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Abstract: In the process of drug discovery and disease treatment, drug repositioning is broadly studied to identify biological
targets for existing drugs. Many methods have been proposed for drug–target interaction prediction by taking into account
different kinds of data sources. However, most of the existing methods only use one side information for drugs or targets to
predict new targets for drugs. Some recent works have improved the prediction accuracy by jointly considering multiple
representations of drugs and targets. In this work, the authors propose a drug–target prediction approach by matrix completion
with multi-view side information (MCM) of drugs and proteins from both structural view and chemical view. Different from existing
studies for drug–target prediction, they predict drug–target interaction by directly completing the interaction matrix between
them. The experimental results show that the MCM method could obtain significantly higher accuracies than the comparison
methods. They finally report new drug–target interactions for 26 FDA-approved drugs, and biologically discuss these targets
using existing references.

Nomenclature
P md × mt known drug–target interaction matrix
A

s kd × kt complete low-rank matrix in the structural view
A

c kd × kt complete low-rank matrix in the chemical view
Wd

s md × md drug–drug similarity matrix in the structural view

Wt
s mt × mt target–target similarity matrix in the structural

view
Wd

t md × md drug–drug similarity matrix in the chemical view

Wt
t mt × mt target–target similarity matrix in the chemical

view
Ds md × kd drugs feature matrix in the structural view
Gs mt × kt protein targets feature matrix in the structural view
Dc md × kd drugs feature matrix in the chemical view
Gc mt × kt protein targets feature matrix in the chemical view
Q md × mt the common complete drug–target interaction

matrix
Z kd × kt any given matrix
⟨ ⋅ , ⋅ ⟩ inner product for matrices
∇ gradient operator
λ1, λ2 trade-off parameters

1 Introduction
Drugs take effects by acting on their corresponding targets, such as
proteins. The identification of drug–target interactions becomes an
important step in discovering new drugs. It helps the understanding
of drug mechanism in treating diseases and provides inspirations
for inventing new drugs. Although researchers can find some
meaningful drug–target interactions through biological
experiments, the high cost of carrying out those experiments forces
people to develop computational methods to identify potential new
targets for drugs.

Many methods have been proposed for identifying drug–target
interactions. Among these researches, a diversity of data, including
protein–protein interactions, gene expression data, chemical
structure of drugs, metabolic network, protein sequence, drug
response and drug side effects, are applied individually or jointly.
For example, Liu et al. [1] apply neighbourhood regularised
logistic matrix factorisation based on the protein sequences and

drug structures to model how likely a drug interacts with a target.
Yamanishi et al. [2] and Bleakley and Yamanishi [3] propose
bipartite graph-based methods with the same dataset [1], by first
defining a bipartite graph between drugs and proteins and then
finding the latent common space for them. The drugs and targets
closely situated are predicted as the interacted pairs. Mizutani et al.
[4] make use of protein functions and drugs’ side effects to identify
novel targets for the already known anti-cancer drugs by sparse
canonical correlation analysis. Chen and Zhang [5] propose a
partial least square method with sparse network regularisation by
integrating drug response data and gene expression to identify joint
modular patterns. Li et al. [6] use the human metabolic network for
the prediction of drug–target interactions by exploring drug-
reaction interactions. Dorothea et al. [7] propose a network-based
approach by combining a molecular interaction network and
disease gene expression signatures. Ding et al. [8] and Zheng et al.
[9] propose similarity-based methods to discover new drug targets.
Li et al. [10] propose an efficient and effective multi-task machine
learning approach for detecting potential drug targets, using both
expression data and compound structure information.

Since drugs or proteins can be represented in different ways, the
identification of drug targets by jointly considering their multi-
view representations is a promising research field in the future due
to the sufficient data varieties. For example, a drug can be
described by its chemical response in different cells, or by its
chemical structure. As for proteins, both their amino-acid
sequences and their gene expression values in different cells can be
regarded as their representations. We could consider the structure
information of drugs and proteins as the structural view, while their
chemical behaviour described by gene expression and drug
response is regarded as the chemical view. In the field of machine
learning, there are many multi-view methods which aim to do
supervised or unsupervised learning by combining different
representations of samples, such as [11–21] and so on.
Unfortunately, the multi-view approaches could not be directly
applied for multi-view drug–target prediction, where drugs and
targets could construct a bipartite graph. Li [22] proposes a new
graph-regularised-based single-view approach of single-view
penalised graph (SPGraph) to identify drug targets by making use
of the structural information or the chemical information
individually, and extends it to a co-regularised multi-view method
by fusing structural and chemical views of drugs and targets
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together. Li and Cai [23] develop a new multi-view low-rank
embedding (MLRE) method by using a strategy of low-rank
embedding. The results in [22, 23] suggest that the multi-view
approaches perform significantly better than single-view
approaches. Both [22, 23] take similar strategies by first obtaining
new features for drugs and targets in a shared subspace and then
doing clustering on all these representations by k-means. The
proteins and drugs closely situated are predicted to have
interactions. However, one might obtain different prediction results
with different clustering methods or different initialisation at the
clustering stage. Besides, the accuracy of prediction might be
sensitive to the new representations of drugs and proteins in the
common subspace. There is a high chance that drugs and proteins
are wrongly clustered due to inappropriate representations. It is
challenging to develop a new multi-view approach to identify drug
targets.

In this work, our goal is to identify drug targets by directly
completing the interaction matrix of drugs and proteins by using
multi-view similarities among drugs or targets which we consider
as their multi-view side information. Matrix completion is widely
used in biology prediction problems, such as lncRNA-disease
association [24], averse drug interaction [25], gene-disease
associations [26] and miRNA-disease association [27]. For
example, Chen et al. [27] propose an inductive matrix completion
method with single-view side information. Although this work
aims to predict miRNA-disease associations, it can also be applied
for drug–target prediction. Unfortunately, this approach could only
use one type of side information. Zhao et al. [21] propose to cluster
n samples based on samples’ multiple side information, by
completing a 0-1 square clustering matrix whose entry represents
whether the two samples are in the same cluster. However, the
model proposed in multi-view matrix completion (MVMC) [21]
can only be used in the case where the rows and the columns of
completed matrix represent the same samples. In drug–target
prediction problem, the rows and columns of the interaction matrix
represent drugs and targets, respectively. Thus, MVMC could not
be directly applied to predict drug–target interactions.

The contributions of this work are twofold. On one hand, we
propose a novel inductive matrix completion with multi-view side
information (MCM) for drug target prediction. We complete the
association matrix directly with drugs similarity and targets
similarity rather than clustering on the new representation of drugs
and targets to predict the latent drug targets. The common
completed matrix and two single-view completed matrices are
alternately optimised by our MCM algorithm. The method can be
considered as a general MCM and be applied to other scenarios.
On the other hand, we compare our method MCM with other
comparison partners in two experimental settings on real datasets,
and the experimental results show that our method performs
significantly better than other methods. We also report new and
reliable drug–target interactions for 26 FDA-approved drugs. Most
of the prediction results can be supported by existing references,
which shows the effectiveness of our proposed method MCM.

2 Materials and method
In this section, we first describe materials used to obtain the drug
similarities and protein targets similarities of two sides in Section
2.1. Then we formulate the multi-view problem for predicting drug
targets in Section 2.2. In Section 2.3, a single-view approach is
introduced by inductive matrix completion. Finally in Section 2.4,
we propose our multi-view drug–target prediction method MCM.

2.1 Materials

The data of drug structures and protein sequences are downloaded
from KEGG database [28]. Drug structure similarities are
computed by SIMCOMP [29], a software program for structural
global alignment using the shared substructures of the two
compounds’ structures. The similarities between protein sequences
are calculated by Smith-Waterman algorithm [30].

The NCI60 human tumour cell line screen method, which is
developed by National Cancer Institute (NCI), aims to screen a
substances of cytotoxic activity in 60 cell lines for various cancer

types. Specifically, the growth inhibition is measured by the
sulforhodamine B assay for a cellular protein after a cell line was
exposed to a drug for two days. 50% growth inhibition (GI50) is
qualified the concentration of compound. The Developmental
Therapeutics Program (DTP) human tumour cell line screening
data is obtained from the DTP database https://dtp.cancer.gov/, and
the gene expression data (mRNA:Affy-U133B, GCRMA-
normalised) in NCI-60 cell lines conducted in [31] are downloaded
from NCI website [32]. Using drug response data, the drug
similarities are computed by the Gaussian kernel, for which the
parameter σ is chosen as the median distance of pairwise distances
among all drugs. We construct protein chemical similarities from
gene expression data in the same way as the drug response
similarities.

We obtain 326 common drugs from the drug response data and
the drug structure data. Meanwhile, 608 overlapping proteins are
also selected from the gene expression data and the protein
sequence data. On the Drug Bank Database [33], the known drug–
target associations are downloaded. We then obtain 114 known
associations among the selected 326 drugs and 608 protein targets.

For either the drugs or the protein targets in our dataset, there
are two types of representations: structural and chemical views.
The protein sequence similarities and the drug structural
similarities are used to construct the structural view
representations. On the other hand, we construct chemical view by
drug response data and proteins gene expression data in NCI60 cell
lines.

2.2 Problem formulation

Suppose we have structural similarities and chemical similarities
for md drugs and mt proteins targets, respectively. Denote the drug–
drug similarities and target–target similarities in the structural view
as Wd

s ∈ R
md × md and Wt

s ∈ R
mt × mt, and denote the drug–drug

similarities and target–target similarities in the chemical view as
Wd

c ∈ R
md × md and Wt

c ∈ R
mt × mt, respectively. Among these drugs

and protein targets, the known drug–target associations are denoted
as the interaction matrix P ∈ R

md × mt, which is defined as

Pi j =
1,

there is known interaction between the ith drug

and the jth protein,

0, otherwise .

We also denote Ω = {(i, j) Pi j = 1} to be all the drug–target pairs
which are known to be interacted. Our goal is to predict new drug–
target associations by completing the matrix P based on all the
given information. Nomenclature section summarises the notations
used in this paper.

2.3 Drug–target prediction by matrix completion with single
view side information

The inductive matrix completion is proposed in [34] to recover a
latent matrix based on limited information. SIMCLDA [24] method
applies inductive matrix completion to predict new associations
between lncRNA and diseases. The model is based on the
assumption that associations between lncRNAs and disease are
dependent on the feature vectors extracted from some side
information, such as RNA-RNA similarities and disease-disease
similarities. It first extracts features for lncRNAs and diseases from
their similarity matrices, respectively, and then applies the
inductive matrix completion model with single view side
information (MCS) to recover the unknown interactions between
lncRNAs and diseases.

Although the method is developed for a different problem, it
could be directly used for drug–target prediction. Similarly to
lncRNAs or diseases, the feature vectors of drugs or protein targets
could be obtained by eigenvalue decomposition of the similarity
matrices in the problem of drug repositioning. In detail, we
construct drug feature matrix D ∈ R

md × kd by the eigenvectors of the
drug similarity matrix Wd corresponding to its kd largest
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eigenvalues. Similarly, we could obtain protein feature matrix
G ∈ R

mt × kt by kt eigenvectors of protein similarity matrix Wt.
For either the chemical view or the structural view, the

interaction matrix P can be recovered by matrix completion with
single view side information (MCS) by SIMCLDA proposed in
[24]

min
A ∈ R

kd × kt

∥ A ∥∗

s . t . ℛΩ(DAG
T) = ℛΩ(P)

(1)

where ∥ ⋅ ∥
*
 is the nuclear norm, and ℛΩ( ⋅ ): R

md × mt → R
md × mt is

defined as follows:

ℛΩ(M)i j =
Mi j, if (i, j) ∈ Ω

0, otherwise

for any matrix M ∈ R
md × mt and Ω is a collection of observed

indicators of interacting drugs and protein targets. After solving the
optimisation problem (1) for the optimal A, DAG

T could be used
as the completed matrix of P. The entry with larger value in the
matrix DAG

T implies that the corresponding drugs and protein
targets have higher probability to be interacted.

However, SIMCLDA does not consider multiple similarities
between lncRNAs or diseases from different fields or views, thus it
could not be applied for the case when the multi-view side
information is available. In next section, we will propose a matrix
completion method for drug–target prediction with multi-view side
information.

2.4 MCM for drug–target prediction

Note that for the structural view, we could first compute Ds and Gs

from Wd
s and Wt

s, respectively, and then apply the MCS model to
obtain a corresponding completed matrix DsA

s
Gs

T. We call this

MCS-S (S is the short for structural). Similarly, as for the chemical
view, we could also obtain a completed matrix DcA

c
Gc

T, which we
call MCS-C (C is the short for chemical). In this section, we extend
the above single-view model MCS to the multi-view case. We hope
that the two completed matrices obtained from the structural and
chemical views are as consistent as enough, and thus propose a
MCM as follows:

min
Q ∈ R

md × mt, A
s, A

c ∈ R
kd × kt

F1 + F2 + F3

s . t . 0 ≤ Qi j ≤ 1, i = 1, …, md, j = 1, …, mt .
(2)

where

F1 =
1
2

( ∥ ℛΩ(DsA
s
Gs

T − P) ∥F
2 + ∥ ℛΩ(DcA

c
Gc

T − P) ∥F
2 ),

F2 = λ1( ∥ A
s ∥

*
+ ∥ A

c ∥
*

),

F3 = λ2( ∥ (DsA
s
Gs

T − Q ∥F
2 + ∥ DcA

c
Gc

T − Q ∥F
2 ),

and λ1 ≥ 0 and λ2 ≥ 0 are trade-off parameters. Note that by
minimising the first item F1, the known entries in the completed
matrices can be preserved well. Minimising the second item F2 is
to force the low rank of the two matrices A

s and A
c closer. The

third term aims to make the two completed interaction matrices be
as similar as possible by introducing a common completed matrix
Q. The details of our method are shown in Fig. 1. We also note that
the MCM model could be easily extended for the case when more
than two views are available.

2.5 Algorithm

In order to solve the optimisation problem (2), we develop an
algorithm by updating A

s, A
c and Q alternately. First, we fix A

s

and Ac to solve Q and get the following sub-problem:

Fig. 1  Flowchart of our MCM method. We construct similarity matrices in chemical and structural views for drugs and protein targets and extract features
from these similarity matrices. Meanwhile, we preprocess the known drug–target association matrix P0. Finally, a complete drug–target association matrix Q
is obtained by MCM model with Dc, Gc, Ds, Gs and P as inputs
(a) Chemical view construction, (b) Structural view construction, (c) Association matrix preprocessing
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min
0 ≤ Qi j ≤ 1

∥ DsA
s
Gs

T − Q ∥F
2 + ∥ DcA

c
Gc

T − Q ∥F
2 . (3)

The optimal Q for this problem is

Q
^

= Pro j
1
2

DsA
s
Gs

T +
1
2

DcA
c
Gc

T , (4)

where

[Pro j(M)]i j =

0, if Mi j < 0

1, if Mi j > 1

Mi j, otherwise .

Next, we fix As and Q and solve Ac by the following sub-problem:

min
A

c ∈ R
kd × kt

1
2

∥ ℛΩ(DcA
c
Gc

T − P) ∥F
2 + λ1 ∥ A

c ∥
*

+λ2 ∥ DcA
c
Gc

T − Q ∥F
2 .

(5)

Let

h(A
c) =

1
2

∥ ℛΩ(DcA
c
Gc

T − PP) ∥F
2 + λ2 ∥ DcA

c
Gc

T − Q ∥F
2 .

For any given Z ∈ R
kd × kt, one can approximate h(A

c) by the
following quadratic approximation:

h(A
c) ≃ h

~
(A

c, Z) = h(Z) + < ∇h(Z), A
c − Z > +

t

2
∥ A

c − Z ∥F
2

=
t

2
A

c − Z −
1
t

∇h(Z)
F

2

+ h(Z) −
1
2t

∥ ∇h(Z) ∥F
2 ,

(6)

where

∇h(Z) = Dc
T{ℛΩ(DcZGc

T − P) + 2λ2(DcZGc
T − Q)}Gc,

⟨ ⋅ , ⋅ ⟩ denotes the inner product for matrices, and the proximal
parameter t determines the estimation of the second-order gradient
∇2

h(Z). Thus, (5) can be rewritten as

min
A

c ∈ R
kd × kt

λ1 ∥ A
c ∥∗ +

t

2
A

c − Z −
1
t

∇h(Z)
F

2

. (7)

We then apply accelerated gradient descent (APG) [35] to obtain
optimal solution of (7) by the following iterative procedure

step 1: let Zl = Al
c + γl(γl − 1

−1 − 1)(Al
c − Al − 1

c ), (8)

step 2: solve

Al + 1
c = min

A
c ∈ R

kd × kt

λ1 ∥ A
c ∥∗ +

t

2
A

c − Zl −
1
t

∇h(Zl)
F

2

, (9)

step3:compute γl + 1 =
1
2

γl
4 + 4γl

2 − γl
2 , (10)

where γl, γl + 1 ∈ (0, 1].
For step 2, we solve the optimisation problem by applying the

following singular value thresholding algorithm [36]. Let
Bl = Zl − (1/t)∇h(Zl). Suppose the singular value decomposition
(SVD) of Bl is

Bl = V1ΣV2
T, Σ = diag(σ1, …, σq),

where V1 = [v1
1, v1

2, …, v1
q] ∈ ℛkd × q and V2 = [v2

1, v2
2, …, v2

q] ∈ ℛkt × q

are unitary matrices and σ1 ≥ σ2 ≥ ⋯ ≥ σq > 0 are singular values.
The solution of (9) is then given by

Al + 1
c ← Ft(Bl) = ∑

i

σi ≥ (λ1/t)

σi −
λ1

t
v1

i(v2
i)T, (11)

where v1
i and v2

i are the left and right singular vectors of Bl

corresponding to σi, respectively.
Finally, we fix A

c and Q and solve A
s by the similar way that

we use to solve Ac in the previous step. The iterations stop until the
change of the value of the objective function in (2) are less than a
small number. We thus obtain the recovered matrix P

~
 by Q. We

show a summary for the procedure to solve the optimisation
problem (2) in algorithm box MCM.

2.6 Computation complexity analysis

There are two stages in our algorithm MCM. In the first stage, the
eigenvalue decomposition is adopted to extract features for drugs
and targets in each view, and a computation cost of O(md

3) or O(mt
3)

is required. At each iteration of the second stage, Q, As and Ac are
updated in three steps, respectively. For the first step, Q is updated
by the mean of recovered drug–target association matrices from
both two views, which requires a computation cost of
O(mdkdkt + mdktmt). For the second step, Ac is updated by the SVD
of B = Z − (1/t)∇h(Z), where h(Z) is the quadratic approximation
of Ac with any given Z ∈ R

kd × kt. A computation cost of O(kd
2
kt + kt

3)
is required for the second step. For the third step, the same
computation cost is required as the second step. Overall, the MCM
algorithm takes computation time of O(md

3) or O(mt
3) (see Fig. 2). 

3 Experiments results
3.1 Evaluation of our method

We evaluate the performance of our methods MCS-S, MCS-C and
MCM by comparing their prediction accuracies with some other
existing methods including single view methods including support
vector machine (SVM), bipartite graph learning (BGL) [2],
SPGraph [22] and single-view rank embedding (SLRE) (2017) [23]
and multi-view methods including multi-view SVM, multi-view
penalised graph (MPGraph) [22] and multi-view rank embedding
(MLRE) (2017) [23]. Among our methods, MCS-S and MCS-C are
single-view methods for structural view and chemical view,
respectively, while MCM is the multi-view method. We first
describe the experimental settings in detail, then introduce the
comparison methods, and finally show results for all experiments.

3.1.1 Experimental setting: We collect a smaller dataset from the
whole dataset by removing drugs with no known targets and targets
with no known drugs. About 65 drugs and 80 targets are remained,
and there are 114 known pairs among them in total. For the smaller
dataset, we design two experimental settings called NT (new
coming target) and NDNT (new coming drug and new coming
target) to compare different methods with our methods. For the NT
setting, our goal is to find the drugs that are associated with the test

Fig. 2  MCM algorithm for drug–target prediction
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targets. In the setting of NDNT, we aim to obtain the interactions
between test drugs and test targets.

For the NT setting, we divide all the 80 targets in the small
dataset into five folds. Each fold of targets is chosen as test data in
turn while the remaining four folds of targets were considered as
training data. We use the associations between the training targets
and all the drugs to recover the interaction matrix by methods of
MCS-S, MCS-C and MCM, respectively. When the interaction
matrix is computed, the probabilities of interactions between test
targets and all the drugs are obtained. For each test target, the drugs
with the k highest association values are considered to be interacted
with it. By changing the threshold k, we can obtain a receiver
operating characteristic curve and the corresponding area under the
curve (AUC) value. In our multi-view method, we calculate the
AUC values in DsA

s
Gs

T, DcA
c
Gc

T and Q, and report the maximum
value among these three AUC values as the final AUC value in all
of our multi-view experiments. We take the same way to calculate
AUC values in other compared multi-view methods. In NDNT, we
divide all drugs and all targets into five folds, respectively, and
select drugs and targets in each fold as test data for each time while
the other remaining drugs and targets as training data. With the
known associations between training drugs and training targets,
one can recover the potential interaction matrix and compute AUCs
with the same way in NT setting. We repeat the procedure for 50
times in each setting and report the average AUCs and standard
errors.

In all three methods: MCS-S, MCS-C and MCM, the
parameters λ, λ1 and λ2 are chosen from the set {0.001, 0.01, 0.1,
1}. We fixed k = 40 and reported the best results when parameters
are chosen from the above set. To make a fair comparison, the

same parameter range of λ and k are used to compute the final
results for SPGraph, MPGraph, SLRE and MLRE approaches.

3.1.2 Comparison methods: 

(a) Single-view and multi-view SVMs: On training datasets, SVMs
can learn a classifier which can classify pairs of drug–target into
categories ‘having interaction’ or ‘not having interaction’. The
Kronecker product K = Wd ⊗ Wt of drug similarity matrix Wd and
protein similarity matrix Wt represents the kernel between drug–
protein pairs. For each specific view, SVM with the corresponding
Kronecker kernel is applied to solve drug–target prediction
problem. For the multi-view SVM method, we simply apply the
SVM approach with multiple kernels from the two views.
(b) BGL [2]: For either structural view or chemical view, BGL can
be used to predict drug–target associations as a single-view
approach.
(c) SPGraph and MPGraph [22]: SPGraph is a single-view method
to predict drug–target associations, and it can be used for either
view. MPGraph is the extended multi-view method, in which both
two views can be integrated for drug–target prediction.
(d) SLRE and MLRE [23]: SLRE is a low-rank embedding based
single-view method, which can be used for either view. MLRE is a
multi-view method which uses both structural and chemical views
for identifying drug targets.

3.1.3 Results: We first checked the convergence property of our
MCM algorithm with λ1 = 0.1, λ2 = 0.1 and k = 40 on the smaller
dataset. The results are shown in Fig. 3, where the x-axis represents
the times of iteration, and the y-axis represents the values of the
optimisation objective function. From the figure, we can see that
the algorithm converges quite fast.

The results for our methods and the comparison methods with
k = 40 are shown in Table 1, where ‘—’ denotes that the
corresponding single-view method does not have multi-view
version. Note that single-view methods with structural view
obtained higher AUC values than those with chemical view in most
cases. For both of the two views, the single-view method MCS
performed the best in both the NT and the NDNT settings. We can
see from the table that, in both settings, graph-based multi-view
method (MPGraph) and multi-view method through low rank
embedding (MLRE) performed better than their corresponding
single-view methods (SPGraph and SLRE), and our matrix
completion based multi-view method (MCM) worked better than
the corresponding single-view method (MCS). The results imply
that applying multi-view information of drugs and targets could
strengthen the prediction accuracy. Besides, our method MCM
performed the best among the multi-view methods for the settings
of both NT and NDNT. This shows that our methods are effective
in discovering the potential associations between drugs and targets.

Fig. 3  Convergence of our MCM algorithm
 

Table 1 Average AUCs for all nine methods and t-test p-values of significant difference in results between our methods (bold)
and the second best methods (italic)

SVM BLG SPGraph SLRE MCS P-value
Structure view
NT 0.492 0.443 0.509 0.498 0.598 1.969 × 10−15

NDNT 0.523 0.479 0.527 0.591 0.660 1.738 × 10−07

Chemical view
NT 0.493 0.497 0.541 0.513 0.543 5.534 × 10−01

NDNT 0.472 0.497 0.477 0.431 0.575 4.035 × 10−07

 

 
MKL-SVM BLG MPGraph MLRE MCM P-value

Multi-view
NT 0.536 — 0.565 0.517 0.616 2.173 × 10−26

NDNT 0.520 — 0.599 0.629 0.719 1.791 × 10−11
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To show whether the MCM method outperforms significantly
the other methods, we also calculated the t-test p-values by
comparing the 50 AUCs between our MCM method and the second
best method. In Table 1, we reported the p-values for all the cases.
It shows that our method could obtain significantly better results
than the compared methods.

To show the robustness of our approaches with respect to the
parameter k, we took k from the set {5:5:40} and reported the
results of SPGraph-S, SPGraph-C, MPGraph, SLRE-S, SLRE-C,
MLRE, MCS-S, MCS-C and MCM for the two settings NT and
NDNT in Fig. 4. In the NT setting, we can see that the graph-based
methods and the low-rank embedding based methods sometimes
performed even worse than the matrix completion based single-
view method MCS. In the NDNT setting, all methods obtained
higher AUC values and performed stably. We also note that
generally the multi-view methods performed better than the single-
view methods for any k in the parameter set, and our multi-view
method of MCM performed the best for each case.

To show the robustness of our method with respect to the
parameters λ1 and λ2, we reported the results of the average AUC
values on both NT and NDNT settings with different values of
these two parameters varying from the set of {0.001, 0.01, 0.1, 1}
in Fig. 5. We can see that our method could obtain better results on
NDNT setting than NT setting. The results on each setting changed
a little when the parameters vary. This shows that our method
MCM performed robustly for the given set of parameters λ1 and λ2.

3.2 Prediction of new drug–target associations in the whole
dataset

We applied our proposed MCM method on the whole dataset to
predict new drug–target interactions by completing the association
matrix P. The parameter is set as λ1 = 0.1, λ2 = 0.1 and k = 40. In
the proposed MCM method, when the latent matrix is recovered
from P, the probabilities of the associations between all drugs and
targets are obtained. For target i, we selected the top t percentage of
drugs based on the values in the ith column of the completed
matrix and predicted them as the drugs that can interact with the
target.

We evaluated the prediction results of our method of MCM in
the following steps. We first randomly removed l known
interactions from the association matrix P, where l is a number
chosen from the set {5,10,15,20}, and solved the MCM model to
recover the interaction matrix P. We then selected the associated
drug–target pairs in the complete P by varying the threshold t in
the set {10,20,30,40,50,60}, and finally computed the percentage
of the recalled drug–target pairs. Fig. 6 shows the percentage of the
recalled pairs with different rank thresholds t and different number
of removed known interactions l. We can see that the percentage of
recalled pairs increases along with the increase of t at each fixed l.
In most cases, over 50% interactions that were removed in the first
step could be recovered by our method of MCM. This implies that
the prediction results recovered from our MCM method are highly
credible. Furthermore, for the new drug d that we are interested in,
we conducted prediction experiment between 66 drugs (65 drugs

Fig. 4  Average AUC results computed by nine approaches in two settings of NT and NDNT with different values of the parameter k
 

Fig. 5  Average AUCs on NT and NDNT settings with different values of parameters λ1 and λ2
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from the smaller dataset and the new drug d) and 608 proteins with
114 known associations to find its corresponding target proteins.
Note that there are no known interactions between the drug d and
the 608 proteins. The same parameter settings as the previous
experiments are used. Table 2 shows the new identified targets for
26 Food and Drug Administration (FDA)-approved drugs with the
top 0.5% of recovered probabilities in each column of the
recovered latent matrix when the parameter k is chosen to be 40. 
We found that some of the predicted targets in Table 2 can be

validated by some existing research results, which are discussed in
the discussion part.

4 Discussion
In this section, we discuss the biological meaning of the predicted
drug–target interactions by our method MCM.

Carmustine is usually referred as an antineoplastic agent used in
the treatment of brain tumours. Hagelkrüys [37] reported that the
absence of DNMT1 in the brain leads to a severe neurological
phenotype, a dramatically disorganised brain architecture and
death. This supports our predicted interaction between the target
DNMT1 and the drug Carmustine. The work in [38] shows that
IDNMT1 overexpression is correlated with a reduction of MGMT
protein expression in high-grade astrocytic tumour. It is reported in
[39] that astrocytic tumours form the most common histologic
group among childhood brain tumours. This further validates
DNMT1 plays an important role in brain tumour and DNMT1 most
likely is a key target for drug Carmustine. Besides, it has been
known that Tamoxifen can be used for the treatment and
prevention of estrogen receptor positive breast cancer. Varley et al.
[40] reported two fusion transcripts that were identified in breast
cancer cell lines, confirmed across breast cancer primary tumours,
and were not detected in normal tissues (SCNN1A-TNFRSF1A
and CTSD-IFITM10). This strongly validates our predicted drug–
target interaction of Tamoxifen and SCNN1A, which is predicted
by our methods. Another drug Testolactone is an antineoplastic
agent that is used to treat advanced breast cancer. Choi et al. [41]
found that alcohol and genetic polymorphisms of cyp2e1 and aldh2
play an important role in breast cancer development. This supports
the predicted interaction of Testolactone and ALDH2 in our results.

Leucovorin sometimes can be used in combination with 5-
fluorouracil to prolong survival in the palliative treatment of
patients with advanced colorectal cancer. Yi et al. [42]
demonstrated that expression of GRM3 is significantly upregulated
in majority of human colonic adenocarcinomas tested and colon
cancer cell lines. GRM3 and Leucovorin are all related to colon
cancer or colorectal cancer so they probably have some interaction,
so our finding of interactions between them is reasonable. Valproic
acid is a histone deacetylase inhibitor and is under investigation for
the treatment of HIV and various cancers. In our prediction results,
we found that OXTR, UCK2 and ITPKA may be the targets for
valproic acid. We also found evidence which indicates that all these
targets play important roles in various types of cancer. Zhong et al.
[43] showed that OXT receptor (OXTR) is the primary target of
OXT in androgen-independent prostate cancer cell lines (DU145
and PC3). UCK2 is of particular scientific interest due to its
overexpression in tumour cell lines [44], which makes it a target in
anti-cancer treatments [45]. Wang et al. [46] showed that ITPKA
expression is up-regulated in many types of cancer including lung
and breast cancers, and overexpressed ITPKA contributes to
tumourigenesis. These results suggest that valproic acid may
interact with targets OXTR, UCK2 and ITPKA to function in
different types of cancer, which supports our results.

Fig. 6  Percentage of the recalled pairs with different rank thresholds t and different number of removed known interactions l
 

Table 2 Predicted targets for 26 FDA-approved drugs by
our MCM method
KEGG ID Drug name Gene name
D05905 sparsomycin UROD, JARID1D, KIF1A
D00372 thiabendazole SLC1A4
D00433 silver sulfadiazine SDS, SCNN1A, RARRES1, TSTA3,

NPPB, SST, SULT2B1, GSTA2, CPB1
D03936 econazole FCER1A, NDUFS8, SCNN1A, ALOX5,

IFNAR2, RARA, CMA1, GSTM5
D00413 zidovudine ALDH2
D00237 auranofin COL1A1, TYR, TTPA, PLCL1, KLK1,

APOE, MTAP, CP, S100P, EEA1,
JARID1D, P4HB, CRYBB1

D01334 cyclacillin ALDH2, CLPP
D01364 ciclopirox VCAM1, JARID1D
D04115 1,8-cineole JARID1D
D00214 dactinomycin PYGL, COL1A1, SLC1A4, NDUFS1,

HMOX1, TGM2, ACADM, CFD,
JARID1D, POR

D06265 uracil mustard JARID1D
D00188 cholecalciferol GRIK1, GRIA1, GRIK2, GRIA2,

GRIA4, GRIK3
D00297 digitoxin NOS1, SLC1A4
D06067 temozolomide SDS, CALM1, ACVR1B
D00254 carmustine CALM1, DNMT1, MCM6, PAICS
D00478 procarbazine ALDH2
D00343 ifosfamide ALDH3B2
D00966 tamoxifen SCNN1A
D00153 testolactone ALDH2, GRIK1, GRIA1
D00399 valproic acid GAMT, OXTR, CAST, CDC2, UCK2,

NR1H2, ITPKA, HAGH, SCN4A,
CAPN1

D01068 vinblastine SLC1A4, NDUFS1, HMOX1, CFD
D01211 leucovorin GRM1, GRM4, GRM8, MGST2, GRM3
D00275 cisplatin SDS
D00266 chlorambucil JARID1D
D01363 carboplatin JARID1D, CLPP
D01747 idarubicin SLC1A4, NDUFS1, HMOX1, CFD
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Both carboplatin and chlorambucil can possess antineoplastic
activity or be used as antineoplastic agent for the treatment of
various malignant and non-malignant diseases. The results in [47]
demonstrated that JARID1D levels were highly down-regulated in
metastatic prostate tumours compared with normal prostate tissues
and primary prostate tumours. This indicates that JARID1D might
be the target for carboplatin and chlorambucil in the treatment of
prostate cancer. Idarubicin is a kind of anthracycline
antineoplastics. The results in [48] showed that the panel with
NDUFS1 and NDUFS8 reflecting tumour metabolism status is a
novel prognostic predictor for lung cancer. This indicates that
NDUFS1 would be the target for idarubicin in the treatment of lung
cancer.

5 Conclusion
Many research results have already shown the effectiveness of
multi-view methods for the applications when multiple information
of an object are available. In this work, we propose a MVMC
method for prediction of the interactions between two types of
samples, say drugs and targets. We apply a single-view approach
MCS to identify drug targets by integrating the structural
information from drug structures and protein sequences, or
integrating the chemical information from both drug response and
gene expression. We then extend the single-view MCS method to
the corresponding multi-view approach MCM, which jointly
considers both the structural and chemical information of the drugs
and proteins. Our experimental results demonstrate that our
approaches work significantly the best in most cases. Although in
this work we only consider two types of information for drugs and
proteins, our proposed MCM method can be applied for the case
when more than two views are available. Extending MCM to three
views is an interesting topic, which could strengthen the learning
ability. We will do more research on this in the future.
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