]. In ovarian cancer patients, elevated baseline levels of
NLR are associated with a poor prognosis [86,87]. Interestingly, it has been observed that inflammatory
markers, such as NLR and SII, may also be predictors of treatment efficacy in ovarian cancer. However,
their role has not yet been evaluated in patients undergoing HIPEC [88].

Hypertermia and surgery are stressful procedures for cancer and mesothelial cells. In fact, even if
a CA-125 serum marker significantly increases during the peritoneal perfusate, as a consequence of the
production of mesothelial cells, it has been demonstrated that there is a trend in its reduction, even if
not statistically significant, after this procedure. These data confirm the effectiveness of peritoneal
plasma barrier [89,90] in confining the harm produced by the intra-abdominal process to the abdominal
cavity [80].

Zunino and coworkers investigated the role of hyperthermia mitomycin C and HIPEC
(hyperthermia and mitomycin C) in the anticancer immune response. Using murine colon carcinoma
cell line CT26, they showed that CT26 cells were killed with all these procedures. However, although
mitomycin C and HIPEC treatment caused an activation of dendritic cells (DCs), hyperthermia alone
did not. The activated DCs activated T cells in a tumor antigen-dependent manner. The authors
also observed a permanent antitumor immune response in mice vaccinated with mitomycine- or
HIPEC-treated CT26 cells, through the exposure of Heat Shock Protein 90 (HSP90) on the cell surface
of the dying cells [91,92]. These findings showed that the HIPEC procedure not only killed tumor cells,
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but also induced an efficient anticancer immune response, providing a rationale for using a combination
of HIPEC and immunotherapy or intraperitoneal immunotherapy to improve clinical outcome.

5. Immune-Modulating Treatment Rationale in Ovarian Cancer

Immune checkpoint inhibitors, such as anti-PD-1 and anti-PD-L1 antibodies, have proven effective
in cancers with a high mutational load, including lung cancer, melanoma, and bladder cancer. A higher
mutational load in urothelial cancer was shown to be an independent predictive factor of response to
anti-PD-L1 [93,94]. This is a result of bladder tumors producing more tumor-specific neoantigens, which
leads to TIL stimulation and PD-1/PD-L1 overexpression. Higher-neoantigen intratumor heterogeneity
may result in lower antigen dosage compared to homogeneous tumors with a high clonal neoantigen
burden, thus reducing the possibility of identifying T cells reactive to sub-clonal neoantigens and
responsive to immune checkpoint inhibitors [95]. In this context, tumors harboring BRCA mutations or
with a BRCA-like phenotype have a higher probability of producing new neoantigens and a higher
mutational load, resulting in more immunogenic tumors. Moreover, it has been demonstrated that
PD-1 and PD-L1 are more highly expressed in BRCA-mutated tumors than in HR-proficient tumors [64],
providing a rationale for treating these tumors with immune checkpoint inhibitors either alone or
in combination with PARP inhibitors. Similarly, MMR-deficient tumors are associated with a higher
mutational load than MMR-proficient tumors. Indeed, Le and coworkers demonstrated that an
immune checkpoint inhibitor, specifically a PD-1 inhibitor, was active against MMR–deficient colorectal
cancers [27]. Of note, PD-L1 expression in tumor cells or immune cells is observed in all cases of
clear-cell ovarian cancers with microsatellite instability [59], suggesting the usefulness of routine testing
of MMR-deficiency in ovarian cancer and opening an alternative therapeutic avenue with immune
checkpoint inhibitors for selected ovarian cancer patients. Again, an ARID1A-deficient ovarian cancer
cell line, because ARID1A cannot interact anymore with MSH2 during DNA replication, results in
increased mutagenesis, increased mutation load, elevated numbers of tumor-infiltrating lymphocytes,
and PD-L1 expression. Notably, treatment with anti-PD-L1 antibody seems efficacious in preclinical
models bearing ARID1A-deficient but not ARID1A-wild-type ovarian tumors [96].

Promising studies have also been conducted with intraperitoneal immunotherapy. In April 2009,
EMA approved the use of intraperitoneal catumaxomab for malignant ascites in patients with epithelial
cell adhesion molecule (EpCAM)-positive ovarian and non-gynecological carcinomas after studies
confirmed a prolongation in the time of first deterioration of quality of life, median paracentesis-free
survival, and overall survival [97,98].

Of note, other recent studies focusing on IP immunotherapy with dendritic cell vaccine and
cytokine-induced killer cells have demonstrated a significant improvement in quality of life and control
of the production of malignant ascites in patients with unresectable peritoneal carcinomatosis [99].
The role of chimeric antigen receptor-engineered T cells (CAR-T cells) in controlling peritoneal
carcinomatosis has also been investigated by targeting antigen-specific tumors [100]. A study
in mice by Katz and coworkers evaluated tumor response by CAR-T therapy via intraperitoneal
or tail-vein injection. The authors reported a 37-fold reduction in peritoneal carcinomatosis in
intraperitoneal-treated mice as compared with the tail-vein injection group [101]. Similarly, other
studies focusing on peritoneal carcinomatosis from ovarian cancer reported an eradication of tumor
growth and a significant improvement in survival in the intraperitoneal CAR-T cell-treated mice
models compared with control groups [102–104].

6. Conclusions

Substantial progress has been achieved in understanding the biology of ovarian cancer in the last
few years. Ovarian cancer is strongly linked to defects in DNA repair mechanisms. It was recently
demonstrated that different ovarian cancer histotypes may have different immunogenicity, following
the recognition of six molecular subgroups, including an “immunoreactive” subtype, by the Cancer
Genome Atlas Research Network (TCGA) [13]. In this context, the combination of immunotherapy
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and PARP inhibition in HR- or MMR-deficient ovarian cancers is a potentially interesting hypothesis.
Moreover, there is evidence to show that HIPEC has an effect on immune response by activating the
mediators of the non-specific innate immune system to kill tumor cells. However, HIPEC also induces
the adaptive immune system to create an efficient anticancer immune response, protecting patients on
a long-term basis. Within this context, it would be interesting to carry out studies on intraperitoneal
immunotherapy, including combinations with PARP inhibitors, in patients harboring defects in DNA
repair pathways.
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