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Abstract: Salmonella Enteritidis is a major foodborne pathogen worldwide. In this study, a total of
276 S. Enteritidis isolates, collected between 2016 and 2017 from human, food and farm/slaughterhouse
samples, were studied to enhance the understanding of the epidemiology of human salmonellosis
in Singapore. Results showed all 276 isolates belonged either to ST1925 (70.3%) or ST11 (29.7%),
with ST11 being significantly more frequent in extra-intestinal isolates and chicken isolates. Food
isolates, most of which were from poultry, showed the highest prevalence of resistance (33–37%)
against beta-lactams or beta-lactams/beta-lactamase inhibitor combination (ampicillin, piperacillin
and ampicillin/sulbactam). The analysis showed the detection of genes associated with resistance
to aminoglycoside genes (99.6%), tetracycline (55.1%), and beta-lactams (14.9%) of all isolates. Nine
types of plasmids were found in 266 isolates; the most common incompatibility group profiles were
IncFIB(S)-IncFII(S)-IncX1 (72.2%) and IncFIB(S)-IncFII(S) (15.8%). Most plasmid harbouring isolates
from chicken (63.6%, 14/22) and from human (73.8%, 175/237) shared the same plasmid profile
(IncFIB(S)-IncFII(S)-IncX1). SNP analysis showed clustering of several isolates from poultry food
products and human isolates, suggesting phylogenetic relatedness among these isolates. Lastly,
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this study provides important epidemiological insights on the application of phenotypic and next-
generation sequencing (NGS) tools for improved food safety and public health surveillance and
outbreak investigation of S. Enteritidis.

Keywords: Salmonella Enteritidis; sequence type; salmonellosis; epidemiology; antimicrobial resistance;
human; food; farm environment; integrated surveillance

1. Introduction

Salmonella Enteritidis is one of the most prevalent serovars causing foodborne hu-
man salmonellosis worldwide, frequently associated with the consumption of poultry
and eggs [1–3]. Similar to other non-typhoidal serovars, S. Enteritidis typically causes
gastrointestinal-related symptoms, although invasive strains of Salmonella have emerged
as a prominent cause of bloodstream and other invasive infections worldwide [4–6]. In
addition to its ability to cause infections, S. Enteritidis has been increasingly reported to be
resistant to commonly used antimicrobials, limiting therapeutic choices for treating severe
infections [3,7,8]. Hence, the World Health Organization (WHO) has listed Salmonella in the
global priority pathogen list of antibiotic-resistant bacteria [9].

Salmonella, a Gram-negative, facultative anaerobic bacterium, belongs to the family of
Enterobacteriaceae [10]. Salmonella can live in the intestinal tract of animals, including food
animals, and can be widely distributed in natural and man-made environments [11–14].
Antimicrobial-resistant Salmonella is known as a major public health challenge arising from
mis- or over-use of antibiotics in human and animal sectors, and can be transmitted to hu-
mans throughout the food chain [15]. Antimicrobial-resistant genes found in Salmonella can
further enhance their ability of biofilm formation for persistent contamination and survival
in the environment [16]. Salmonella can typically be acquired through the consumption
of contaminated foods including poultry, and eggs [17]. The risk of contamination and
subsequent infections can be increased by improper cooking and handling practices as well
as by cross-contamination and time-temperature abuse of ready-to-eat food [18,19].

In Singapore, non-typhoidal salmonellosis has been a notifiable foodborne disease
since 2008. In 2016, the reported incidence rate of non-typhoidal salmonellosis (39.4 per
100,000 population) was approximately three times higher than that reported in 2008
(14.8 per 100,000 population) [20]. Specifically, S. Enteritidis has consistently been a fre-
quent serovar associated with >20% of human cases in Singapore [21]. Between 2012 and
2016, there were 1152 reported S. Enteritidis human infections, which would represent a
considerable burden of diseases, in Singapore [18]. In addition, previous studies reported
that S. Enteritidis was one of the predominant serovars in raw poultry products and eggs
products as well as in cooked or ready-to-eat dishes containing poultry or eggs as ingredi-
ents [21,22]. The same studies also reported phenotypic antimicrobial resistance profiles
in S. Enteritidis [22]. Another study investigated the use of next-generation sequencing
approach to elucidate genetic relatedness of epidemiological linked S. Enteritidis isolates
from suspected outbreaks [23]. These prior data informed the epidemiological significance
of S. Enteritidis in Singapore. Notwithstanding, to our knowledge, phenotypic and geno-
typic characterisation of S. Enteritidis isolates available from humans and the food chain
are limited.

To gain a deeper understanding of the epidemiology of human salmonellosis in Sin-
gapore, this study sequenced the genomes of 276 S. Enteritidis isolates from human, food
and farm/slaughterhouse samples in 2016–2017. We identified sequence types, virulence
factors, and phylogenetic relationships. In addition, the study examined and compared an-
timicrobial resistance genotypes with the phenotypes determined by broth micro-dilution.
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2. Materials and Methods
2.1. Collection of Salmonella Isolates

A total of 276 S. Enteritidis isolates (human, n = 246; food, n = 27; farm and slaughter
house environment, n = 3), isolated between 2016 and 2017 (study period), were included in
this study. The human isolates, contributed by three public hospitals, namely KK Women’s
and Children’s Hospital, Singapore General Hospital and Tan Tock Seng Hospital, were
retrieved from bacterial biobanks, which comprise isolates from specimens from inpatients
or notified foodborne salmonellosis cases, whereas the food and farm/slaughterhouse
isolates available during the same study period were retrieved from the archived bacterial
biobanks of the national food safety, animal and environmental health laboratories. The
details of isolates are shown in Table 1. Isolates were streaked on tryptone soya agar (Oxoid,
UK) to confirm purity and for further characterisation as described below.

Table 1. Number of S. Enteritidis isolates and respective sequence types.

Types of Samples Isolates (n) ST1925 (n) ST11 (n)

Human 246 184 62
Human (intestinal) 171 135 36
Human (extra-intestinal) 75 49 26

Food 27 8 19
Chicken meat 23 6 17
Cooked or ready-to-eat food 2 1 1
Duck meat 2 1 1

Farm and slaughter house environment 3 2 1
Environmental swab (drag swab/farm) 2 2 0
Water (ice block/slaughter house) 1 0 1

2.2. Genomic DNA Extraction for Whole Genome Sequencing (WGS) and Analysis

Whole-genome sequencing was performed by the Genome Institute of Singapore
and the Agency for Science, Technology and Research. Briefly, 1 µL loopful of bacterial
culture from glycerol vial was inoculated into the 5 mL of Universal Pre-enrichment Broth
(Acumedia, Lansing, MI, USA) for overnight (18–24 h) incubation at 37 ◦C. After the incu-
bation, 1 mL (approximately containing >105 cells) of each S. Enteritidis overnight culture
in Universal Pre-Enrichment Broth broth was centrifuged. Next, the bacterial cells were
lysed by using enzymatic lysis buffer at 37 ◦C for 45 min, followed by extraction using the
DNeasy Blood and Tissue Kit (QIAGEN, Valencia, CA, USA) according to the manufac-
turer’s instructions. Genomic DNA shearing was performed by using an M220 Focused
Ultrasonicator (Covaris, Woburn, MA, USA), and library preparation was performed by
using NEBNext® Ultra™ DNA Library Prep Kit (NEB, Ipswich, MA, USA). Samples were
then sequenced by using a HiSeq 4000 sequencer (Illumina, San Diego, CA, USA) with
2 × 151-bp reads.

All primary sequence analysis was performed by the Genome Institute of Singapore
Efficient Rapid Microbial Sequencing (GERMS). Reference-based analyses were performed
by using strain LT2 (Genbank accession NC_003197.2). FASTQ files were mapped by
using Burrows-Wheeler Aligner version 0.7.17 software [24]. Indel realignment and single-
nucleotide polymorphism (SNP) calling was performed by using Lofreq* version 2.1.2
with default parameters [25]. Approximately Maximum-Likelihood trees were made using
FastTree 2.1.10 [26]. All phylogenetic trees were visualised with GGTREE version 3.2 in R
version 3.2.2 (https://www.R-project.org) [27]. Multilocus sequence type (MLST) predic-
tions were made by using SRST2 version 0.1.8 for Illumina sequenced strains or manually
by using BLASTN for fully assembled reference sequences, using the MLST database
(http://pubmlst.org/salmonella (accessed on 1 January 2021)) [28–30]. Resistance gene
prediction was performed using the ARGannot resistance gene database included with
SRST2 [31]. Serotype prediction was performed using the SeqSero programme [32]. Viru-
lence gene prediction was made using VFDB as a database as recommended by SRST2 [30].

https://www.R-project.org
http://pubmlst.org/salmonella
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Additionally, the assembled genome sequences were analysed for the identification of
Salmonella Pathogenicity Islands (SPIs) and plasmids using Centre for Genomic Epidemi-
ology (CGE)’s SPIFinder 1.0 (https://cge.cbs.dtu.dk/services/SPIFinder/ (accessed on 1
January 2021)) and PlasmidFinder 2.1 (https://cge.cbs.dtu.dk/services/PlasmidFinder/
(accessed on 1 January 2021)), respectively. Raw sequence data was deposited into Genbank
under Bioproject accession number PRJNA810928.

2.3. Phenotypic Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing (AST) was performed by the broth microdilu-
tion method to determine the minimum inhibitory concentration (MIC). MicroScan Neg
MIC Panel Type 44 (Beckman Coulter, Inc., Brea, CA, USA) was used following the man-
ufacturer’s instructions. The antimicrobial susceptibility profiles of each isolate were
determined in accordance with the available MIC interpretations published by the Clinical
and Laboratory Standards Institute (CLSI) or EUCAST as appropriate. The isolates with
MICs in the sensitive and intermediate range were categorised as susceptible to avoid
overestimation of resistance. Isolates that were resistant to more than or equal to three
antimicrobial classes were classified as multi-drug-resistant strains.

All isolates were subjected to antimicrobial susceptibility testing against 28 antimicrobials
belonging to nine antimicrobial classes: amikacin; amoxicillin/k clavulanate; ampicillin;
ampicillin/sulbactam; aztreonam; cefepime; cefotaxime; cefoxitin; ceftazidime; cefuroxime;
chloramphenicol; ciprofloxacin; colistin; doripenem; ertapenem; fosfomycin; gentamicin;
imipenem; levofloxacin; meropenem; minocycline; nitrofurantoin; norfloxacin; piperacillin;
piperacillin/tazobactam; tetracycline; tobramycin; trimethoprim/sulfamethoxazole. Ex-
tended spectrum beta lactamase (ESBL) enzyme production was confirmed using a combi-
nation of cefotaxime/k clavulanate and ceftazidime/k clavulanate.

2.4. Statistical Calculation and Analysis

Statistical calculations were done using the SPSS (IBM SPSS Statistics for Windows,
Version 27.0; IBM Corp., Armonk, NY, USA). Associations between virulence gene markers,
antimicrobial resistance, sequence types and potential invasiveness (observation in extra-
intestinal isolates) of the human isolates were calculated using Pearson’s Chi-squared
test or Fisher’s exact test. Z-scores for two population proportions were calculated using
https://www.socscistatistics.com/tests/ztest/default2.aspx (accessed on 1 January 2021).

3. Results

All S. Enteritidis isolates in this study belonged to ST1925 (70.3%, n = 194) and ST11
(29.7%, n = 82) (Table 1). Of the human isolates, 69.5% (171/246) and 30.5% (75/246) were
from intestinal (stool) and extra-intestinal (blood and other organs) samples, respectively,
and were ST1925 (n = 184) or ST11 (n = 62) (Table 1). The proportion of ST11 (41.9%,
26/62) associated with the potentially invasive isolates from extra-intestinal samples was
significantly higher than the proportion of ST1925 (26.6%, 49/184) (p < 0.05 by Z-score).
Statistical analysis showed a significant association between ST11 and the isolates being
from the extra-intestinal samples (Chi Square 5.1257, p < 0.05).

Of the 27 food isolates, 23 (85.2%) were from raw chicken meats (chilled, frozen and
minced) and the rest were from raw duck meats (n = 2) and cooked food (n = 2). A total
of 17 of the 23 (73.9%) chicken isolates belonged to ST11. Of the three isolates from farm
and slaughterhouse environments, two isolates belonged to ST1925 and one isolate from a
water sample belonged to ST11 (Table 1).

3.1. Phenotypic Antimicrobial Resistance (Broth Micro Dilution)

All S. Enteritidis isolates in this study were susceptible to amikacin, piperacillin/tazobactam,
imipenem, meropenem, doripenem, ertapenem, ciprofloxacin, levofloxacin, trimetho-
prim/sulfamethoxazole, chloramphenicol and colistin. Almost all isolates, (98.9%; n = 273)
were resistant to at least one antimicrobial tested. One human intestinal and three chicken

https://cge.cbs.dtu.dk/services/SPIFinder/
https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://www.socscistatistics.com/tests/ztest/default2.aspx
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meat isolates were susceptible to all antimicrobials tested. The isolates were most commonly
resistant to tetracyclines (tetracycline 54.7%; minocycline 35.5%), penicillins (ampicillin,
16.6%; piperacillin, 15.2%), fluoroquinolones (norfloxacin 15.9%) and beta lactam/beta
lactamase inhibitor combination (ampicillin/sulbactam 14.8%). Two (0.7%) ESBL-positive
isolates were detected from one intestinal and one extra-intestinal (knee) sample; both
isolates were multidrug resistant.

Figure 1 shows the antimicrobial susceptibility of the human and food isolates with
the highest percentages of isolates resistant to minocycline, norfloxacin, tetracycline,
piperacillin, ampicillin and ampicillin/sulbactam. The percentages of human isolates
resistant to tetracycline and minocycline were higher than those of food isolates. The
percentages of extra-intestinal isolates resistant to norfloxacin, ampicillin, piperacillin and
ampicillin/sulbactam were higher than those of intestinal isolates, whereas the percentages
of intestinal isolates resistant to tetracycline and minocycline were higher than those of
extra-intestinal isolates (p < 0.05 by Fisher’s Exact test) (Figure 2). The percentages of ST11
isolates resistant to ampicillin, norfloxacin, piperacillin and ampicillin/sulbactam were
higher than those of ST1925 isolates (Figure 3) (p < 0.05 by Fisher’s Exact test) whereas
ST1925 isolates had higher resistance towards tetracycline and minocycline.
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Figure 1. Phenotypic antimicrobial resistance in S. Enteritidis isolates, comparing human and
food isolates.

There were 56 multi-drug-resistant (MDR) isolates: 44/246 (17.9%) from human, 11/27
(40.7%) from food and 1/3 (33.3%) from a farm/slaughterhouse environment (environmen-
tal swab). Twenty-one (21/75, 28.0%) and 23 (23/171, 13.5%) isolates from extra-intestinal
and intestinal isolates were found to be MDR. There was a significant association between
MDR and the isolates being from the extra-intestinal samples (Chi Square 7.633, p < 0.05).

3.2. Genotypic Antimicrobial Resistance, Virulence, SPI and Plasmid Profiles

Genomic analysis showed that 99.6% of the isolates carried at least 1 antimicrobial
resistance gene. The highest number of antimicrobial resistance genes detected in an MDR
intestinal isolate from a human stool sample was five.



Int. J. Environ. Res. Public Health 2022, 19, 5671 6 of 14Int. J. Environ. Res. Public Health 2022, 19, x 6 of 15 
 

 

 
Figure 2. Phenotypic antimicrobial resistance in S. enteritidis, comparing intestinal and extra-
intestinal human isolates. 

 
Figure 3. Phenotypic antimicrobial resistance in ST1925 and ST11 isolates. 

There were 56 multi-drug-resistant (MDR) isolates: 44/246 (17.9%) from human, 11/27 
(40.7%) from food and 1/3 (33.3%) from a farm/slaughterhouse environment 
(environmental swab). Twenty-one (21/75, 28.0%) and 23 (23/171, 13.5%) isolates from 
extra-intestinal and intestinal isolates were found to be MDR. There was a significant 
association between MDR and the isolates being from the extra-intestinal samples (Chi 
Square 7.633, p < 0.05). 

  

0%

20%

40%

60%

80%
Te

tr
ac

yc
lin

e

M
in

oc
yc

lin
e

N
or

flo
xa

ci
n

A
m

pi
ci

lli
n

Pi
pe

ra
ci

lli
n

A
m

p/
Su

lb
ac

ta
m

N
itr

of
ur

an
to

in

C
ef

ot
ax

im
e

C
ef

ta
zi

di
m

e

C
ef

ur
ox

im
e

A
m

ox
/K

 C
la

v

A
zt

re
on

am

C
ef

ox
iti

n

C
ef

ep
im

e

Fo
sf

om
yc

in

To
br

am
yc

in

G
en

ta
m

ic
in

Pe
rc

en
ta

ge
 o

f i
so

la
te

s 
re

si
st

an
t t

o 
an

tim
ic

ro
bi

al
s

Antimicrobials 

Intestinal Extra-intestinal

0%

20%

40%

60%

80%

Te
tr

ac
yc

lin
e

M
in

oc
yc

lin
e

A
m

pi
ci

lli
n

N
or

flo
xa

ci
n

Pi
pe

ra
ci

lli
n

A
m

p/
Su

lb
ac

ta
m

N
itr

of
ur

an
to

in

C
ef

ur
ox

im
e

C
ef

ot
ax

im
e

C
ef

ta
zi

di
m

e

A
m

ox
/K

 C
la

v

A
zt

re
on

am

C
ef

ox
iti

n

Fo
sf

om
yc

in

C
ef

ep
im

e

To
br

am
yc

in

G
en

ta
m

ic
inPe

rc
en

ta
ge

 o
f i

so
la

te
s 

re
si

st
an

t t
o 

an
tim

ic
ro

bi
al

s

Antimicrobials

ST1925 ST11

Figure 2. Phenotypic antimicrobial resistance in S. Enteritidis, comparing intestinal and extra-
intestinal human isolates.
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Figure 3. Phenotypic antimicrobial resistance in ST1925 and ST11 isolates.

Aminoglycoside resistance genes were the most detected in 99.6% (n = 275) of the
isolates, followed by tetracycline resistance genes (152, 55.1%), beta-lactam resistance genes
(41, 14.9%), folate pathway inhibitor resistance genes (2, 0.7%), fluoroquinolones resistance
genes (1, 0.4%) and polymyxin resistance genes (1, 0.4%) (Table 2). A colistin resistance gene
(mcr1) was detected in an ST1925 isolate from a human stool sample which was, however,
phenotypically susceptible (>4 µg/mL) to colistin in MIC susceptibility testing [33,34].
Similarly, a fluoroquinolone resistance gene was detected in a ST11 isolate from a human
stool sample but the isolate was phenotypically susceptible to fluroquinolones. One ST11
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isolated from a water sample from farm/slaughterhouse environment, and one ST1925
from a human stool were detected that had folate inhibitor pathway resistance genes but
showed phenotypic susceptibility to folate pathway inhibitors tested in the study.

Table 2. Antimicrobial resistance-related genes in S. Enteritidis isolates (n = 276).

Human (n = 246) Food (n = 27) Animal (n = 3)

Intestinal
(n = 171)

Extra-Intestinal
(n = 75)

Chicken
(n = 23)

Non-Chicken
(n = 4)

Environmental
Swab (n = 2)

Water
(n = 1) Total

Aminoglycosides

Aac6-Iaa_AGly 171 75 22 4 2 1 276
Aac3-Iva_AGly 1 0 0 0 0 0 1

AadA_AGly 1 0 0 0 0 0 1
Aph4-Ia_AGly 1 0 0 0 0 0 1

Tetracycline tetA_tet 108 * 33 5 3 2 1 153

Beta-lactam
TEM-1D_bla 12 16 * 7 1 0 0 36

CMY_bla 2 0 0 0 1 0 3
CTX-M-1_bla 1 1 0 0 0 0 2

Polymyxin mcr1_colistin 1 0 0 0 0 0 1
Fluoroquinolone qnr-S_flq 1 0 0 0 0 0 1
Folate pathway

inhibitor
SulII_sul 0 0 0 0 0 1 1
SulIII_Sul 1 0 0 0 0 0 1

* p < 0.05 by Chi-Square test.

Statistical analysis showed a significant positive association between the detection of
TEM1D_bla gene and the isolates being from extra-intestinal samples (Chi Square 10.710
and 5.239, p < 0.05). Conversely, a significant negative association was observed between
the detection of tetA gene and the isolates being from the extra-intestinal samples (Chi
Square 8.020, p < 0.05).

Point mutations in the quinolone resistance-determining regions (QRDRs) of gyrA,
gyrB, parC, and parE were observed among S. Enteritidis isolates (33.7%, 93/276). The most
frequent mutation in gyrA is D87Y occurring in 47.3% of the isolates (44/93), followed
by D87G (16.1%, 15/93), S83Y (14.0%, 13/93), S83F (8.6%, 8/93) and D87N (4.3%, 4/93).
All isolates harbouring mutations in gyrA were found to be resistant or having reduced
susceptibility against norfloxacin (fluoroquinolone), suggesting the likely association of
gyrA-associated mutations in response to antimicrobial selection pressure [35]. Mutations
in parE (4/93, A61T), pmrB (3/93, H164Y), gyrB (1/93, T717N), and parC (1/93, T57S) were
less frequent among S. Enteritidis in this study.

All isolates, except one from a chilled minced chicken sample, were detected with
virulence genes with an average number of 58.9 virulence genes. There were significant
positive associations between the detection of X1 or X1TaxC genes and the isolates being
from the human extra-intestinal (invasive) samples (Chi Square 5.602 and 5.239, p < 0.05).

All S. Enteritidis isolates contained Salmonella pathogenicity island, SPI-1, SPI-3 to
SPI-5, SPI-13, SPI-14 and centisome 63 pathogenicity island, C63PI-1; with the exception of
five isolates which contained the following SPIs, respectively (one human-intestinal isolate
with SPI-3, SPI-8, SPI-13, SPI-14; one human extra-intestinal isolate, one chicken isolate,
and one farm and slaughter house environment isolate with SPI-1, SPI-3, SPI-5, SPI-13,
SPI-14 and C63PI; one human-intestinal isolate with SPI-3, SPI-8, SPI-13, and SPI-14; and
one chicken isolate with SPI-1, SPI-3 to SPI-5, SPI-12 to SPI-14 and C63PI). There were no
major differences in SPI profiles between the intestinal and extra-intestinal isolates.

Of 276 S. Enteritidis isolates, 266 isolates (237 from human; 22 from chicken; 3 from
a farm/slaughterhouse environment; 2 from duck; and 2 from cooked or RTE food)
carried plasmids. The most common plasmid profiles were IncFIB(S)-IncFII(S)-IncX1
(72.2%, 192/266), IncFIB(S)-IncFII(S) (15.8%, 42/266), and ColpVC-IncFIB(S)-IncFII(S)-
IncX1 (6.0%, 16/266). These plasmids can encode virulence and antimicrobial resistance
genes, and can contribute to the bacterial diversification and adaptation through horizon
gene transfer [36–38]. In addition, plasmids can serve as epidemiological markers of vari-
ous bacterial strains that are useful for surveillance and outbreak investigation of potential
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emergence of virulent subtypes [39,40]. Among 22 S. Enteritidis isolates from chicken, the
majority (63.6%, 14/22) shared a matching plasmid profile (IncFIB(S)-IncFII(S)-IncX1) with
the human isolates (73.8%, 175/237), suggesting their limited host reservoirs [41,42].

3.3. Phylogenetic Analysis

Figure 4 shows the phylogenetic relatedness of 276 S. Enteritidis isolates based on
whole-genome SNP analysis. Overall, WGS further separated the S. Enteritidis isolates
that belonged to the same MLST sequence type with no overlap between the two sequence
types. No distinct phylogenetic clusters of isolates between human extra-intestinal (pink
circles) and intestinal isolates were observed. Two isolates from chicken meat (SGEHI2017-
VL187, and SGEHI2017-VL168) and one isolate from duck meat (SGEHI2016-S166) were
clustered with the human isolates (less than 150 SNPs difference). One isolate from duck
meat (SGEHI2016-S224) clustered (81 SNPs difference) with the isolate from a swab from
a farm/slaughter house (SGEHI2016-S225). Several chicken meat isolates (n = 10) were
clustered (1 to 159 SNPs difference) with human isolates.
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Figure 4. Maximum-likelihood SNP trees of 276 S. Enteritidis isolates. Food, and farm/slaughter house environment isolates were labelled on the tree, whereas
non-labelled isolates were human isolates.
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4. Discussion

In this study, we investigated 276 S. Enteritidis isolates from various sources. A
relatively smaller proportion of isolates from food and farm/slaughterhouse samples from
2016–2017 were available compared to isolates from human samples. This was due to an
overall downward trend in the relative occurrence of S. Enteritidis among Salmonella isolates
from different food categories, where S. Enteritidis was more frequently isolated from fresh
than frozen chicken meat samples, as reported by a previous study from Singapore [18].

4.1. Sequence Type in S. Enteritidis Isolates

Our finding of S. Enteritidis as the most common serovar associated with nontyphoidal
salmonellosis is in line with the global trend reported by the US Centers for Diseases
Control and Prevention and European Food Safety Authority [43,44]. In this study, only
two sequence types, ST11 and ST1925, were identified among S. Enteritidis isolates from
human, food and farm/slaughterhouse samples. In contrast, studies showed, while ST11
and ST1925 were the predominant sequence types, there had been other sequence types
less frequently found among S. Enteritidis isolates in food, animals and humans in various
countries [45–51].

Both sequence types ST11 and ST1925 were known to be geographically widespread
and had been reported in various sectors (human, food, chicken slaughterhouses) [48,52,53].
The high prevalence of ST11 among cases has been reported, with 95% of S. Enteritidis
isolated in England and Wales between April 2014 and March 2015 belonging to ST11.
ST11 accounted for 89% of the 17,867 S. Enteritidis entries in the EnteroBase database,
whereas ST1925, the single locus variant of ST11, had 84 entries in the EnteroBase (http:
//enterobase.warwick.ac.uk (accessed on 1 January 2021)). In contrast, findings from this
study showed that 70% of the S. Enteritidis isolates belonged to ST1925. A similar trend was
reported in an earlier study in Singapore where all S. Enteritidis isolates from suspected
outbreaks belonged to ST1925 [23]. In addition, ST1925 strains were previously reported
in various types of cooked or ready-to-eat food samples collected from the retail food
establishments in Singapore [52]. These suggest the epidemiological significance of ST1925,
and possible roles of retail food contamination in the transmission dynamics of ST1925 in
the local settings.

However, although ST11 forms a minority of the isolates among cases in Singapore,
it was more likely to be found among human extra-intestinal isolates, when compared
with ST1925. The finding was consistent with previous studies that showed ST11 as one
of the sequence types most commonly associated with invasive salmonellosis in Asia
and Africa [51,54]. Studies showed that ST11 was a predominant sequence type found in
avian, chicken and chicken products in Malaysia [45,46,50]. Another study showed ST11
infections reportedly linked to eggs and egg products related to a multi-country outbreak
in five European Union/European Economic Area countries and the United Kingdom in
2021 [55]. The occurrence of the potentially invasive sequence type in the chicken products
(74% of the chicken isolates), coupled with the emergence of antimicrobial resistance could
be of public health concern and should be closely monitored. The finding emphasises the
importance of reducing the Salmonella prevalence in these chicken products before they
reach the retail shelves, as well as proper handling and thorough cooking of chicken meat
to reduce the food safety risk of Salmonella and other foodborne pathogens.

4.2. Antimicrobial Resistance Phenotype in S. Enteritidis Isolates

Although Salmonella usually causes self-limiting gastroenteritis without the need
of antimicrobials, it may lead to severe infection in immunocompromised patients who
require antimicrobial therapy [4]. Our finding of human S. Eenteritidis isolates showing
the highest resistance rate against tetracycline may be of concern as tetracycline has an
extensive application in human and veterinary medicine as well as in agriculture and
aquaculture sectors [56]. Wang et al., (2019) reported a surge in tetracycline-resistance
in Salmonella isolates from humans which coincided with a similar surge in food-animal

http://enterobase.warwick.ac.uk
http://enterobase.warwick.ac.uk
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isolates, suggesting the roles of food animals in serving as reservoirs of tetracycline-resistant
organisms to humans [57]. Tetracyclines are being widely used as growth promoters in
animal husbandries and are identified by the WHO as highly important for human health,
thus monitoring of the efficacy of these antibiotics is paramount [9,58].

None of the S. Enteritidis isolates in this study exhibited resistance to colistin. In
addition, resistance of Salmonella isolates in this study against those WHO’s critically
important antimicrobials were at relatively low levels (<5%) suggesting that, for now,
effective antimicrobials for the treatment of salmonellosis remain available. In contrast,
the higher percentages of isolates resistant to ampicillin, norfloxacin, piperacillin and
ampicillin/sulbactam of 15 to 20%, especially among invasive isolates from extra-intestinal
samples, call for close monitoring and action to reverse the trend [59–61].

Food isolates, mainly from poultry products, showed the greatest resistance against
beta-lactams or beta-lactams/beta-lactamase inhibitor combination (ampicillin, piperacillin
and ampicillin/sulbactam) at 33–37%. The similar resistance patterns in poultry were
reported in countries where Singapore imports most of its poultry products from [62].
S. Enteritidis isolated from raw, frozen and stuffed chicken associated with multistate
disease outbreaks in the United States were resistant to ampicillin [63]. In Malaysia, a
relatively high percentage (72.7%) of S. Enteritidis isolated from raw chicken meats from
wet markets and supermarkets showed ampicillin resistance, although all showed inhibited
growth in the presence of beta-lactamase inhibitor [64].

This study further observed statistically significant associations between multidrug
resistance, sequence type (ST11) and the isolates from extra-intestinal samples. These
suggest that antimicrobial resistance in Salmonella may associate with an increased risk of
invasiveness and more severe infections. While such hypothesis warrants further investi-
gations, findings from this study highlight the importance of integrated analysis of both
antimicrobial resistance and virulence factors, in order to enhance our understanding of
the impact of such evolution on public health.

4.3. Phylogenetic Relation between Some Human, Food and Farm/Slaughterhouse Isolates

Whole-genome sequence (WGS) analysis offers a greater resolution for differentiating
bacterial isolates than other microbial subtyping methods such as serotyping and MLST. In
agreement with other work, this study found that WGS-based SNP analysis was able to
further discriminate S. Enteritidis isolates belonging to the same sequence type, separating
phylogenetic unrelated isolates from related ones [23,65,66].

The clustering of human isolates with food isolates from poultry food products and
one isolate from an environmental swab from a farm/slaughterhouse show a close phylo-
genetic relationship between the isolates, suggesting the possibility of common chains of
transmission. This finding, together with previous evidence, indicates that poultry meat
likely plays an important role in the epidemiology of S. Enteritidis in Singapore [18]. More
specific epidemiological information, with a higher number of the isolates, is required to
better understand the disease transmission pathway. The use of whole genome sequencing
on a larger collection of Salmonella isolates can be further complemented by the application
of mathematical models, coupling with the machine-learning algorithms capable of recog-
nizing patterns in complex datasets, for the better estimation of the proportion of human
salmonellosis attributable to various food, animals and environmental sources.

5. Conclusions

Despite control efforts, S. Enteritidis remains a significant cause of foodborne illnesses
worldwide. To this end, the study integrated microbial and molecular subtyping insights
generated from cross-sectoral ‘One Health’ efforts to offer a step forward in understanding
the epidemiology of human salmonellosis. Our results highlight the phylogenetic link
between the isolates from human and poultry, and the importance of monitoring the
emergence of antimicrobial resistance, especially among ST11 isolates, which are known to
be more likely to be invasive. The study is limited by the number of isolates. Analysis of a
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larger set of isolates, particularly from food, animal and other parts of the environment,
with the inclusion of both sporadic and outbreak-related isolates, as well as patients’
demographics related to human isolates over a larger time period, is recommended in order
to obtain a more comprehensive picture of the molecular epidemiology of S. Enteritidis.
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