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Abstract

The purpose of the present study was to test an idea of and describe a concept of

a novel method of detecting defects related to horizontal nonuniformities in ultra-

sound equipment. The method is based on the analysis of ultrasound images col-

lected directly from the clinical workflow. In total over 31000 images from three

ultrasound scanners from two vendors were collected retrospectively from a data-

base. An algorithm was developed and applied to the images, 150 at a time, for

detection of systematic dark regions in the superficial part of the images. The result

was compared with electrical measurements (FirstCall) of the transducers, performed

at times when the transducers were known to be defective. The algorithm made

similar detection of horizontal nonuniformities for images acquired at different time

points over long periods of time. The results showed good subjective visual agree-

ment with the available electrical measurements of the defective transducers, indi-

cating a potential use of clinical images for early and automatic detection of

defective transducers, as a complement to quality control.
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1 | INTRODUCTION

There are many methods and recommendations on how to carry out

performance tests and quality control on ultrasound systems.1–11

The transducer is a vital part of the system and handled daily. It is

therefore subject to become defective. Not surprisingly, it has been

shown that the incidence of defective transducers in clinical practice

is high.12–16 As an example of a clinically relevant effect of defective

transducers, the accuracy of Doppler measurements has been shown

to be affected when several adjacent elements in the transducers

are dysfunctional.17,18

There are several methods for detecting defective transducers.

The methods can be summarized as simple tests, tissue-mimicking

phantom tests and commercial electronic transducer tests. A simple

and effective method is the “paper-clip method”.19 A small piece of

wire, such as a paper clip, is translated along the scan surface of the

transducer in a small amount of gel, while the transducer is operating

in air. By monitoring the display, scan line dropouts can be detected.
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Another simple method of detecting reduced sensitivity of trans-

ducer elements is to analyze an image with the transducer held in

air.7,20,21 Another known technique for detection of defective trans-

ducers is to move a linear transducer along the arm while viewing

the dynamic image; it is easy for a human eye to detect vertical

streaks in the image when the tissue is moving while the streaks are

not. This method, that uses several image frames, is based on the

fact that every frame is slightly darker below the defective part of

the transducer, since the ability to send and receive echoes is

affected regardless if the failure is caused by dead elements, cable

failure or delamination in the transducer. In a single image it may be

difficult to discriminate these streaks from other details/structures in

the image, but by using information from several image frames —

where the image background varies but the streaks remain constant

— the possibility for detection increases.

Visual inspection of the image uniformity using a tissue-mimick-

ing phantom is used in quality assurance to detect both vertical

and horizontal nonuniformities.3 King et al.22 compared different

ways of detecting defective transducers by using the information in

several images of a dynamic clip of a low-cost phantom produced

for this purpose.23 In their study, the median image of the dynamic

clip was used in two ways for visual assessment and was compared

with assessment of the dynamic clip. All three methods were

developed for increased sensitivity for detecting subtle artifacts

compared to static single-frame B-mode images. The recently

released IEC Technical Specification24 also uses the median image

of a dynamic clip of a phantom acquired while moving the trans-

ducer slowly normal to the scan plane. A quantification of the hori-

zontal nonuniformity of the image brightness is obtained by

calculating a column-wise median of the pixel values in the superfi-

cial part of the median image.

Electronic transducer testers such as FirstCall aPerio (Sonora

Medical Systems, Inc., Longmont, CO, USA) and ProbeHunter (BBS

Medical AB, Stockholm, Sweden) are testers to which the transducer

is connected. Pulses are sent element-wise toward a target in water

and the echoes are evaluated. The result from the test is compre-

hensive and typically contains, among other parameters, the sensitiv-

ity for all elements individually presented as bar graphs. If an

element has zero sensitivity, the element is nonfunctional.

The existing methods described above for testing for defective

transducers are associated with limitations. Firstly, they all require

access to the equipment (or at least the transducer) and are time-

consuming. This requires personal resources for performing the tests

and the equipment is furthermore unavailable for clinical use. Sec-

ondly, when checking for defects, the time from failure to detection

could in worst case be up to the checking interval, and a defect may

therefore be unnoticed for a long time. Finally, intermittent failures

may not be detected at all by the described methods.

The purpose of the present study was to address the limitations

described above by testing an idea of and describing the concept of

a novel method of detecting defects related to horizontal nonunifor-

mities in ultrasound equipment. The method is based on the analysis

of ultrasound images collected directly from the clinical workflow

and applicable to, e.g., linear array transducers, as used in the

present study.

2 | MATERIALS AND METHODS

2.A | Description of the concept of the method

The proposed method is based on the fact that the anatomical infor-

mation in an image varies for every clinical image, whereas the dar-

ker region corresponding to a defective transducer is present in all

images produced by the transducer. Thus, by averaging many images

or determining their median, a more or less homogeneous back-

ground is obtained even from clinical images, since the anatomical

variations tend to cancel each other, whereas the systematic darker

streaks — present in all images — remain and become easier to

detect than in a single image.

Basing a method of detecting nonuniformities on clinical images

introduces new possibilities for quality control. As the images can be

collected directly after they are stored clinically, the quality control can

be performed without intervening with the equipment and at any time

point. The most straightforward approach seems to be to calculate a

median uniformity image for visual assessment based on a number of

images that have been stored in a database. In Fig. 1, this is shown for

different numbers of images where a transducer with eight defective

elements (as determined by a FirstCall measurement) was used (Case 1,

see Table 1). An example of a single clinical image acquired with the

defective transducer is shown in Fig. 2, indicating that it may be very

difficult to detect the defects in the clinical images directly.

For continuous monitoring of the system, a more advanced

approach could be to automatically analyze the latest produced images

for horizontal uniformity aberrations. Such an analysis could be a com-

plement to the normal quality assurance program and notify the ser-

vice organization of a detected artifact and thus lead to earlier

detection of defects. The details of an example of such an analysis are

given in the present paper. The purpose of the paper was to describe

the details of this first attempt in a case study based on three ultra-

sound systems and to test if it may be possible at all. The results are

qualitative and a follow-up study is planned for a quantitative evalua-

tion of a larger number of ultrasound systems and cases.

2.B | Application of the method to three general
imaging ultrasound scanners

The method for visual assessment and an implementation of an

automated analysis was applied to stored images for three scanners,

with one defective transducer each. Four FirstCall measurements,

revealing different kinds of defects, were available for comparison.

The scanners were used in radiological departments for general

imaging and the images were stored as 8-bits RGB (Red Green Blue)

images in DICOM (Digital Imaging and Communications in Medicine)

format. The scanners, the transducer types and the number of

images used retrospectively for the automated analysis are shown in

Table 1.
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(a) (b)

(c) (d)

F I G . 1 . A median uniformity image
based on 5, 15, 30, or 100 clinical images
(for a, b, c, and d, respectively) produced
by a linear array transducer (Case 1). Eight
elements were defective according to a
FirstCall measurement. An example of a
single clinical image acquired with the
defective transducer is shown in Fig. 2.

TAB L E 1 The three different cases used for the automated analysis.

Case 1 Case 2 Case 3

Scanner GE Logiq 9E GE Loqiq 9E Philips IU22

Transducer ML 6-15 ML 6-15 L12-5

Number of images collected 11947 9128 17266

Number of images rejected due to Doppler curves 13 60 1906

Number of images rejected due to outside transducer

width limits (over/under)

762 (2/760) 256 (17/239) 3935 (658/3277)

Number of images used 11172 8812 11425

Analyzed period 30 months, 7 days 25 months, 10 days 55 months, 7 days

Image size 720 9 960 720 9 960 768 9 1024
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This retrospective study using clinical images was approved by

the Regional Ethical Review Board. All image handling and analysis

were performed automatically using in-house developed MATLAB

(MathWorks, Inc., Natick, MA, USA) applications. Images from a cho-

sen scanner/transducer combination were imported and selected.

The B-mode part in the stored images was extracted from the sur-

rounding information and was resized so that all extracted B-mode

images had the same size. The extracted and resized B-mode images

were then placed in an image stack, used as input to an algorithm

developed for automatic detection of defects. The detection was

based on construction of a curve representing systematic darker

streaks in the images.

2.C | Image selection

Images from a certain scanner, distinguished with the DICOM tag

“StationName”, were retrieved from the archive. The transducer type

was determined by the DICOM tag “TransducerData” for the Philips

scanner. For the GE scanners, the transducer information in the

images was used instead since the DICOM tag was empty for these

images. Images containing Doppler curves and side-by-side images

were rejected. This was determined by checking if the DICOM tag

“SequenceOfUltrasoundRegions” had more than one item or if the

size of the image had more columns than the ones just containing

one image. Color Doppler images without curves were included.

2.D. | Image extraction

The stored images had surrounding information around the B-mode

image — fields containing patient name, time, etc. — and the only

information needed was the grayscale B-mode image. To extract the

B-mode image from the surrounding information, the image was first

converted from color to gray. The largest connected area of nonzero

pixels was then selected using the MATLAB’s Image Processing

Toolbox functions “bwconncomp” and “regionprops”. The rest of the

pixels in the image were set to zero. The coordinates for the outer

corners of the selected area were then determined (see Fig. 2) and

the B-mode image was extracted. The determination of the coordi-

nates was based on separating fields of nonzero pixels from zero-

filled fields. Virtually convex images were extracted as a rectangle

with the width of the most superficial part the image, and the height

equal to the depth of the B-mode image.

To check if the image was zoomed laterally, the physical aperture

of the transducer was compared with the physical width of the

B-mode image, using the left and right X values and the DICOM tag

“PhysicalDeltaX”. If the physical width of the B-mode image was

inside the range of 49.5 and 51.5 mm, the B-mode image was

extracted, otherwise the image was rejected (the same range

was used for both transducers; the physical aperture was 50 mm for

both types). Finally, the extracted B-mode images were resized in

order to get the same size for all extracted images using the

MATLAB’s Image Processing Toolbox function “imresize” (bicubic

interpolation). The width of the resized images was chosen to be

equal to the number of elements in the transducer. The height of

the resized images was chosen to be 500 pixels for both transducers

in order to get decent resolution of the depth. This resulted in image

sizes of 336 9 500 for ML 6-15 and 256 9 500 for L12-5.

2.E | Implementation of an algorithm for automatic
detection of horizontal nonuniformities

The idea of the automatic analysis was to develop an algorithm that

uses the information in the superficial part of a large number of

images to create a curve with a length equal to the number of

F I G . 2 . The location of the outer
coordinates of the image that was
extracted from the original image.

268 | LORENTSSON ET AL.



columns in the resized images (and also number of elements in the

transducer). When the algorithm detects darker regions above cho-

sen thresholds, these positions in the curve are replaced by positive

values that represent the dark regions in width and strength. When

the area under this systematic dark region (SDR) curve reaches a

chosen threshold, this could be used for a notification that the trans-

ducer or the scanner needs an extra check. A 3D plot of the SDR

curves could be used to monitor the condition of a system and see

if an accepted aberration increases or remains the same.

In Fig. 3, the different steps of this initial algorithm, used for

construction of one SDR curve based on the information in an image

stack of Nstack images, are shown. The algorithm combines three dif-

ferent types of analyses, described by the green, red, and blue paths

in the figure. Each of the three paths creates a curve with a length

equal to the number of columns in the resized images and all the

values are set to zero as default. The values are changed only if dark

regions are determined as aberrations by the algorithm. The largest

value of the three curves at each position is chosen for the SDR

curve. In the green path, dark streaks that are narrow and situated

in the same lateral position in many images are detected. The red

path detects wider darker streaks that are more diffuse and not nec-

essarily have the same lateral position of the dark valleys in the

images in the stack. Both the green and red paths use subtraction of

a polynomial fit to compensate for baseline variations. This approach

is not successful if the darker regions appear in the horizontal end-

points of the images since the polynomial fit adopts to the endpoints

of the curves. The blue path has the sole purpose to detect darker

regions in the horizontal endpoints of the images. The algorithm was

implemented in the following way.

First, the mean of each row was subtracted for each row in

all images. For the green path, a median image was calculated

based on Nselect randomly chosen images (without replacement)

from the image stack. This was repeated Nrep times, resulting in

Nrep median images. A column-wise-mean (CWM) of rows Rupper –

Rlower was calculated for each of the median images, resulting in

Nrep CWM curves. The curves were inverted and a polynomial fit

of order Opoly,green was fitted to and subtracted from each of the

curves. A peak detection was performed using the MATLAB’s Sig-

nal Processing Toolbox function “findpeaks” (default settings) for

each of the curves. The function returned the position, height,

and width of all peaks that were found. The means of the heights

and widths of the peaks were calculated. All peaks that had a

higher mean value of the height than the threshold Tgreen were

selected.

The heights and the widths of the n selected peaks were used to

create a vector, containing Gaussian curves for the selected peaks at

the correct position, see eq. (1).

f xð Þ ¼
Xn

k¼1
height kð Þe�ððx�pos kð ÞÞ=widthðkÞ=2Þ2 (1)

For the red and blue paths in Fig. 3, all Nstack images were used

to calculate a median image. Pixels between rows Rupper and Rlower

were used to calculate the CWM curve, as above. The CWM curve

was inverted and for the blue path all values above Tblue for the first

and last Pinclude percent of the values in the inverted CWM curve

were selected, the rest were set to zero. For the red path, a polyno-

mial fit of order Opoly,red was fitted to and subtracted from the curve

as baseline compensation. All values above Tred were selected, the

rest were set to zero.

At each position, the largest value from the three curves was

selected to create the SDR curve. To avoid the darker streaks in the

borders of the images that appear for fully functional transducers,

the first and last Pexclude percent of the SDR curve were set to zero.

In order to obtain a scalar measure of the nonuniformity of the sys-

tem, the area under the SDR curve was finally calculated using

trapezoidal numerical integration. The area under the curve was nor-

malized by the number of elements in the transducer. An example of

an SDR curve is shown in Fig. 4, overlaid on a median image of the

150 images (Nstack = 150) selected from Case 1 for creating the SDR

curve.

The algorithm was applied to the image data described in

Table 1. All images for each scanner/transducer combination were

sorted by the DICOM tag “StudyDate”. The image stack that was

used for calculating the SDR curve was updated with a single

image at a time. In all, 30962 SDR curves were determined, each

representing the status of one of the systems at a given time

point.

The values of the variables used were Nstack = 150, Nselect = 15,

Nrep = 100, Rupper = 1, Rlower = 19, Opoly,green = 6, Opoly,red = 6,

Tgreen = 2, Tred = 5, Tblue = 10, Pinclude = 25, and Pexclude = 2. These

values were selected after empirical testing with the aim to get a

result that agreed reasonably well with the FirstCall measurements

for the three cases and for other scanners that were investigated

but not used in the present paper, but a proper optimization of the

parameters was not conducted. The depth distal to the transducer

using these values was 19/500 (approximately 4%) of the extracted

image depth, regardless of the depth of the image.

3 | RESULTS

The amount of extracted and rejected images of the image extrac-

tion subroutine for the different cases is presented in Table 1. For

the two GE cases, the extraction was successful in most cases,

whereas in the Philips case, the fail rate was higher as a result of a

logotype being present and sometimes disturbing the image.

The retrospective SDR curves for the three cases are shown as

3D plots in Fig. 5. The SDR curves corresponding to the oldest

images have the lowest SDR curve numbers. For all three cases, the

algorithm detected several nonhomogeneities, some indicating

reduced transducer element sensitivity (sharp peaks in the SDR

curve, corresponding to defects in single elements) and others indi-

cating that several elements were affected (broad dark regions). Sub-

jectively, the algorithm seemed to be robust, as visually similar SDR

curves were obtained for images acquired at different time points

over long periods of time.
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For Case 1, there were two FirstCall measurements, the second

one performed 16 months after the first one (see Fig. 5). Two of the

elements that were reported broken (50 and 242) in the first mea-

surement were reported functional in the second measurement,

while new faulty elements were detected. By studying the SDR

curves for Case 1 in Fig. 5, it is possible to see approximately when

element 50 and 242 became functional after being defective and

when the new faults emerged, except for element 335, the location

of which was cut away by the last Pexclude percent in the algorithm.

For Case 2, it is possible to follow how the defect emerged in

both width and strength in Fig. 5. The time period between the first

indication of a defect and when the transducer was replaced due to

the FirstCall measurement was 10 months. The behavior of the

defect indicates that it could be due to delamination.

For Case 3 in Fig. 5, there is a pattern in the SDR curves around

curves 6300–7400 that cannot be seen in the FirstCall measure-

ment. By visual inspection of the median uniformity image for this

period the pattern was found also in the median image, which makes

it reasonable to assume that this was an intermittent defect that

was present during this period of approximately 1100 images

(5 months) for this particular transducer/scanner combination.

The area under the SDR curves for the three cases are shown in

Fig. 6. This scalar measure of the horizontal nonuniformity could be

used as an indicator for when a check of the transducer (or scanner)

is necessary. A comparison between Figs. 5 and 6 indicates that a

notification level in the interval between 0.5 and 1 would have

detected the defects at an early stage in these cases.

4 | DISCUSSION

In this paper, a novel method for assessment of the horizontal uni-

formity of ultrasound systems, based on the use of a large number

of clinical images, has been presented. An initial algorithm for

F I G . 3 . Description of the three paths
used by the algorithm to create an SDR
curve from an initial stack of Nstack images.
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automatic detection of systematic vertical dark regions in the super-

ficial part of the images produced by linear array transducers has

also been described. The algorithm was applied to three different

cases from two vendors/transducers, where four FirstCall

measurements were available for comparison. In total 31409 images

were used in the analysis by the algorithm, 150 at a time. By visual

assessment of the 3D plot of the SDR curves in Fig. 5, the SDR

curves showed good subjective visual agreement with the FirstCall

measurements; single missing elements as well as larger defects

were detected by the algorithm. The method thus seems to be able

to provide information about the status of the transducer based on

clinical images alone and without the need to actually perform uni-

formity measurements on the scanner. However, it should be

emphasized that the method has not yet been properly optimized or

validated. Other ways of extracting the images and algorithms for

analysis are possible. Different variants of extracting and resizing the

images for other types of 1-D sequential array transducers could

also enable the use of the method for, e.g., curved array transducers.

However, a limitation of the present study is that this has not been

tested.

The algorithm used in the present paper has similarities to the

one described in IEC Technical Specification.24 In the IEC method, a

column-wise median curve from the superficial part of a median

image, based on 100 images or more acquired of a phantom as a

cine loop, is used for quantifying vertical darker streaks. Clinical

images have a more complex content than images from a phantom

with a homogenous structure. The variations in clinical images are

larger and therefore the algorithm used in the present paper was

developed; a column-wise median curve in itself varied too much to

be used for the clinical images in the used cases. Therefore, the

F I G . 4 . An example of an SDR curve for Case 1, representing the
darker streaks in the median image in the background.

F I G . 5 . 3D plots of the SDR curves for
Cases 1–3 and the reports (element
sensitivity) from four FirstCall
measurements performed on the three
transducers. The time interval between the
first and last SDR curve was approximately
30, 25, and 54 months for Cases 1, 2, and
3, respectively. The four SDR curves
corresponding in time to the four FirstCall
measurements are marked (multicolored
lines).
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levels of the SDR curves in the presented method cannot be com-

pared directly with the levels of the curve in the IEC Technical Spec-

ification. Furthermore, when a phantom measurement is carried out,

settings like dynamic range, spatial compounding and image depth

can be controlled and criteria for when to replace or repair the

transducer or scanner are the same from time to time. When using

clinical images, as in the present paper, all these settings can be dif-

ferent for the images, affecting the magnitude of the deviation in

gray level caused by defects in the transducer or scanner. Thus, the

area under the SDR curve is only intended to be an indicator of the

necessity of a controlled checkup. Nevertheless, the SDR curves

may contribute to the overall assessment in quality control. Impor-

tant advantages are that the evaluation is made in the same way

every time and that the images are produced with the settings actu-

ally used in the clinic.

The number of images used in the image stack for the construc-

tion of each SDR curve, Nstack, was set to 150 images in the present

paper. The higher Nstack, the more robust the algorithm becomes for

systematic defects that are present in all Nstack images, but the

longer it takes to replace the images in the stack and thus the longer

it may take for a new defect to be detected. Nstack was set to 150

in order to get illustrative SDR curves for the cases with few false

positives, but this number may be reduced for a good balance

between occasional false positives and an early detection of defects.

To detect intermittent defects it is also preferable to have a smaller

image stack. However, a single measurement of a phantom or a

FirstCall measurement may not detect intermittent defects. Sipil€a

et al.14 reported that in 11 of 35 tested transducers, occasional dead

elements had disappeared when making a yearly follow-up on trans-

ducers using FirstCall. They state that one possible reason for the

changes in the results could be occasional bad connections between

the FirstCall adapter and the transducer. This is the same type of

connector that is used in the scanner, which means that this type of

error can be intermittent when the transducer is connected to the

scanner as well. Breaks in the cable were the second most reported

defect (after delamination) by M�artensson et al.12 Cable failures are

by nature typical to sometimes be intermittent. By using the infor-

mation in the clinical images, the actual defects that are present in

the major part of the images are evaluated instead of being depen-

dent on the binary state of an intermittent defect when doing a

single measurement. For Case 1, it is possible to follow whether the

defects were present or not for individual elements by looking at

the SDR curves (Fig. 5). Noticeable for the SDR curves for Case 1 is

also that the peaks appear pairwise in the left and right part of the

image. This probably depends on cables or connection defects, since

this transducer (GE ML6-15) uses the same cable for two elements

for most of the elements.

Since the time from when a defect occurs to when it is discovered

should be as short as possible, M�artensson et al.13 concluded that

annual testing of the transducers is not sufficient and Hangiandreou

et al.15 recommended quarterly assessment of both mechanical integ-

rity and visual assessment of the uniformity. A quick scan test (includ-

ing uniformity test) plus a physical and mechanical inspection is

recommended to be performed every 3 months for mobile and emer-

gency room systems and every 6 months for others in the report of

AAPM Ultrasound Task Group No.1.3 Monthly quick checks that

include methods for detection of defective transducers are recom-

mended by EFSUMB Technical Quality Assurance Group25 and IEC

TS 62736.24 The method of automatic detection proposed in the pre-

sent paper is intended to be a complement to normal quality assur-

ance by continuous monitoring. It could be of use for scanners that

are storing enough images for the area under the SDR curve to be

affected earlier than the defect would be detected at the normal

scheduled quality control or by an electrical measurement of the

transducer, like FirstCall. In Cases 1–3, the average clinical image

acquisition time period needed to replace the whole image stack

when Nstack = 150 as used in the present paper, and thus the average

number of days for a defect to fully affect the SDR curve, was approx-

imately 12, 13, and 22 days, respectively. The investigated transduc-

ers were used in 46%, 14%, and 25% of the images produced by each

system for Cases 1–3, respectively. The proportion of images in the

image stack containing the defect that is needed to affect the SDR

curve depends on the defect characteristics. This has not been investi-

gated, but naturally affects the time for detection.

Using the area under the SDR curve is a simple way to imple-

ment an automatic detection of defects. More advanced ways could

involve applying weight functions that amplify the central part of the

SDR curve more than the peripheral part or that emphasize wider

streaks more than narrow ones, etc. In this way, the clinical rele-

vance of the scalar measure might be increased.

F I G . 6 . The area under the SDR curve for each SDR curve for the three cases.
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The described method has been developed for stored images.

One condition for this approach to be successful is that a given

transducer is always connected to the same scanner when used,

since there normally is no individual information (such as e.g., serial

number) in the DICOM tags regarding the transducer; just the type

for the Philips machine and none for the GE machines. In the used

cases the images were retrospectively collected from a database and

there was no possibility to be certain that the same individual trans-

ducers had been used for all images. However, the pattern in the

SDR curves makes it reasonable to assume that this was the case,

since the dark regions appeared in the same lateral positions over

time. Generally, if the transducer often is shifted between systems,

the method is not suitable. However, if a transducer is defective and

connected to another system that is also monitored, the defect will

eventually be detected in the new system. Similarly, if the defect

remains when transducers are switched, the defect can be assumed

to be internal and maybe be tied to a specific port. In this way, the

method can be a supplement if the defects are intermittent or if it is

difficult to localize the origin of the defect. However, if the intermit-

tent defects occur during periods of time short relative to the total

time to fill the image stack, the present method may have difficulties

detecting these defects.

An issue when extracting the images was that logotypes and

scales sometimes partly interfered on the largest connected region

of nonzero pixels. This was handled by detecting the vertical borders

in different ways for the two examined manufacturers, and would

probably have to be customized for other manufacturers. The used

method extracted the whole image and resized both depth and

width to get the same number of pixels for both width and depth

for all extracted images. This approach makes aberrations in vertical

bands not detectable, since different depths are mixed in the median

uniformity image. Logotypes and markers set by the users also

affected the outcome of the method, since all logotypes and markers

are part of the images. A result of this disadvantage can be seen for

Case 3 in Fig. 5 for the SDR curves around 1000, in the right part of

the curves. The darker detections were caused by distance measure-

ments in many adjacent images, where the results were shown as

white text in a black box in the superficial part of the images.

Darker streaks in the image caused by a defective transducer are

most easily detected in the superficial part of the image. If an image

is zoomed axially, the darker region caused by the defect of the

transducer will decrease with depth, but if the image is zoomed lat-

erally, the defect of the transducer and the dark region in the image

unfortunately no longer correlate laterally. Therefore, laterally

zoomed images were rejected. This exclusion criteria also rejected

images if the X values were estimated erroneously by the extraction

algorithm.

All scanner settings that affect beam forming, image processing,

and possible algorithms that the manufacturers have built into the

scanner to compensate for defects in the equipment, affect the clini-

cal image and thus the median uniformity image. If spatial com-

pounding is used, this will probably impact performance of the

method to be less sensitive in a similar way as spatial compounding

impacts visibility of defects when checking horizontal uniformity

using a phantom. For the images used in the present paper, there

was no information available whether spatial compounding was used

or not. Defects that can be detected using clinical images are also

present in the final processed clinical images, which is an advantage

if the only purpose is to detect aberrations in the images. However,

the major advantages of using stored clinical images are that this can

be done automatically and that there is no need to get admission to

the equipment — only access to the database where the images are

stored is required. If some kind of curves are presented, like the

ones in Fig. 5 in the present paper, it is easy to see the location, size

and width of the defects and to follow if they are intermittent,

steady or increasing.

Assessment of the image uniformity as part of a quality assur-

ance program is used for other imaging modalities as well, such as

e.g., computed26,27 and digital28 radiography systems and in nuclear

medicine.29,30 To use median images of clinical images for detecting

nonuniformities in these systems may also be possible, and could be

useful as a complement to quality assurance for early detection of a

subset of defects. For systems where the examined part of the

patient does not cover the whole detector, or where the examined

part like bones or lungs mostly covers the same part of the detector,

the median image becomes nonuniform in itself. For such systems, a

solution could be to subtract a reference median image of clinical

images produced when the detector is known to be fault free.

Finally, to use the information available in clinical images for

automated detection of changes in important parameters has been

described for other areas and purposes in the field of medical imag-

ing. Examples are automated detection of changes in patient expo-

sure31,32 and image quality33–35 in radiography and computed

tomography. Such methods are in line with the Medical Physics 2.0

initiative,36 emphasizing, e.g., the necessity for clinical imaging phy-

sics to focus on efficient methods and performing clinically relevant

tasks. The method introduced in the present work can hopefully

contribute to a more effective use of the ultrasound equipment by

providing early detection of transducer defects, in the end thus

potentially leading to an increased clinical performance.

5 | CONCLUSIONS

A method of using clinical images for assessment of horizontal unifor-

mity in ultrasound imaging has been introduced. The method is appli-

cable to, e.g., linear array transducers, as used in the present study.

An algorithm for automatic detection of horizontal nonuniformities

has been described and tested on more than 31000 clinical images

from three systems in a case study. Subjectively, the algorithm

seemed to be robust, as visually similar SDR curves were obtained for

images acquired at different time points over long periods of time.

Furthermore, the results showed good visual agreement with available

electrical measurements of the defective transducers, indicating a

potential use of clinical images for early and automatic detection of

defective transducers, as a complement to quality assurance.
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