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A B S T R A C T   

Background: Natural killer (NK) cells play a significant role in anti-tumor immunity, and their involvement has been documented in various cancers. 
However, a deeper understanding of the mechanisms by which NK cells influence gastric cancer progression remains necessary. 
Methods: We utilized the Cancer Genome Atlas (TCGA) database to acquire transcriptional profiles, clinical information, and mutation data for 
gastric cancer patients. R software and associated packages were employed for all analyses of this publicly available data. 
Results: We used multiple algorithms to evaluate the tumor microenvironment in gastric cancer samples. We performed differential expression 
analysis to pinpoint genes related to NK cells. Utilizing this data, we developed a prognostic model featuring three crucial NK cell-related genes: 
MAB21L2, ARPP21, and MUCL1. This model showed strong predictive performance in the training and validation groups. Consistently, patients 
identified as high-risk according to our model had worse overall survival rates. To further elucidate the biological differences between high-risk and 
low-risk patients, we performed enrichment analyses focusing on biological pathways and immune-related factors. Additionally, we observed a 
correlation between higher risk scores and non-responsiveness to treatment. Interestingly, high-risk patients were found to be potentially more 
sensitive to axitinib. We selected MUCL1 for further investigation due to its potential role in the model. While MUCL1 mRNA levels were elevated in 
both gastric cancer and paired normal tissues, protein expression analysis using the Human Protein Atlas database revealed a decrease in MUCL1 
protein levels within tumor tissues. 
Conclusions: Our findings contribute to a more comprehensive understanding of the role of NK cells in gastric cancer and highlight MUCL1 as a 
promising therapeutic target.   

1. Introduction 

Gastric cancer is a leading cause of global cancer deaths, with particularly high incidence and mortality rates in East Asia [1]. Its 
pathogenesis is complex, involving factors such as Helicobacter pylori infection, unhealthy dietary habits, and genetic and environ-
mental influences [2]. Despite the use of surgery, radiotherapy, and chemotherapy as standard-of-care treatment, the five-year survival 
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rate for gastric cancer remains low [3]. Advancements in molecular biology and cancer genomics have paved the way for targeted 
therapy as a novel approach to gastric cancer management [4]. Compared with conventional chemotherapy, targeted therapies act on 
specific molecular abnormalities within cancer cells, leading to potentially improved efficacy and reduced side effects on healthy cells 
[5]. Several targeted drugs, like the HER2 antibody Trastuzumab and the multi-target tyrosine kinase inhibitor Ramucirumab, have 
already received clinical approval for gastric cancer treatment [6,7]. It is widely thought that the future of gastric cancer treatment lies 
in the integration of novel targeted therapies with immunotherapies, offering more personalized and effective treatment options. 
Checkpoint inhibitors, a type of immunotherapy, hold promise for improving patient outcomes [8,9]. However, due to the inherent 
complexity and heterogeneity of gastric cancer, research continues to focus on identifying new therapeutic targets and developing even 
more targeted drugs [10]. 

Natural killer (NK) cells are crucial components of the innate immune system, recognizing and eliminating compromised cells, 
particularly cancerous and virus-infected ones [11]. Their activation and functional state significantly impact the suppression of tumor 
development and spread within the tumor’s immune microenvironment [12]. However, many tumors, including gastric cancer, have 
evolved mechanisms to suppress NK cell activity, evading immune system clearance [13]. With a deepened understanding of the 
immune system’s role in tumor development in recent years, the role of NK cells in gastric cancer immunosurveillance and treatment 
has gained significant attention [14,15]. Recent research has revealed multiple mechanisms by which NK cells recognize and eliminate 
gastric cancer cells. This includes the ability of NK cell surface receptors, such as NKG2D and NKp30, to recognize specific markers on 
these cancer cells [16,17]. This finding provides a theoretical foundation for developing novel immunotherapeutic strategies. How-
ever, studies have also shown that gastric cancer cells can evade NK cell-mediated killing by expressing inhibitory molecules like MHC 
class I molecules, highlighting the complexity of tumor immune escape mechanisms [18]. Conversely, preclinical studies demonstrate 
the potential of novel immunomodulators, such as antibodies blocking inhibitory receptors on NK cells, to enhance their killing ability 
against gastric cancer cells [19]. Most importantly, cell-based therapies using NK cells, including NK cell transfer therapy and engi-
neered NK cell therapy, have shown remarkable promise in improving treatment outcomes and survival rates for gastric cancer pa-
tients [20]. These advancements not only deepen our understanding of NK cells’ role in the immune response to gastric cancer but also 
offer new avenues for treating this disease. 

We employed various algorithms to assess the tumor microenvironment of gastric cancer tissues. Differential gene expression 
analysis identified NK cell-related genes. From these results, we built a prognostic model that included three important genes asso-
ciated with NK cells: MAB21L2, ARPP21, and MUCL1. The model proved to be highly accurate in predicting outcomes for both the 
training and validation groups. Patients deemed high-risk by our model showed lower overall survival rates, as anticipated. To further 
elucidate the biological differences between high-risk and low-risk patients, we performed enrichment analyses focusing on biological 
pathways and immune-related factors. Additionally, we observed a correlation between higher risk scores and non-responsiveness to 
treatment. Interestingly, high-risk patients may be more sensitive to axitinib. Finally, MUCL1, a gene identified by the model, was 
selected for further investigation. 

2. Methods 

2.1. Data download and summarization 

Public gastric cancer transcriptome and clinical datasets were sourced from The Cancer Genome Atlas (TCGA) database, specif-
ically TCGA-STAD (https://portal.gdc.cancer.gov/) [21]. We retrieved the raw transcript data in STAR-Counts format from the 
TCGA-GDC portal and converted these to Transcripts Per Million (TPM) using R software, preparing them for subsequent analysis. 
Genome annotations were performed using downloaded annotation files (GRCh38) from the Ensembl website (https://www.ensembl. 
org/index.html). Clinical data was downloaded in bcr-xml format. All data underwent preprocessing steps before analysis, including 
genome annotation, normalization, and log2 transformation. We obtained single-cell gene expression data directly from the Tumor 
Immune Single-cell Hub 2 (TISCH2) project. The TISCH2 web portal allowed us to access the data and perform targeted analyses of 
single-cell transcripts for genes of interest. This direct querying approach facilitated the efficient extraction of data relevant to our 
study goals [22]. Representative immunohistochemical (IHC) images were retrieved directly from the Human Protein Atlas (HPA) 
database (https://www.proteinatlas.org/). The HPA online analysis tool enabled us to search for images by inputting specific genes of 
interest. The user-friendly interface facilitated image categorization; normal tissue images were selected from the "Tissue" tab, while 
tumor tissue images were chosen from the "Pathology" tab [23]. 

2.2. Tumor microenvironment quantification 

To evaluate the extent of cell infiltration within the tumor microenvironment, we utilized transcriptional profiling data analyzed by 
several established computational algorithms [24–29]. These algorithms included QUANTISEQ for quantifying tumor-immune cell 
infiltrates, EPIC for estimating stromal and immune cell proportions, MCPCOUNTER for identifying major cell populations in het-
erogeneous tissues, CIBERSORT for characterizing cell composition based on gene expression profiles, XCELL for enhancing data with 
cell type-specific signals, and TIMER for estimating immune infiltrate abundance. Each algorithm employs unique statistical methods 
and reference gene sets, allowing for a detailed and accurate analysis of the cellular dynamics within the tumor environment. All 
algorithms utilize standardized expression profile data from gastric cancer patients as input. 
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2.3. Prognosis-related analysis 

Patients with gastric cancer were evenly split into training and validation cohorts in a 1:1 ratio. A two-step process was utilized to 
identify prognostic factors associated with survival. Initially, a univariate Cox proportional hazards model assessed the influence of 
each factor on overall survival. Factors showing a statistically significant link (p-value <0.05) were chosen for further examination. To 
address the high dimensionality and possible multicollinearity in the data, Least Absolute Shrinkage and Selection Operator (LASSO) 
regression was used to refine our selection of prognostic factors. LASSO regression is beneficial as it minimizes the risk of model 
overfitting through the penalization of the coefficients’ absolute values. A multivariate Cox regression model was subsequently 
developed with the factors identified by the LASSO regression. This method allowed for the identification of independent prognostic 
factors and accounted for potential confounders. We calculated a risk score for each patient using a linear combination of the ex-
pressions of the selected genes, weighted by their coefficients derived from the Cox model, according to the formula: Risk score = Gene 
A * Coef A + … + Gene X * Coef X. Based on these risk scores, patients were divided into different risk categories. Kaplan-Meier 
survival curves were plotted for each group, and differences in survival rates were analyzed using the log-rank test. Lastly, a 
receiver operating characteristic (ROC) curve was constructed to measure the predictive performance of the prognostic model, and the 
area under the curve (AUC) was calculated to evaluate the model’s discriminative ability regarding different survival outcomes. 

2.4. Biological enrichment 

To perform biological enrichment analysis, we utilized both ClueGO and Gene Set Enrichment Analysis (GSEA) [30,31]. First, DEGs 
between high- and low-risk patient groups were uploaded to the STRING database to retrieve their associated protein-protein inter-
action networks. These networks were then integrated into Cytoscape software. ClueGO, a Cytoscape plugin, was employed to visualize 
the non-redundant biological terms associated with these gene clusters, providing a comprehensive overview of functionally grouped 
networks. Next, to assess whether predefined gene sets exhibited statistically significant differences between high- and low-risk pa-
tients, we employed GSEA. Hallmark, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets were 
used in this analysis. GSEA involves the calculation of normalized enrichment scores (NES) that indicate the degree to which each gene 
set is overrepresented at the top or bottom of a ranked gene list. Permutation testing was performed to determine statistical 
significance. 

2.5. Immune status and immunotherapy evaluation 

Gene expression profile data was used to quantify the immune score, stromal score, and estimate score using the Estimate package. 
Next, the ssGSEA algorithm was used to measure the immune status of each sample, using predefined gene sets. Next, we evaluated 
potential immunotherapy response differences using Tumor Immune Dysfunction and Exclusion (TIDE) analysis [32]. TIDE analysis 
was performed through the online TIDE website (http://tide.dfci.harvard.edu/), with the standardized expression profile data serving 
as the input. The resulting TIDE score reflects the potential response of patients to immunotherapy. Specifically, patients with a TIDE 
score less than 0 were classified as immunotherapy responders, while those with a score greater than 0 were classified as 
non-responders. 

2.6. Drug sensitivity and nomogram plot 

Gastric cancer patients may benefit from personalized treatment regimens tailored to their specific needs. To identify effective 
targeted and chemotherapy treatments, we analyzed IC50 values for various drugs within the Genomics of Drug Sensitivity in Cancer 
(GDSC) database [33]. IC50 values were assessed based on patients’ genomic features. Leveraging these findings, we developed a 
nomogram that integrates prognostic risk scores with key clinical characteristics of gastric cancer patients, including age, tumor stage, 
and genetic profiles. This tool is designed to predict individual patient outcomes and guide clinicians in making informed treatment 
decisions. By visually representing the impact of various risk factors on a patient’s prognosis, the nomogram facilitates a personalized 
approach to cancer treatment. 

2.7. Cell culture and cell lines 

The gastric cancer cell lines AGS, HGC-27, MKN-28, and BGC-83, along with the non-cancerous gastric cell line GES-1, were grown 
in appropriate media enriched with 10 % fetal bovine serum (FBS) and 1 % penicillin-streptomycin. These cell lines were kept at 37 ◦C 
in a humid environment with 5 % CO2. 

2.8. Quantitative real-time PCR (qPCR) 

Total RNA was isolated from gastric cancer cell lines utilizing TRIzol reagent as per the instructions provided by the manufacturer. 
This RNA was subsequently converted into cDNA using a reverse transcription kit. The expression of MUCL1 was measured through 
qRT-PCR, employing SYBR Green PCR master mix on a real-time PCR system. GAPDH served as the reference gene for normalizing 
expression levels. The primer used were: MUCL1, forward, 5′-TAGAGCTAGCGAATTATGAAGTTCTTAGCAGTCC-3′; reverse, 5′- 
AGATCCTTCGCGGCCTCAGGGACACACTCTACCA-3′; GAPDH, forward, 5′-CGCTGAGTACGTCGTGGAGTC-3′; reverse, 5′- 
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GCTGATGATCTTGAGGCTGTTGTC-3′. 

2.9. Western blot analysis 

Protein extracts were obtained from gastric cancer cell lines using RIPA buffer containing protease inhibitors. Protein levels were 
determined with a BCA Protein Assay Kit. Proteins were equally loaded and separated via SDS-PAGE, then transferred to PVDF 
membranes. These membranes were blocked using 5 % non-fat milk and probed with primary antibodies against MUCL1 (NBP1- 
92366; 1:500; Novus Biologicals, LLC) and GAPDH (60004-1-lg, 1:10000, Proteintech). Following several washes, the membranes 
were treated with HRP-linked secondary antibodies. The protein bands were detected using enhanced chemiluminescence (ECL) 
reagents. 

2.10. Cell transfection 

Cells were transfected with MUCL1-specific siRNAs purchased from Santa Cruz Biotechnology (siRNA#1, siRNA#2) and a negative 
control siRNA using Lipofectamine 2000 according to the manufacturer’s instructions. The efficiency of the knockdown was verified by 
qPCR analyses 48 h post-transfection. 

2.11. Cell proliferation assay 

The proliferation of gastric cancer cells post-siRNA transfection was evaluated using the Cell Counting Kit-8 (CCK-8). At specified 

Fig. 1. The flow chart of whole study.  
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time points (0, 24, 48, 72h), CCK-8 solution was added to the cells, and absorbance was measured at 450 nm to determine cell viability. 

2.12. Transwell assay 

Cell migration was evaluated using a transwell migration assay. Twenty-four hours after siRNA transfection, gastric cancer cells 
were placed in the upper chamber of a Transwell insert (8 μm pore size) with serum-free medium. The lower chamber contained 
medium with 10 % fetal bovine serum to serve as a chemoattractant. Following a 24-h incubation at 37 ◦C, cells that had migrated to 
the lower surface of the membrane were fixed with 4 % paraformaldehyde and stained with 0.1 % crystal violet. The cells that crossed 
the membrane were examined and counted using a light microscope across five random fields per insert. 

2.13. Statistical analysis 

All statistical analyses were performed using the R programming language, a robust environment for data manipulation, statistical 

Fig. 2. The infiltration level of NK cells was quantified by multiple algorithms. 
Notes: A: The tumor microenvironment was quantified by multiple algorithms; B: The immune infiltration level of NK cells quantified by 
CIBERSORT algorithm; C: The immune infiltration level of NK cells quantified by MCPCOUNTER algorithm; D: Identification of NK cell 
related genes. 
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Fig. 3. Prognosis analysis of NK cell-related molecules. 
Notes: A: PPI network of NK cell-related molecules; B: Univariate Cox regression analysis of NK cell-related molecules; C-D: LASSO regression analysis; E: Multivariate Cox regression analysis was 
performed for model construction; F: Overview of prognosis model in the training cohort; G: KM survival curves of patients in high- and low-risk group (training cohort, overall survival); H-J: ROC 
curves of 1-, 3- and 5-years survival (training cohort). 
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modeling, and data visualization. A p-value threshold of 0.05 was considered statistically significant. However, in certain circum-
stances, particularly when conducting multiple testing corrections, more rigorous criteria were applied. 

3. Results 

3.1. Identification of genes associated with NK-cells 

Fig. 1 presents the complete flowchart of this study’s methodology. Based on the algorithms described above, we quantified the 
tumor microenvironment of gastric cancer (Fig. 2A). Several algorithms, including CIBERSORT, EPIC, MCPCOUNTER, QUANTISEQ, 
and XCELL, were able to quantify the infiltration level of NK cells. Since CIBERSORT-identified "NK cell activated" and MCPCOUNTER- 
identified "NK cell" exhibited relatively high infiltration scores (Fig. 2B–C), we performed differential expression analysis between 
patients with high and low infiltration levels for these specific NK cell populations. Fig. 2D shows that patients with high infiltration of 
either "NK cell activated" (identified by CIBERSORT) or "NK cell" (identified by MCPCOUNTER) exhibited significant upregulation of 
22 molecules and significant downregulation of 72 molecules. The protein-protein interaction network for these differentially 
expressed molecules is shown in Fig. 3A. 

3.2. Development of a predictive model utilizing molecules associated with NK cells 

To identify molecules associated with patient survival, we first conducted univariate Cox regression analysis in the training cohort, 
selecting factors with a p-value less than 0.1 (Fig. 3B). To reduce the dimensionality of the data and address potential multicollinearity, 
we subsequently performed LASSO regression analysis (Fig. 3C–D). Finally, a multivariate Cox regression analysis was conducted using 
the molecules identified by LASSO regression. This approach allowed us to identify a three-gene signature: MAB21L2, ARPP21, and 
MUCL1, for model construction. The risk score was calculated using the following formula: Risk score = MAB21L2 * 0.187 + ARPP21 * 
1.111 + MUCL1 * − 0.318 (Fig. 3E). As shown in Fig. 3F, the model demonstrated a higher proportion of deceased patients within the 
high-risk group in the training cohort. Furthermore, Kaplan-Meier survival curves revealed that patients classified as high-risk 
exhibited significantly poorer survival outcomes (Fig. 3G, HR = 3.47, p < 0.001). Finally, ROC curves demonstrated good predic-
tive performance for patient survival (Fig. 3H–J), with 1-year, 3-year, and 5-year AUC values of 0.658, 0.753, and 0.695, respectively. 

3.3. Evaluation of prognosis model and clinical correlation 

We then evaluated the effectiveness of our prognostic model in the validation group (Fig. 4A). In line with the training cohort, 
Kaplan-Meier survival curves for the validation group showed that high-risk patients had worse prognostic outcomes (Fig. 4B). ROC 
curves further confirmed the model’s satisfactory ability to predict patient survival (Fig. 4C–E), with 1-year, 3-year, and 5-year AUC 
values of 0.749, 0.729, and 0.708, respectively. Next, we investigated potential clinical correlations between the identified genes and 
risk scores. Analysis revealed that younger patients had higher ARPP21 expression levels (Fig. 4F). Additionally, patients with 
advanced tumor grade (G3-4) exhibited significantly higher levels of MAB21L2, ARPP21, and risk score compared to those with lower 
grades (Fig. 4G). Interestingly, no significant differences were observed in the expression levels of the model genes or risk score be-
tween patients with different metastasis stages (M0 vs. M1) or lymph node involvement (N0 vs. N1-3) (Fig. 4H & I). Similarly, no 
significant distinctions were found between stage I-II and stage III-IV patients (Fig. 4J). However, patients with advanced tumor stage 
(T3-4) displayed higher MAB21L2, ARPP21, and risk score levels while exhibiting lower MUCL1 expression (Fig. 4K). 

3.4. Biological enrichment analysis 

Subsequent differential expression analysis was carried out to determine genes that were distinctly expressed between high- and 
low-risk patients (Fig. 5A). ClueGO analysis revealed that these DEGs were primarily enriched in biological processes such as positive 
regulation of synapse assembly, cognition, multicellular organismal response to stress, cAMP-mediated signaling, regulation of amine 
transport, and regulation of respiratory gaseous exchange (Fig. 5B). Furthermore, GSEA analysis using the Hallmark gene set identified 
upregulated pathways associated with myogenesis and pancreatic beta cells, while cholesterol homeostasis and MYC target pathways 
were downregulated in the high-risk patient group (Fig. 5C). Similarly, GSEA analysis based on GO and KEGG revealed pathways 
involved in angiotensin-activated signaling, noradrenergic neuron differentiation, retrograde trans-synaptic signaling, calcium 
signaling pathway, nod like receptor signaling pathway and protein export in high-risk patients (Fig. 5D–E). 

3.5. Immune status and immunotherapy 

Using the Estimate package, analysis showed a positive correlation between the risk score and the immune score, stromal score, and 

Fig. 4. Evaluation of prognosis model. 
Notes: A: Overview of prognosis model in the validation cohort; B: KM survival curves of patients in high- and low-risk group (validation cohort, 
overall survival); C-E: ROC curves of 1-, 3- and 5-years survival (validation cohort); F–K: The clinical correlation of risk score and model molecules 
in gastric cancer. 
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estimate score (Fig. 6A–C), indicating a substantial variation in the tumor microenvironment between high-risk and low-risk patients. 
Furthermore, high-risk patients displayed increased activity in their type II interferon (IFN) response (Fig. 6D). Furthermore, varia-
tions in the expression of several immune checkpoint genes were observed between high- and low-risk patients (Fig. 6E). TIDE analysis 
demonstrated a positive correlation between risk score and immune dysfunction, immune exclusion, and the overall TIDE score 

Fig. 5. Biological enrichment analysis of risk score. 
Notes: A: DEGs analysis was performed in high- and low-risk patients; B: ClueGO analysis of identified DEGs; C: GSEA analysis was performed based 
on Hallmark gene set; D: GSEA analysis was performed based on GO gene set; E: GSEA analysis was performed based on KEGG gene set. 
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(Fig. 6F–H). Specifically, a significant correlation was observed between risk score and dysfunction (cor = 0.258, P < 0.001), exclusion 
(cor = 0.153, P = 0.004), and TIDE score (cor = 0.163, P = 0.002). Additionally, patients classified as non-responders to immuno-
therapy tended to have higher risk scores (Fig. 6I). 

Fig. 6. Immune related analysis. 
Notes: A-C: Correlation of risk score and tumor microenvironment score quantified by estimate package; D: Immune status difference in high- and 
low-risk patients; E: The expression level of immune checkpoints in high- and low-risk patients; F: Correlation between risk score and immune 
dysfunction; G: Correlation between risk score and immune exclusion; H: Correlation between risk score and TIDE score; I: Level of risk score in 
immune responders and non-responders. 
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3.6. Drug sensitivity and nomogram plot 

We further investigated potential therapeutic vulnerabilities by performing a drug susceptibility analysis, comparing patients at 
high and low risk (Fig. 7A). This analysis revealed that patients classified as high-risk may exhibit greater sensitivity to axitinib, 
suggesting a potential therapeutic target for this patient subgroup. To facilitate individualized risk prediction, we constructed a 
nomogram incorporating the risk score along with relevant clinical characteristics (Fig. 7B). The calibration curves presented in Fig. 7C 
demonstrate a good concordance between the observed survival outcomes and those predicted by the nomogram, suggesting a reliable 
model for clinical application. 

3.7. Further exploration of MUCL1 in gastric cancer 

While MUCL1’s role in other cancers has been documented [34,35], its function in gastric cancer remains unclear. Given this 
knowledge gap, we selected MUCL1 for further investigation. Pan-cancer analysis revealed differential expression of MUCL1 across 

Fig. 7. Drug sensitivity analysis and nomogram plot. 
Notes: A: Drug sensitivity analysis; B: Nomogram plot was constructed by combining risk score and clinical features; C: Calibration curves. 
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various cancer types, suggesting its potential involvement in common mechanisms of cancer development (Fig. 8A). Interestingly, our 
data showed upregulation of MUCL1 in both gastric cancer tissues and paired adjacent non-tumor tissues compared to controls 
(Fig. 8B–C). Single-cell analysis identified monocytes/macrophages and dendritic cells (DCs) as the primary cell types expressing 
MUCL1 within the tumor microenvironment (Fig. 8D–E). However, the HPA database indicated a decrease in MUCL1 protein 

Fig. 8. Further exploration of MUCL1 in gastric cancer. 
Notes: A: Pan-cancer analysis of MUCL1; B–C: Expression level of MUCL1 in gastric cancer tissue (paired and no-paired); D-E: Single-cell analysis of 
MUCL1 in gastric cancer microenvironment; F: The representative IHC image of MUCL1 in gastric cancer tissue; G: The representative IHC image of 
MUCL1 in normal gastric tissue; H: GSEA analysis of MUCL1 in gastric cancer based on Hallmark gene set. 
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expression within gastric cancer tissues compared to normal tissues (Fig. 8F–G). Furthermore, GSEA analysis using the Hallmark gene 
set revealed upregulation of spermatogenesis and angiogenesis pathways in the high-risk patient group (Fig. 8H). 

3.8. MUCL1 promotes gastric cancer proliferation and migration ability 

Further, we sought to investigate the role of MUCL1 in gastric cancer cells by evaluating its expression levels across different cell 
lines. We observed that the expression pattern of MUCL1 in gastric cancer cells is inconsistent. Specifically, compared to GES-1, both 

Fig. 9. MUCL1 promotes gastric cancer proliferation and migration ability. 
Notes: A: The RNA level of MUCL1 in the different gastric cancer cells and normal GES-1 cell; B: The protein level of MUCL1 in the different gastric 
cancer cells and normal GES-1 cell (The full, non-adjusted images was shown in Supplementary Figure); C-D: The knockdown efficiency of MUCL1 
in AGS and HGC-27 cells; E-F: CCK8 assay was performed in control and cells with MUCL1 knockdown; G-I: Transwell assay was performed in 
control and cells with MUCL1 knockdown. 
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AGS and HGC-27 cell lines exhibited high levels of MUCL1 expression, whereas there was no significant difference between MKN-28 
and BGC-83 (Fig. 9A–B). Subsequently, we achieved knockdown of MUCL1 using siRNA transfection, with siRNA#2 showing the 
highest knockdown efficiency in AGS and HGC-27 cells (Fig. 9C–D). A CCK-8 assay demonstrated that MUCL1 knockdown signifi-
can8tly reduces the proliferation and migration capabilities of gastric cancer cells (Fig. 9E–G). 

4. Discussion 

Gastric malignancy, also referred to as gastric cancer, is a global health concern with a high mortality rate [36]. It arises from the 
lining cells of the stomach and progresses through uncontrolled growth. Early stages of gastric cancer often present with minimal or no 
symptoms. By the time patients experience symptoms such as indigestion, abdominal discomfort or pain, weight loss, and others, the 
disease may have already advanced [37]. Several risk factors contribute to gastric cancer development, including chronic gastritis, 
smoking, excessive consumption of pickled foods, and a family history of the disease [38]. While advancements in screening and 
treatment modalities have been made in recent years, early detection and preventive measures remain crucial, as most patients are 
diagnosed at advanced stages [39]. 

Natural killer cells, a crucial component of the human immune system, are cytotoxic lymphocytes with the capacity to directly 
eliminate infected and tumor cells [40]. Their ability to interact with tumor cells has garnered significant interest in cancer research, 
particularly within the field of gastric cancer [41]. Studies have revealed that the function of NK cells is often suppressed in gastric 
cancer patients, potentially due to alterations in the tumor microenvironment [42]. This suppression, along with a decrease in NK cell 
number, may be associated with tumor progression and poorer prognosis. Additionally, some cancer cells can evade detection and 
elimination by NK cells, contributing to gastric cancer development and metastasis [43]. In recent years, NK cell-based immuno-
therapy has emerged as a promising therapeutic approach for cancer [44]. By enhancing the function or quantity of NK cells, re-
searchers aim to develop novel treatment strategies for gastric cancer patients. Overall, NK cells play a critical role in gastric cancer 
research, and the exploration of their interaction with tumors and potential for immunotherapy remains an active area of investigation. 

In this study, we employed multiple algorithms to quantify the tumor microenvironment of gastric cancer. Differential expression 
analysis identified NK cell-related genes. Based on these genes, we constructed a prognostic model incorporating three key NK cell- 
related genes: MAB21L2, ARPP21, and MUCL1. Our model demonstrated high predictive accuracy in both the training and valida-
tion cohorts, with high-risk patients exhibiting significantly poorer survival outcomes. To elucidate the biological underpinnings of the 
risk stratification, we performed analyses focused on biological enrichment and immune-related factors. Furthermore, we observed a 
correlation between higher risk scores and non-responsiveness to treatment, while high-risk patients may exhibit greater sensitivity to 
axitinib. Following up on the model gene MUCL1, we found that its mRNA level was upregulated in both gastric cancer tissues and 
paired adjacent non-tumor tissues. However, the HPA database indicated a decrease in MUCL1 protein expression within gastric cancer 
tissues compared to normal tissues. This discrepancy warrants further investigation. 

MUCL1, a small glycoprotein, has emerged as a molecule of interest in recent years, particularly in cancer research [45]. In this 
context, MUCL1 has been linked to tumor aggressiveness, metastatic potential, and response to anti-cancer drugs. For instance, Conley 
et al. demonstrated that MUCL1 plays a critical role in breast cancer progression by regulating the FAK/JNK pathway [46]. Beyond its 
association with cancer biology, MUCL1 is also being explored as a potential therapeutic target. Collectively, these findings highlight 
the significant biological and therapeutic relevance of MUCL1 in cancer research. However, further in-depth studies are needed to 
elucidate its specific mechanisms of action within cancer and its potential interactions with other factors. 

Our study highlights the critical role of NK cells in both gastric cancer progression and potential therapeutic strategies. It also paves 
the way for the integration of immunological parameters into prognostic models and treatment decisions. The identification of NK cell- 
related genes as prognostic markers, including MAB21L2, ARPP21, and MUCL1, underscores the complex interplay between the 
immune system and tumor biology, offering a promising avenue for future research. Furthermore, our findings suggest that enhancing 
NK cell activity could be a viable therapeutic approach, potentially leading to a paradigm shift in gastric cancer treatment. The 
development of this prognostic model represents a significant step towards personalized medicine in oncology. Moving forward, our 
research trajectory will focus on validating these markers in clinical trials, elucidating the mechanisms underlying their interaction 
with gastric cancer, and ultimately translating these insights into the development of targeted and immune-based therapies. The ever- 
evolving field of gastric cancer research holds immense promise for breakthroughs that could significantly improve patient outcomes. 
This emphasizes the importance of continued investigation into the tumor microenvironment and immune modulation strategies. 

The interpretation and application of our results are influenced by several limitations of this study. Firstly, the dataset used in this 
research was sourced exclusively from publicly available databases, primarily consisting of samples from Western populations. This 
reliance on a specific demographic may introduce biases due to biological variations across different ethnicities, potentially limiting 
the generalizability of our conclusions to global populations. Secondly, bioinformatics algorithms are a powerful tool for analyzing 
complex genetic data. However, the results they generate are simulations of biological reality, not direct observations. As such, these 
computational predictions must be interpreted with caution, acknowledging that they may not fully reflect the intricate dynamics of a 
living system. Thirdly, the insights gained from our analyses, though promising, require further experimental validation. Such vali-
dation is crucial to confirm our observations and verify their applicability in a real-world biological context, ensuring the reliability 
and relevance of our findings. Lastly, while this study provides valuable insights into the role of MUCL1 in gastric cancer, specifically 
its influence on cell proliferation and migration, we acknowledge certain limitations. One significant limitation is our inability to 
directly investigate the function of MUCL1 within NK cells. This was due primarily to the constraints of our available experimental 
models and resources. Consequently, our findings on MUCL1 are confined to its expression and functional implications in gastric 
cancer cell lines. Future studies utilizing comprehensive immunological assays and NK cell-specific models are required to fully 

Y. Li et al.                                                                                                                                                                                                               



Heliyon 10 (2024) e33759

15

understand the role of MUCL1 in the immune aspects of gastric cancer. Addressing this gap could provide a more complete picture of 
MUCL1’s biological functions and its potential as a therapeutic target. Addressing these limitations through future research will be 
essential for advancing our understanding of gastric cancer and improving patient outcomes. 
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