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Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for 
embryonic development, maintenance of tissues that require regular cellular renewal and 
innate immunity. The timely removal of apoptotic cells prevents progression to secondary 
necrosis and release of cellular contents, preventing cellular stress and inflammation. 
In addition, altered phagocyte behavior following apoptotic cell contact and phagocy-
tosis engages an anti-inflammatory phenotype, which impacts upon development and 
progression of inflammatory and immune responses. Defective apoptotic cell clearance 
underlies the development of various inflammatory and autoimmune diseases. There is 
considerable functional redundancy in the receptors that mediate apoptotic cell clear-
ance, highlighting the importance of this process in diverse physiological processes.  
A single phagocyte may utilize multiple receptor pathways for the efficient capture of 
apoptotic cells by phagocytes (tethering) and the subsequent initiation of signaling events 
necessary for internalization. In this review, we will consider the surface alterations and 
molecular opsonization events associated with apoptosis that may represent a tunable 
signal that confers distinct intracellular signaling events and hence specific phagocyte 
responses in a context-dependent manner. Efficient molecular communication between 
phagocytes and apoptotic targets may require cooperative receptor utilization and the 
establishment of efferocytic synapse, which acts to stabilize adhesive interactions and 
facilitate the organization of signaling platforms that are necessary for controlling phago-
cyte responses.

Keywords: macrophage, phagocytosis, apoptotic cells, cell–cell interactions, phagocytic receptor, phosphatidylserine, 
opsonin

inTRODUCTiOn

Elimination of injured or metabolically stressed cells in multicellular organisms is controlled via 
engagement of apoptotic programs together with efficient tissue clearance mechanisms (1–3). 
Phagocyte/apoptotic cell interactions also initiate anti-inflammatory reprogramming that regulates 
inflammation and immunity (4). Deficient clearance of apoptotic cells contributes to the develop-
ment and/or exacerbation of many autoimmune and inflammatory diseases [reviewed in Ref. (5)].

The diversity of molecular pathways mediating recognition and phagocytosis of apoptotic cells 
(efferocytosis) reflects the fundamental importance of this process (4). There are several mechanisms 
by which viable cells avoid phagocytosis (6). However, altered plasma membrane lipid composition 
(7, 8) and/or oxidation status (9), together with changes in cell surface molecule repertoire and 
patterns of glycosylation (10) termed “apoptotic cell associated molecular patterns” (11) (Figure 1), 
allow phagocytes to distinguish viable and apoptotic cells. Here, we consider the formation of an 
“efferocytic synapse” and assembly of molecular platforms that facilitate phagocytosis and subse-
quent signaling events.
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FigURe 1 | Schematic representation of surface molecular changes associated with apoptosis. Reduced cell surface molecule expression may occur through 
metalloprotease-mediated proteolytic shedding. Reduced receptor expression may act to limit apoptotic cell function and generate a distinct cell surface profile from 
viable cells. For example, reduced expression of CD47 or disabled CD31 may lead to loss of signals preventing phagocytosis. In addition, loss of integrin regulation 
may result in functional uncoupling in apoptotic cells, leading to cell detachment. Altered association of cell surface molecules with lipid rafts may alter functional 
activity, including gain-of-function of some receptors, e.g., FcγRIIa on myeloid cells. Altered carbohydrate processing may result in reduced sialic acid exposure and 
appearance of accessible mannose residues. Downregulation of complement regulatory molecules (e.g., CD55 and CD46) may lead to opsonization with 
complement components including C3b. Exposure of anionic phospholipids, including phosphatidylserine (PtdSer), allows binding of a broad range of opsonins to 
apoptotic cells. Protein S and Gas6 bind to PtdSer in a Ca2+-dependent manner, whereas milk fat globule EGF-factor 8 (MFG-E8) binds independent of Ca2+. Other 
less well defined apoptotic cell surface changes may allow binding of other opsonins including thrombospondin, C-reactive protein, and surfactant protein A. Finally, 
proteins with intracellular localizations may appear on the surface of apoptotic cells, including heat-shock proteins and calreticulin. Apoptotic cell surface molecules 
are shaded blue whereas apoptotic cell opsonins are shaded green.
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PHOSPHATiDYLSeRine (PtdSer)  
AS A LigAnD FOR APOPTOTiC CeLL 
ReCOgniTiOn

A near universal membrane alteration associated with apoptosis 
is the caspase-dependent exposure of PtdSer on the outer leaflet 
of the plasma membrane (12–14) via the XK-related protein 8 
(15). Exposure of PtdSer affects the biophysical characteristics 
and organization of the plasma membrane through recruitment 
of proteins to PtdSer-enriched regions via electrostatic interac-
tions (16). Phagocytes express transmembrane receptors that 
bind PtdSer directly, e.g., brain-specific angiogenesis inhibitor-1 
(BAI-1) (17) and stabilin-2 (18). In addition, soluble molecules 
such as transthyretin-like protein TTR-52 (19), milk fat globule 
EGF-factor 8 (MFG-E8) (20, 21), protein S (Pros1), Gas6 (22) and 
C1q (23) also bind to (and opsonize) PtdSer, providing a scaffold 
for phagocyte recognition via a diverse array of counter-receptors.

Phagocytes fail to engulf viable cells that expose low levels 
of PtdSer during activation (24–26) or when PtdSer exposure 

is induced by overexpression of a phospholipid scramblase, 
transmembrane protein 16F (TMEM16F) (27), suggesting that 
additional signals are necessary to initiate efferocytosis. A critical 
threshold of PtdSer exposure on the cell surface may be required to 
trigger efferocytosis (28). For example, recognition of PtdSer via 
T-cell immunoglobulin and mucin-domain-containing molecule 
(TIM)-4 was dependent on ligand density, allowing phagocytes 
to distinguish between high and low level PtdSer exposure (28). 
Further modifications of PtdSer during apoptosis, e.g., oxidation 
or formation of lyso-PtdSer (29) may also be important.

CeLL SURFACe ReCePTOR 
ALTeRATiOnS ASSOCiATeD wiTH 
APOPTOSiS

Apoptosis-dependent loss of cell surface receptors or appear-
ance of “new” molecules may confer recognition by phagocytes. 
For example, signaling via Signal regulatory protein-α (SIRPα) 
inhibits myosin-II-mediated phagocytosis (30). Downregulation 
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of ligands for SIRPα, e.g., CD47 (31), from the surface of apop-
totic cells would be predicted to promote efferocytosis (32, 33). 
SIRPα-mediated signaling has also been reported to be triggered 
by binding of surfactant protein (SP)-A and SP-D to phagocytes. 
However, SP-A may have a dual role in regulation of phagocytosis 
as binding to apoptotic cells/debris results in promotion of phago-
cytosis via a calreticulin/CD91-mediated pathway (34). Early 
experiments identified a unique charge-sensitive mechanism 
for apoptotic cell recognition (35). The cell glycocalyx provides 
a negative surface charge “repulsive” force that counters cell–cell 
interactions (36). Loss of N-terminal sialic acid and exposure 
of mannose and fucose moieties during apoptosis reduces elec-
trostatic forces that counter phagocyte recognition (37–39). In 
addition, the surface charge of apoptotic cells is further altered 
by reduced expression of heavily sialylated proteins (e.g., CD43, 
CD45, and CD162) (37). Consistent with this suggestion, removal 
of sialic acid from the cell surface by neuraminidase treatment 
enhances phagocytosis (37, 39).

Apoptosis is associated with loss of expression of comple-
ment regulatory proteins such as CD46/CD55 (40, 41). As a 
result, deposition of complement may occur, providing a cue for 
recognition by phagocytes. Additional signals for phagocytosis 
may occur as a result of exposure of intracellular proteins such as 
calreticulin (42) and annexin I (43). Following binding to PtdSer 
on apoptotic cells, oxidation of Pros1 induces oligomerization, 
which promotes Mer-dependent phagocytosis (44). Similarly, 
altered glycosylation of membrane proteins or oxidization of low-
density lipoprotein-like moieties on apoptotic cells (8) may also 
contribute to the specific recognition by phagocytes. In addition 
to increased expression of ligands for phagocytic receptors on 
apoptotic cells, patching and/or clustering of surface molecules 
may also have important consequences for triggering phagocyte 
responses. Clustering might occur through specific association 
with membrane microdomains. For example, FcγRIIa redistrib-
utes to membrane microdomains during neutrophil apoptosis 
(45). In addition, specific proteolysis of adhesion molecules (e.g., 
CD62L) (46, 47) and uncoupled β2 integrin-mediated adhesion 
(47) during apoptosis is likely to provide additional molecular 
cues for phagocytosis.

PHAgOCYTe MOLeCULeS THAT 
MeDiATe APOPTOTiC CeLL 
ReCOgniTiOn

Phagocytes are capable of direct recognition of PtdSer exposed 
on the apoptotic cell surface. BAI-1 binds PtdSer via thrombos-
pondin (TSP) type 1 repeats present in the extracellular domain 
(48). Binding induces the formation of a trimeric complex of 
BAI-1 with the Rac-GEF ELMO and DOCK180 that promotes 
subsequent engulfment of apoptotic cells (17, 49). This pathway 
is homologous to the genetically defined pathway for removal 
of apoptotic cells in Caenorhabditis elegans (Ced2-CrkII, Ced5-
DOCK180, Ced10-Rac, and Ced12-ELMO) (50).

Phosphatidylserine is also recognized by the CD300 family 
of molecules with an extracellular IgV-like domain and intracel-
lular adaptor molecule binding sites (51). CD300b localizes to 

phagocytic cups and binds DAP12, activating Syk and PI3K/
Akt to promote phagocytosis (52). Stabilin-2 binds PtdSer and 
also lacks direct signaling activity (18). However, the cytoplas-
mic domain of stabilin-2 can interact with GULP to facilitate 
phagocytosis (53). GULP also binds to NPxY motifs present in 
the cytoplasmic domains of CD91/LRP (low-density lipoprotein 
receptor-related protein) and the C. elegans scavenger receptor 
Ced-1 (54). In contrast, TIM-4 confers Ca2+-dependent PtdSer-
dependent apoptotic cell recognition, but lacks intracellular 
signaling potential (55). Thus, TIM-4 functions cooperatively 
with other receptors that trigger apoptotic cell internalization.

Indirect recognition of apoptotic cells by phagocytes is also 
achieved by phagocyte receptors that bind to soluble apoptotic 
cell opsonins. In C. elegans, TTR-52 bridges apoptotic cell-
exposed PtdSer to phagocyte Ced-1 (19), which together with 
Ced-6 initiates rapid and efficient engulfment of apoptotic 
cell corpses by neighboring cells. This module of proteins 
(Ced1-MEGF-10; Ced6-GULP; and Ced7-ABCA1) has been 
defined genetically in C. elegans (50). Pros1 and Gas6 contain 
a Gla-domain that binds PtdSer in a Ca2+-dependent manner 
(22), bridging to the Tyro3/Axl/Mer receptor tyrosine kinases 
that signal particle internalization via intrinsic kinase activity 
(56). By contrast, MFG-E8 binds PtdSer in a Ca2+-independent 
manner and bridges to phagocyte integrins αvβ3/5 via arginine–
glycine–aspartic acid (RGD) peptide motifs in the C1 and C2 
domains (21). TSP-1 also bridges apoptotic cells via the phago-
cyte integrin αvβ3 and CD36 (57, 58).

COOPeRATive ReCePTOR UTiLiZATiOn 
in PHAgOCYTOSiS OF APOPTOTiC 
CeLLS

Phagocytes in different tissue settings or microenvironments 
express distinct repertoires of efferocytic receptors. Whether 
a single phagocytic cell utilizes multiple receptor pathways to 
recognize and internalize a single apoptotic target is not clear. 
However, the distinct molecular requirements for the capture and 
subsequent internalization may require that multiple receptors 
are involved (42). In addition, the complex topology of apoptotic 
cell surface molecules and co-opsonization of PtdSer with differ-
ent proteins may determine the spectrum of signal transduction 
pathways engaged, controlling internalization and subsequent 
phagocyte responses in a context-dependent manner.

Tethering of IgG-opsonized particles to FcγR occurs at 4°C 
(59) whereas internalization requires cytoskeletal reorganiza-
tion and metabolic activity (60). Similarly, apoptotic cells can 
also be tethered by phagocytes via Mer at low temperature (61). 
However, the avidity of low affinity receptors is influenced by 
receptor density and rapid lateral movement of receptors to 
facilitate target capture (62, 63). Receptor mobility is controlled 
by cytoskeletal constraint, association with membrane lipid 
microdomains and/or other membrane proteins (64). For 
example, cytoskeletal-associated CD44 restricts membrane 
lipid and receptor motility via interactions with hyaluronan, 
forming a glycosaminoglycan barrier that reduces binding of 
phagocytic targets (36). Interestingly, CD44 cross-linking with 
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TAbLe 1 | Comparison of phagocytic synapse formation in FcγR-mediated and 
apoptotic cell phagocytosis.

FcγR 
phagocytosis

Apoptotic cell phagocytosis

Receptor signalinga ITAM or ITIM 
adaptors Src/Syk 
kinases PI3K

BAI-1:G protein-coupled (DOCK/
ELMO Rac-GEF)
Tyro3/Axl/Mer: receptor tyrosine 
kinase, PI3K, Rac
Stabilins:GULP adaptor?
CD300:ITIM or DAP12 adaptors
αv integrins (Rac?)
TIMs:suppression of Src, none?

Ligand restraint Restricted mobility Not known
Some ligands restrained by 
oligomerization?

Phosphatases CD45/CD148 
excluded from 
contact

Not known

Role of integrins Formation of 
exclusion zone

Not known/co-receptors: 
αvβ3 and CD36
αvβ5 and Mer
β1 integrins and TIM-4

Receptor 
nanoclusters

Yes Not known

Molecular 
dimensions

7–10 nm (FcγR)
15 nm (IgG)
+Antigenic target

Very small (3–4 nm), e.g., CD300 to 
very large (40–50 nm), e.g., SCARF1/
C1q

aSee Elliott et al. (80) for a comprehensive overview of receptor signaling.
ITIM, immunoreceptor tyrosine-based inhibition motif; ITAM, immunoreceptor tyrosine-
based activation motif; BAI-1, brain-specific angiogenesis inhibitor-1.
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antibody augments macrophage phagocytosis of apoptotic 
cells, possibly as a result of changes in cytoskeletal regulation 
(65, 66). Phagocytic targets are bound at dynamic extensions 
of phagocytic cells, including filopodia and membrane ruffles 
(67), and receptor aggregation is required for orchestration of 
cytoskeletal alterations necessary for internalization [see Ref. 
(68) for a comprehensive review of cytoskeletal regulation in 
phagocytic synapses].

In contrast with IgG or complement attached to components 
of the microbial cell wall, molecules on the surface of apoptotic 
cells may exhibit unrestricted lateral mobility as a consequence 
of proteolytic cleavage of actin during apoptosis (69). Thus, there 
may be key mechanistic differences between efferocytosis and 
FcγR-dependent phagocytosis. Engagement of freely mobile mol-
ecules by phagocyte receptors may lead to assembly of receptor 
microclusters and significantly impact upon phagocytosis (33). 
Alternatively, opsonization of apoptotic cells may result in forma-
tion of immobile molecular complexes [like annexin V (70, 71)] 
that promote redistribution of phagocytic receptors necessary for 
signaling of internalization.

MOLeCULAR SegRegATiOn AnD THe 
FORMATiOn OF A PHAgOCYTiC 
“SYnAPSe”

The cellular contact between phagocyte and apoptotic cells has 
parallels with those of antigen-specific T and B cells with antigen 
presenting cells that leads to establishment of an immunological 
synapse (72). This specialized intercellular contact zone stabilizes 
adhesion and facilitates efficient molecular communication 
following antigen-specific interactions. A number of different 
biophysical factors (including receptor density, ligand-binding 
affinity, molecular dimensions, and interactions with cytoskeletal 
elements) all contribute to the dynamic redistribution of adhe-
sion and signaling receptors into distinct regions in the plasma 
membrane (73, 74).

Following phagocyte contact with IgG-coated surfaces or on 
supported lipid bilayers, formation of FcγRII nanoclusters sug-
gests activation-driven organization of receptor redistribution 
(75). FcγR clusters are localized in front of ruffles on extending 
pseudopods, with rapid recruitment of Syk to advancing pseu-
dopods and subsequent retrograde movement toward the cell 
center (76). PI3K co-localized with actin around FcγR clusters, 
suggestive of signal propagation from FcγR and consistent with 
PI3K-dependent control of actin cytoskeletal rearrangements (76).

Although phagocyte contact with apoptotic cells has not 
been examined with the high-resolution imaging techniques 
used in T  cell–APC interactions, molecular segregation may 
also be a key feature of the formation of efferocytic synapses (see 
Table  1). For example, exclusion of phosphatases (e.g., CD45) 
from the immune synapse is a critical early event in the initiation 
of T cell receptor-mediated phosphorylation of Zap70 and Lck 
(77). Changes in the distribution of CD45 may also represent a 
general feature of membrane alterations that control signaling 
events associated with phagocytosis. The C-type lectin contain-
ing receptor for β-glucan, Dectin-1, mediates the recognition 

and phagocytosis of yeast particles. During Dectin-1-mediated 
phagocytosis, exclusion of CD45 and the receptor type protein 
tyrosine phosphatase CD148 from the nascent phagocytic cup 
(78) is important for signaling associated with particle inter-
nalization (79). Redistribution of phosphatases in the phagocyte 
membrane would likely be necessary for internalization of 
apoptotic cells.

Analysis of the molecular basis of redistribution of CD45 
following ligation of FcγR suggests non-linear pattern with for-
mation of an exclusion barrier which restricts access of CD45 
to the contact site (79). CD45 is a relatively rigid molecule 
that extends axially from the plasma membrane approximately 
20 nm (81). Similar to the molecular redistribution that occurs 
during immune synapse formation, exclusion from phagocytic 
synapses was dependent on the axial molecular dimensions 
of CD45. In experiments using chimeric constructs in which 
the extracellular portion of CD45 was replaced by either CD43 
(similar length) or CD2 (shorter length), the CD43/CD45 
molecule was excluded from the phagocytic synapse, whereas 
CD2/CD45 was not (79). A requirement for integrins and 
cytoskeletal regulation was shown to be necessary to establish 
a CD45 exclusion zone that extended beyond the IgG layer (79). 
These results suggest that integrin-mediated contact between 
phagocyte and phagocytic targets facilitates engagement of 
phagocytic receptors at low ligand densities or when binding 
to larger particles.
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For apoptotic cell recognition, it is intriguing that integrins 
have been proposed to act cooperatively with other receptors to 
mediate phagocytosis. For example, αv integrins and CD36 are 
both required for the recognition of TSP-1 bound to apoptotic 
cells (58). Similarly, phagocytosis of apoptotic cells via TIM-4 
requires β1 integrins and activation of integrin-dependent signal-
ing involving Src family kinases and FAK (82). Furthermore, 
interactions between the β5 integrin and stabilin-2 were found 
to promote phagocytosis of apoptotic cells (83). Similarly, 
co-expression of αvβ5 with Mer increased activation of Rac-1, 
cytoskeletal regulation and the phagocytosis of apoptotic cells (84). 
Integrins can directly mediate the recognition of apoptotic cell 
opsonins, for example, RGD-dependent binding of MFG-E8 (21) 
or fibronectin (85). However, phagocytosis of apoptotic targets is 
increased following macrophage adhesion to extracellular matrix 
via β1 integrins (86) and is compromised following exposure to 
oxidized extracellular matrix molecules (87). We would speculate 
that, as for FcγR-mediated phagocytosis, integrin signaling can 
regulate cytoskeletal organization and facilitate tethering/phago-
cytosis of apoptotic cells with low-level opsonization (36).

For human macrophage-like cells, CD47 expression acts to 
limit phagocytosis of IgG-opsonized erythrocytes (30). CD47 
binds to phagocyte SIRPα, resulting in recruitment to the phago-
cytic synapse, decreasing the accumulation of non-muscle myo-
sin IIa and levels of tyrosine phosphorylation (30). Localization of 
SIRPα to the site of cell contact would recruit inhibitory tyrosine 
phosphatases such as SHP-1 via ITIM motifs present in the 
SIRPα cytoplasmic domain (88). In the absence of CD47 or when 
CD47 was blocked with antibody, phagocytosis was increased. 
Specific membrane receptors are organized into protein islands in 
unactivated T cells that subsequently coalesce as a consequence of 
T cell receptor-mediated signaling (89). The membrane distribu-
tion of SIRPα and FcγR during phagocytosis has been further 
analyzed using super-resolution microscopy. When macrophages 
were plated onto poly-l-lysine-coated slides, molecular clusters 
containing both FcγRI and SIRPα were observed (75). These 
molecules were found to segregate into discrete nanoclusters 
when macrophages were plated onto IgG. Interestingly, IgG 
promoted the formation of concentric rings of FcγRI and FcγRII, 
with FcγRI redistributing more rapidly (<10 min). Similar results 
were obtained when macrophages interacted with IgG in a sup-
ported lipid bilayer. When recombinant CD47 was included into 
the supported lipid bilayer, segregation of FcγR and SIRPα and 
the formation of concentric rings of FcγR were blocked. Thus 
co-localization of SIRPα and FcγR inhibits cellular activation fol-
lowing FcγR ligation, whereas segregation of these two molecules 
leads to activation (75). We would speculate that efferocytic recep-
tors would also be present in dynamically regulated nanoclusters 
in the phagocyte membrane.

MOLeCULAR DiMenSiOnS AnD 
APOPTOTiC CeLL ReCOgniTiOn

Size-dependent redistribution of molecules within the phagocyte 
membrane may represent an important organizing principle 
for the assembly of molecular platforms that are essential for 

signaling the cytoskeletal alterations required for the internaliza-
tion of apoptotic cells. Estimation of the molecular dimensions 
of receptors involved in efferocytosis using published structural 
data (51, 90–106) reveals considerable differences in axial dimen-
sions (Figure 2A).

First, it is notable that CD300 (single Ig-like domain) and 
TIM-4 (single Ig-like domain with a potentially rigid mucin-like 
stalk), which mediate direct recognition of PtdSer, are predicted 
to span a relatively short intermembrane distance between 
phagocyte and target (4 and 7 nm, respectively, Figure 2B). By 
contrast, stabilin-2, which also binds to PtdSer, is a much longer 
molecule extending some 23 nm. Assuming a degree of structural 
flexibility, BAI-1 may be capable of functioning in a broad range 
of intermembrane distances. The extracellular region of BAI-1 
contains 5 TSP type 1 repeats (around 5 nm in size) with LPS 
and PtdSer binding motifs, which together with the GAIN/HBD 
regions could extend to ~33  nm from the plasma membrane. 
Following initial tethering of PtdSer by the N-terminal TSP 
repeat, BAI-1 could align parallel to the apoptotic cell surface as 
additional TSP repeats become ligated (Figure 2B). Nevertheless, 
it seems likely that a degree of molecular segregation would be 
required for these different receptors to be involved in apoptotic 
cell uptake on the same phagocyte.

Second, receptors such as SR-A or LRP are predicted to be 
highly extended molecules (~40–50  nm). In addition, some of 
the well characterized opsonins for apoptotic cells are extremely 
large. For example, C1q is approximately 30  nm and TSP-1 is 
40–50  nm. Together with the relatively large counter receptors 
for these opsonins [e.g., SCARF1 for C1q (107) and αvβ3 for 
TSP], the predicted intermembrane contact distance would 
likely be incompatible with those of BAI-1, αvβ5/MFG-E8, or 
Mer/Protein S. One possibility is that these extended structures 
are efficient in the initial capture of apoptotic targets, facilitating 
subsequent engagement of receptor/counter-receptor pairs that 
span a smaller intermembrane distance and are influenced by 
electrostatic repulsion between cells.

Third, receptors of the Tyro3/Axl/Mer family, BAI-1, and the 
integrin αvβ5 are able to initiate intracellular signaling that con-
trols particle internalization. If there are parallels with immu-
nological synapse formation, these receptors might be expected 
to become localized at the center of a contact zone. However, the 
intermembrane distance for TAMs and integrins to engage their 
counter-receptors (~30 nm) is considerably larger than that of 
the immunoreceptors that are responsible for signaling during 
the establishment of the immunological synapse (~14 nm for the 
TcR/MHC class II and co-stimulatory receptors such as CD80/
CD28). We would speculate that the organizing principles for 
immune and efferocytic synapses would be different due to the 
distinct requirements for signal propagation following cognate 
interaction of receptors. In an immune synapse, delivery of 
a signal that controls T cell proliferation or target cell killing 
requires maintenance of intercellular adhesion and redistribu-
tion of antigen-specific recognition molecules to the contact 
zone. By contrast, an efferocytic synapse would likely be a more 
dynamic structure that facilitates particle tethering and allows 
dynamic regulation of cytoskeletal organization as particle 
internalization proceeds. As discussed earlier, the localization 
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FigURe 2 | Molecular dimensions of proteins involved in phagocytosis of apoptotic cells. (A) Some of the major families of receptors that have been identified as 
having a role in the phagocytosis of apoptotic cells are depicted, drawn approximately to scale based on available published crystallographic/NMR or cryo-electron 
microscopy data for various protein domains. One assumption made is that the molecules have a relatively rigid structure, although it is possible that flexibility would 
considerably alter axial length. There are considerable differences in the dimensions of apoptotic cell opsonins and in the receptors that mediate binding of 
phosphatidylserine (PtdSer) binding (either directly or indirectly). (b) Example receptor–counter-receptor pairings are shown to illustrate the likely differences in 
intermembrane “working” distance during phagocytosis, particularly for the molecules involved in the recognition of PtdSer (shown in yellow). Phagocyte receptors 
are shown in blue, opsonins are shown in green, and the apoptotic cell membrane is shown in red.
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of receptors involved in phagocytosis may involve initial tether-
ing mediated by larger molecules as a prerequisite for engage-
ment of smaller PtdSer binding receptors. The mechanisms for 
exclusion of phosphatases from an efferocytic synapse might 
also be distinct.

Finally, although phagocytosis of intact apoptotic targets 
is readily observed in  vitro, the tight apposition of the plasma 
membranes of phagocytes and apoptotic targets in certain tissues 
in vivo may require a mechanistically distinct clearance process. 
For example, in the retina clearance of the outer segments of pho-
toreceptors by retinal pigment epithelial cells has been likened 
to a phagocytic “pruning” of the photoreceptor outer segments 
(108). The molecular basis of removal of photoreceptor outer 
segments by retinal pigment epithelial cells involved Mer, Pros1 
and Gas6, and the integrin αvβ5 (108–110). Electron microscopy 
analysis of retinal cell architecture reveals the exquisitely close 
contact between RPE cells and photoreceptors (111). Elegant 
in  vivo imaging studies have revealed the diurnal exposure of 
PtdSer in localized a manner, which then triggers the “pinching 
off ” of the distal tips of the photoreceptors by the adjacent RPE 

cells (112). The exposure of PtdSer on viable photoreceptors may 
have some parallels with a process termed phagoptosis (113) in 
which viable cells are recognized by phagocytes. However, dur-
ing phagoptosis, recognition triggers apoptosis in the target cell 
(114). Although similar molecular pathways are involved in the 
recognition of PtdSer exposure on viable cells (e.g., MFG-E8, 
stabilins, αv integrins, and Mer) (115), the intercellular com-
munication events that are involved are likely to be distinct from 
those required for efferocytosis.

In summary, the establishment of an efferocytic synapse may be 
required for efficient recognition of apoptotic cells by phagocytes. 
Cooperativity of receptor engagement may act to facilitate and 
stabilize adhesive interactions and lead to the assembly of signal-
ing platforms that ultimately determine phagocyte responses to 
apoptotic cell binding and internalization.
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