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Abstract
There is extensive variation in DNA methylation between individuals and ethnic groups.

These differences arise from a combination of genetic and non-genetic influences and po-

tential modifiers include nutritional cues, early life experience, and social and physical envi-

ronments. Here we compare genome-wide DNAmethylation in neonatal cord blood from

African American (AA; N = 112) and European American (EA; N = 91) participants of the

CANDLE Study (Conditions Affecting Neurocognitive Development and Learning in Early

Childhood). Our goal is to determine if there are replicable ancestry-specific methylation

patterns that may implicate risk factors for diseases that have differential prevalence be-

tween populations. To identify the most robust ancestry-specific CpG sites, we replicate our

results in lymphoblastoid cell lines from Yoruba African and CEPH European panels of Hap-

Map. We also evaluate the influence of maternal nutrition—specifically, plasma levels of vi-

tamin D and folate during pregnancy—on methylation in newborns. We define stable

ancestry-dependent methylation of genes that include tumor suppressors and cell cycle

regulators (e.g., APC, BRCA1,MCC). Overall, there is lower global methylation in African

ancestral groups. Plasma levels of 25-hydroxy vitamin D are also considerably lower

among AA mothers and about 60% of AA and 40% of EA mothers have concentrations

below 20 ng/ml. Using a weighted correlation analysis, we define a network of CpG sites

that is jointly modulated by ancestry and maternal vitamin D. Our results show that differ-

ences in DNA methylation patterns are remarkably stable and maternal micronutrients can

exert an influence on the child epigenome.

Introduction
Epigenetics refer to a host of molecular mechanisms that can influence phenotypes by regulat-
ing gene expression. In humans, much of the research on the epigenome has focused on DNA
methylation, partly because methylation is far more amenable to high-throughput and semi-
quantitative genome-wide assessments using microarrays. The epigenome-wide surveys have
characterized significant inter-individual variability that likely results from a combination of
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influences that include environmental stimuli [1, 2], diet and medication use [3–6], psychoso-
cial factors [7–9], and physiological changes [10, 11]. While both DNA methylation and gene
expression have partially stochastic kinetics [12–14], changes in the methylome may be com-
paratively stable and serve as reliable indicators of environmental and developmental condi-
tions [15, 16].

There is extensive population and ancestry dependent variation in DNAmethylation. Ac-
cording to recent studies, African populations have generally lower global methylation than
Caucasians [17, 18]. Additionally, Lam et al. [19] reported that the methylation measured in
peripheral blood correlates with leukocyte composition and is associated with ethnicity, psy-
chosocial stress, and early-life socioeconomic status. Studies that have explored genetic regula-
tion of DNA methylation show that variation in the methylome has ancestry-dependent
heritability patterns that are modulated by underlying quantitative trait loci or meQTLs [18,
20–24]. The variability in methylation is extensive and it is difficult to disentangle the relative
contribution of genetics vs. environment, and to estimate the health implications of individual
or ethnic variation.

In the United States, African Americans suffer from disproportionately higher rates of
chronic diseases (e.g., diabetes, hypertension, heart diseases) and African American infants
also show poorer birth outcomes compared to Caucasian counterparts [5, 25, 26]. The reasons
for these persistent health disparities are not entirely clear but are, without doubt, multifactori-
al and arise from a combination of social, environmental, nutritional, and biological factors.
The risk conditions start early in life, as early as the prenatal stage, and epigenetic pathways
offer a potential mechanism for perpetuating the effects of early life exposures and setting the
stage for future outcomes [25]. Among the many factors, maternal diet and nutritional state
are tractable modifiers of the infant epigenome that have impact on offspring health [3, 4, 27,
28]. For instance, folate is a methyl group donor and maternal deficiency is correlated with al-
tered DNAmethylation in neonate [29–31]. Similarly, maternal vitamin D is the largest predic-
tor of circulating vitamin D in the neonate, and vitamin D levels are also reported to influence
DNAmethylation [32–35]. Notably, plasma levels of vitamin D are known to be considerably
lower among AAs and this has been attributed to differences in skin pigmentation, availability
of vitamin D-binding proteins, and genetic polymorphism [36].

In this study, we systematically compare DNAmethylation in neonatal cord blood from Af-
rican American (AA) and European American (EA) participants of the CANDLE Study (Con-
ditions Affecting Neurocognitive Development and Learning in Early Childhood; http://
candlestudy.com) [18, 37–39]. Our goal is to determine if there are replicable ancestry-specific
methylation patterns that may implicate risks for diseases that disproportionately affect one
group over another. To identify the most robust ancestry-specific CpG sites, we replicate our
results in HapMap samples [21]. We then evaluate if maternal micronutrients during pregnan-
cy, specifically maternal vitamin D and folate levels, explain some of the population differences.
Finally, we apply a network level analysis to examine if population and nutritional differences
influence global patterns in DNAmethylation in newborns.

Materials and Methods

Study sample
The present study used a subset of the CANDLE samples. Study design and details have been
reported [39]. 1,503 healthy women in their second trimester of pregnancy were enrolled be-
tween 2005 and 2011 as part of this longitudinal study. Briefly, the inclusion criteria were: a res-
ident of Shelby County Tennessee, able to speak and understand English, age 16–40 years old,
and 16–28 weeks of gestation with a singleton pregnancy. All subjects 18 years or older
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provided written informed consent prior to the assessments. For subjects 16–17.9 years, written
informed consent was provided by legally authorized representatives. The study was conducted
in accordance with the Helsinki Declaration and was approved and reviewed by the Institution-
al Review Board of the University of Tennessee Health Science Center. Blood samples were col-
lected from a subset of participants for an ancillary study on molecular biomarkers and 216
cord blood samples were assayed for genome-wide DNA methylation [18, 37, 38, 40]. For this
particular report, we limited our analysis to data from self-reported African Americans (N =
112) and European Americans (N = 91) that had DNA methylation data. Samples with self-re-
ported mixed ancestry were excluded.

Nucleic acid extraction and microarrays processing
Newborn umbilical cord blood was collected at delivery. Whole blood was centrifuged and
buffy coat layer isolated and frozen until processed for nucleic acid purification. DNA extrac-
tion was performed with Wizard genomic DNA purification reagents (Promega; http://www.
promega.com).

Processing of DNA for methylation microarrays is provided in [18, 37, 38]. In brief, 750 ng
genomic DNA was bisulfite converted using the EZ DNA methylation kit (Zymo Research;
http://www.zymoresearch.com) and interrogated with the Illumina Humanmethylation27
BeadChip (http://www.illumina.com), which assays methylation levels at>27,000 CpG sites.
Raw data was processed using the Illumina GenomeStudio (version 2009.1). Level of methyla-
tion was estimated by the β value, which is the ratio of fluorescent intensities between the
methylated probe and unmethylated probe. This ranges from 0 to 1 and represents the percent
methylation at a CpG site. The GenomeStudio software calculates a detection p-value, which
estimates the probability that the signal from the target CpG is distinguishable from back-
ground noise by comparing the intensity of the target probe against negative control. β values
with detection p-value� 0.001 were considered as missing data. Additionally, one probe with a
median detection p-value� 10-6 across all samples was dropped from analysis. The data was
then corrected for batch effects using the COMBAT R package [41, 42]. Following the batch
correction, the β values were converted to M-values using a logit transform as described in Du
et al. [43]. 5,862 CpG probes that contained a SNP with minor allele frequency greater than 1%
in any population, as identified from the 1000 Genomes Project [44], were removed to avoid
hybridization artifact (list of these probes in S1 Data). 1,092 probes that target the sex chromo-
somes were then removed. This resulted in a list of 20,595 quality-checked probes that mapped
to annotated genes. The full methylation data is available from the NCBI NIH Gene Expression
Omnibus (accession ID GSE64940 at http://www.ncbi.nlm.nih.gov/geo/).

Plasma vitamin D and folate measurements
Venous blood from the mothers was collected at 16–28 weeks of pregnancy. Blood samples
were then centrifuged and serum frozen until processed for micronutrient assays. Serum 25-
hydroxy Vitamin D was measured using enzyme immunoassay kit from Immunodiagnostic
Systems (IDS; http://www.idsplc.com). This was done at the University of Tennessee Health
Science Center. The minimum detection range of the assay is 2 ng/ml. NIST SRM972 Vitamin
D was used for quality assurance of 25-hydroxy Vitamin D. The inter-assay variability over the
past four years has been less than 6% for the laboratory assay controls. The laboratory partici-
pates in the College of American Pathology Quality Assessment Program for monitoring the
accuracy and precision of the 25-hydroxy Vitamin D assay and results have been within 1 SD
of mean Vitamin D levels [45]. Vitamin D data was available for 147 of the mothers (81 AA, 66
EA) with umbilical cord blood DNAmethylation data.
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Total folate level in plasma was measured using the 96-well plate adaptation of the L. casei
(ATTC 7469) microbiological assay [46]. This work was performed at the Molecular Epidemi-
ology Laboratory in Birmingham, AL and the method is described in detail in [47]. All mea-
surements were performed within 3 months of sample collection by one research associate
throughout the study period using samples that were never subjected to freeze-thaw condi-
tions. Folate data was available from 200 of the mothers (109 AA, 91 EA) with umbilical cord
blood DNAmethylation data.

Statistical analysis
Statistical analyses were done on the R platform (http://www.r-project.org) and JMP Statistics
(JMP Pro 10.0.0). We applied linear regression to test association between methylation M-val-
ues and ancestry (self-reported race). Since maternal age and cellular heterogeneity are known
to influence methylation values [17–19], both maternal age and estimated proportions of lym-
phocytes and granulocytes were used as covariates in the regression model. Birth weight only
has limited influence on DNA methylation and this was not added as a factor in the regression
model [38]. For association with maternal nutritional factors, the M-values were regressed on
maternal plasma vitamin D or folate with race, maternal age, and estimated blood cell counts
as covariates. P-values were adjusted for false discovery using the Benjamini and Hochberg
method [48]. Enrichment in cis-meQTLS among CpG sites with population difference was
evaluated using the hypergeometric test. Gene ontology and pathway enrichment analysis was
done using DAVID 6.7 [49] (http://david.abcc.ncifcrf.gov).

Replication in HapMap data
The HapMap data we used was provided by Fraser et al [21]. It compares between 30 CEU and
30 YRI trios. We obtained the full list of uncorrected p-values (based on Wilcoxon tests) and
used this to evaluate how many of the differentially methylated sites we identified in CANDLE
at FDR 5% are also differentially methylated in the HapMap panel using these criteria: (1) un-
corrected p-value� 0.05 between YRI and CEU, and (2) consistency in either higher or lower
methylation in African ancestry in both the CANDLE and HapMap groups.

Estimation of blood cell counts
Data from leukocyte subtypes (GEO GSE35069) was used to identify cell type specific CpG
sites, and the method described by Houseman and colleagues was used to estimate the propor-
tion of granulocytes and lymphocytes in our whole blood DNA samples [50, 51].

Network analysis
We used the WGCNA R package to define correlated networks in the CANDLE cord blood
methylome [52, 53]. This is a dimension reduction procedure originally developed for tran-
scriptomic data and the computational details are described in Zhang and Horvath [54]. This
method has been adapted to analyze co-methylation networks [22, 55, 56].

WGCNA is based on the pair-wise variance and correlation structure among genes. We
used the set of 20,595 probes for network construction and applied standard parameters de-
scribed in [54] (detail on network construction in S1 Text). WGCNA generates a gene-by-gene
similarity matrix (20,595 x 20,595 matrix) based on pair-wise Pearson correlations between
nodes (i.e., probes targeting methylation sites). In the second step, the similarity matrix is
transformed into an adjacency matrix that has a scale-free network topology using a soft
thresholding power function, β, that is chosen to fit a scale-free network using linear regression
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model fitting index, R2 (β = 6, R2 = 0.854, mean connectivity or mean k = 25, max k = 295).
Third, the topological overlap matrix (TOM) is defined to estimate network connectivity be-
tween nodes. Then networks of tightly inter-correlated transcripts or modules are defined by
hierarchical clustering. We have labeled the modules as Meth1 to Meth9 based on module size
(i.e., from largest to smallest depending on the number of probe members). All probes that do
not fit into any module are placed in a separate bin (here represented by Meth0).

After defining the modules, WGCNA provides intra-modular network connectivity values
for each gene to help identify hub genes. Furthermore, the module eigengene or ME (first prin-
cipal component) provides a single vector that represents the summarized variation of a co-
methylation network and can be used to examine inter-module relatedness and association
with other factors. To test relationship between the module eigengenes and the different popu-
lation variables (Table 1), we first applied simple bivariate analysis. For ME associated with
race and vitamin D, we then applied multiple linear regression analysis with race, vitamin D,
and race x vitamin D interaction as predictors.

Results

Analysis of DNA methylation in CANDLE
We used methylation microarray data from cord blood of 112 AA and 91 EA newborns (previ-
ously reported in Adkins et al. [18]). Table 1 shows maternal and child characteristics and vari-
ables that are significantly different between AAs and EAs (i.e., maternal age, birth weight,
plasma vitamin D, folate, and estimated lymphocyte fraction). The methylome data we ana-
lyzed consists of 20,595 probes that target 15,280 promoter CGIs and 5,315 non-CGIs outside
of promoter regions. We applied linear regression to evaluate variation in methylation M-val-
ues as a function of population group (AA or EA). Since maternal age and blood cell counts
have significant influence on DNA methylation [19, 37] and both show significant difference
between AA and EA in CANDLE (Table 1), these were included as covariates. At an FDR cor-
rected p-value� 0.05, methylation at 3,802 sites showed significant difference between AAs
and EAs (S2 Data). This is over 18% of the methylome surveyed. Of these, 70% (2,647 CpGs)
have lower methylation in AAs and only 30% (1,155 CpGs) have higher methylation in AAs
(Table 2). This is consistent with previous observation that AAs exhibit lower overall

Table 1. Participant characteristics.

Variables African AmericansN or Mean (SD) 1 European AmericansN or Mean (SD) 1 p-value2

N 112 91

Child sex 53 females 50 females ns

59 males 41 males

Gestational age (weeks) 38.84 (1.51) 39.15 (0.91) ns

Maternal age (years) 25.75 (5.03) 29.45 (4.50) <.0001

Birth weight (Kg) 3.18 (0.47) 3.52 (0.42) <.0001

Plasma Vitamin D (ng/ml) 17.74 (6.03) 20.68 (6.23) 0.004

Plasma folate (ng/ml) 28.30 (18.40) 32.84 (12.16) 0.05

Estimated lymphocyte fraction 38.08 (12.11) 42.73 (10.23) 0.004

Estimated granulocyte fraction 48.72 (13.01) 45.84 (10.51) ns

Average of all CpG sites (M-value) -2.69 (0.15) -2.63 (0.15) 0.01

1 Child race based on maternal report of parents’ race
2 Chi-square test (for child sex) and analysis of variance (for continuous variables) with race as predictor

doi:10.1371/journal.pone.0118466.t001
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methylation [17, 18]. The average methylation of all CpG sites is also significantly lower in
AAs (p-value = 0.01; Table 1). None of the other variables listed in Table 1 are significant pre-
dictors of average methylation.

Identifying stable and consistent ancestry-dependent DNA methylation
The divergence between AA and EA in methylation may be due to a combination of environ-
mental and genetic factors. To estimate the extent of ancestry-dependent divergence, we exam-
ined what fraction of CpG sites that are differentially methylated between CANDLE AA vs. EA
populations are also differentially methylated between YRI (Yoruba in Ibadan, Nigeria) vs.
CEU (Utah European ancestry from CEPH panel) in HapMap. While the CANDLE data is
from cord blood, the HapMap data is from transformed cell lines, and only robust and stable
effects will be detected. Out of the 3,802 differentially methylated sites identified in CANDLE,
1,374 also show consistent differential methylation in HapMap (at lenient nominal p-value
< 0.05 and with the same direction of association, i.e., either higher or lower methylation M-
values in the African ancestral groups, AA and YRI, relative to European ancestral groups, EA
and CEU; S3 Data). We consider these as ancestry-specific methylation sites. Of these, 1,055
CpGs (77%) have lower methylation in AA/YRI and 319 CpGs (23%) have higher methylation
in AA/YRI (Table 2). This shows that more than 36% of the differentially methylated sites and
the overall lower methylation in African groups are replicable across cell types and age. A num-
ber of CpGs are in genes implicated in familial colorectal cancer and tumor suppression, e.g.,
neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS; cg07068998), adenomatosis pol-
yposis coli (APC; cg24332422), mutated in colorectal cancers (MCC; cg06894812), breast can-
cer 1, early onset (BRCA1; cg19531713) (see S3 Data for enriched gene sets). Other genes with
ancestry-specific methylation include the Duffy blood group atypical chemokine receptor
gene (DARC; cg18552413), which has a null mutation in Africans and attributed with blood
phenotypes [57, 58], and two genes involved in DNAmethylation and repair: DNA (cytosine-
5-)-methyltransferase 1 (DNMT1; cg17445987) and bromodomain adjacent to zinc finger do-
main 2A (BAZ2A; cg14634319).

Genetic regulation of ancestry-dependent DNAmethylation
We examined if the differentially methylated sites in CANDLE are associated with cis-acting
genetic regulation. A comprehensive meQTL analysis has been done for this data [24] and
using meQTL information from this previous work, we counted the number of CpGs that are
modulated my cis-meQTLs. For the 3,802 sites with methylation difference between AAs and
EAs, 159 are associated with at least one nearby meQTL marker (Table 2). This is over 2.5-fold
enrichment in cis-meQTLs among the genes that are differentially methylated (hypergeometric
p-value of 2.9 × 10-35) and indicates that some of the population variation is due to genetic var-
iation. However, cis-meQTLs alone are unlikely to explain the hypomethylated state in African

Table 2. Number of CpGs that are differentially methylated.

AA vs EA in CANDLE Ancestry-dependentCANDLE
and HapMap

Total Low AA High AA Low AA/YRI High AA/YRI

CpG counts 20,595 2,647 1,155 1,055 319

Cis-meQTLS counts 333 85 74 32 48

doi:10.1371/journal.pone.0118466.t002
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ancestral group and only 32 of the replicated CpGs with low methylation in AA/YRIs are mod-
ulated by cis-meQTLs in CANDLE (Table 2).

Effect of maternal vitamin D and folate on newborn methylation
We next evaluated if nutritional differences could contribute to the population variation. Spe-
cifically, we examined association between maternal plasma levels of folate and vitamin D mea-
sured during mid-pregnancy (16–28 weeks) and DNAmethylation in newborns. Plasma levels
of folate ranged widely from 4.84 to 109.14 ng/ml. While none of the mothers were deficient,
AA mothers had modestly lower folate levels than EA mothers (p-value = 0.05; Table 1). Plas-
ma 25-hydroxy vitamin D ranged from 9.4 to 35.2 ng/ml, and 51 AAmothers and 28 EA moth-
ers showed levels below the recommended concentration of 20.0 ng/ml [59, 60]. Consistent
with other studies [35, 36, 61, 62], plasma vitamin D was significantly lower in AAs compared
to EAs (p-value = 0.004; Table 1).

To test association between maternal micronutrients and newborn methylation, we first
performed simple linear regression. Both vitamin D and folate levels showed only nominally
significant effects. Vitamin D had the most significant association with the methylation of
transducin-like enhancer of split 1 gene (TLE1; cg15915418; unadjusted p-value = 0.00006)
and folate had the most significant association with methylation of WD repeat domain 5
(WDR5; cg03243700; unadjusted p-value = 0.0002). None of the CpG sites passed the 5% FDR
threshold (all nominal p-values and statistics are provided in S2 Data). Regressing methylation
levels on vitamin D or folate with race, maternal age, and estimated blood cell counts as covari-
ate resulted in no significant association at 5% FDR (S2 Data).

Global organization of co-methylation networks in CANDLE cord blood
We next applied weighted gene co-expression network analysis (WGCNA) to evaluate if ma-
ternal factors influence the global network organization of the methylome. We applied
WGCNA to the set of 20,595 CpGs and this organized the methylome into 9 modules ranging
in size from 7,924 to 160 network members, labeled as Meth1 to Meth9 (Table 3; S4 Data).
Each module represents a network of CpG sites that have highly correlated variation in methyl-
ation across the CANDLE samples. Methylation of 709 CpGs showed low connectivity and did
not fit into any module (relegated to module Meth0). Using gene ontology (GO) enrichment
we found six modules with significant functional enrichment at FDR� 0.05 (Table 3; module
characteristics and GO profiles are provided in S4 Data). These modules are networks of genes
related to immune response (Meth2, Meth4, Meth5), regulation of cell cycle and cell death
(Meth1 and Meth8), and neuron differentiation (Meth3).

For each co-methylation module, the collective variance captured by the correlated network
of CpGs can be summarized by a single eigenvector (first principal component), also known as
the module eigengene or ME (ME values provided in S4 Data). This reduces the high-dimen-
sional data to just 9 MEs that can then be related to other factors that may contribute to the co-
variance structure. Using the MEs, we applied simple linear regression to test if any of the
variables in Table 1 are associated with the co-methylation networks. Race has the most exten-
sive influence and is a significant predictor for 5 of the 9 modules at nominal p-value� 0.05
(Table 3). Of these, Meth5 and Meth7 pass the Bonferroni corrected p-value� 0.05 threshold
(unadjusted p-value� 0.006 for 9 tests) (Fig. 1A, 1B). The strongest effect of race is on the im-
mune module, Meth5, a network with 1,917 CpG members. We note that Meth5 is also a cell
type specific network and is strongly correlated with estimated proportions of lymphocytes (R
= 0.86 in AAs and R = 0.87 in EAs; p-value< 0.0001) and granulocytes (R = -0.80 in AAs and
R = -0.87 in EAs; p-value< 0.0001) (Fig. 1C, 1D). Our data indicate difference in estimated
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lymphocytes fraction between AAs and EAs (Table 1) and since such variation in composition
of blood cells can contribute to variation in methylation, we performed multiple regression to
evaluate if the association of Meth5 with race can be accounted by differences in lymphocyte
and granulocyte counts. This showed that both self-reported race and cell estimates are signifi-
cant predictors of Meth5 and collectively contribute to the variation in methylation of the
CpGs members (S4 Data). As expected, the top hub genes (the genes with highest intra-
modular connectivity within the respective module) in the ancestry-specific modules are
those with significant differential methylation between AAs and EAs. For example, top hub
genes in Meth5 have lower methylation in AAs and top hub genes in Meth7 have higher meth-
ylation in EAs (Fig. 1; see S2 Data for gene-level intra-modular connectivity and module
membership).

Meth7 is a network of 641 CpG sites and enriched in genes involved in response to organic
substance (GO:0010033; Table 3). In addition to ancestry, maternal vitamin D is another sig-
nificant predictor of Meth7 (Table 3). To explore potential interaction between ancestry and vi-
tamin D on Meth7, we used the ME as response variables and applied multiple linear
regression with race, vitamin D, and race x vitamin D interaction as predictors. This showed
that Meth5 is influenced by both race and maternal vitamin D with significant race x vitamin
D interaction (Table 4). The hub CpGs have significantly higher methylation among AAs (at
FDR 5% criterion) and are also associated with maternal vitamin D. The regression plots for
Meth7 and the constituent CpGs show that average methylation is higher in AAs, and methyla-
tion is negatively correlated with vitamin D but this effect is seen mainly in EAs (Fig. 2; plots
for only the top two hub CpGs are shown). Taken together, Meth7 represents a correlated net-
work of CpGs that is jointly modulated by ancestry and vitamin D.

Unlike maternal vitamin D, maternal folate is not associated with any ME. Other variables
in Table 1 with significant association with the MEs include birth weight with Meth6, and child
sex with Meth9 (full bivariate statistics of predictors and MEs are provided in S4 Data).

Table 3. Co-methylation modules defined in CANDLE newborn cord blood.

Gene Ontology (GO) enrichment1

Module Size Top GO p-value FDR Ancestry2 Vit D2 Lymph2 Gran2

Meth13 7924 GO:0010605~negative regulation of macromolecule metabolic
process

3.1E-11 1.6E-07 0.03

GO:0042981~regulation of apoptosis 3.3E-11 8.4E-08

Meth2 2430 GO:0006952~defense response 6.5E-14 2.6E-10

Meth3 2231 GO:0030182~neuron differentiation 4.4E-11 1.8E-07

Meth4 2104 GO:0006952~defense response 3.9E-08 1.35E-04 0.02 0.007

Meth5 1917 GO:0006955~immune response 1.4E-18 5.5E-15 4.3E-05 1.8E-61 9.8E-50

Meth6 1895 GO:0010522~regulation of calcium ion transport into cytosol 2.0E-05 0.07 0.02 0.02 0.007

Meth7 641 GO:0010033~response to organic substance 2.8E-05 0.07 0.0004 0.006

Meth8 584 GO:0043067~regulation of programmed cell death 6.4E-07 0.002

Meth9 160 GO:0051252~regulation of RNA metabolic process 0.002 0.8 0.03

1Top Biological Process GO term; enrichment p-value based on modified Fisher’s exact test from DAVID and Benjamini FDR corrected p-value (http://

david.abcc.ncifcrf.gov).
2Association between module eigengenes and ancestry, maternal vitamin D, and estimated fraction of lymphocytes (Lymph) and granulocytes (Gran)

based on simple regression analysis; these are uncorrected p-values.
3Meth1 is the largest module and the GO analysis was done for the top 5,000. Top 2 GO categories shown.

doi:10.1371/journal.pone.0118466.t003
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Discussion
We have described population differences in methylation patterns that can be consistently de-
tected and are robust ancestry markers in two different study cohorts. Particularly intriguing is
the overall lower methylation in the African groups in both neonatal cord blood that compared
between AAs and EAs, and in transformed cell lines from the HapMap panel that compared
between Yoruba Africans and CEPH Europeans. We considered nutritional differences, partic-
ular plasma 25-hydroxy vitamin D, which is known to be generally lower among people of Af-
rican ancestry, as a factor that may contribute to this population variation. Using a weighted
network approach, we define a module of CpG sites (a co-methylation network) whose

Fig 1. Ancestry-specific methylation modules in CANDLE. Box plots show differences in module
eigengenes between African Americans (AA) and European Americans (EA) for Meth5 (A) and Meth7 (B).
Scatter plots show the correlation between the cell-type specific Meth5 module and estimated fractions of
lymphocytes (C) and granulocytes (D).

doi:10.1371/journal.pone.0118466.g001

Table 4. Summary of multiple regression model for Meth7.

Meth7

Predictor variables1 Coeff SE t-Ratio p-value

Race 0.02 0.006 3.36 0.001

Vitamin D -0.002 0.0009 -2.19 0.03

Race x Vitamin D 0.002 0.0009 2.36 0.02

1 Result for the full model with predictors race, vitamin D, race x vitamin D is R2 = 0.16, F(3, 139) = 8.74, p-

value < 0.0001 for Meth7

doi:10.1371/journal.pone.0118466.t004
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correlated variance in the CANDLE population is associated with race, maternal vitamin D lev-
els, and an interaction between race and vitamin D.

Multiple modulators influence DNAmethylation
The methylome is shaped by multiple factors. Parsing the relative contribution of these vari-
ables, which include genetic, environmental, lifestyle as well as interactional effects (gene x
gene, gene x environment) is challenging. Recent studies have shown that maternal nutrition
during pregnancy, psychosocial stress, and even socioeconomic status (SES) at an earlier time
point can contribute to population variation in DNA methylation [3, 19]. In our present study,
we did not evaluate the effect of SES or maternal education and stress. Another limitation is
that we relied solely on self-reported race from mothers and this fails to take into account ad-
mixture effects. However, replication of these findings in an independent cohort of African and
European ancestral samples in HapMap supports the robustness of our results and suggests
that misclassification is not likely to substantially influence the results. We would have pre-
ferred to further test the consistency of our findings in another cord blood data to discern the
effects that are specific to newborns. However, we found no other cord blood methylation data
from a similar cohort with equal racial diversity. Presumably, the environmental context and
social conditions differentiating the AAs and EAs in the Memphis area are different from that
in the very disparate HapMap populations, i.e., YRIs (Yoruba Nigerians) and CEUs (Utah resi-
dents with European ancestry). The global hypomethylation in the two African ancestral
groups may therefore be due to factors that are more proximate to the DNA methylation path-
ways and generalizable across different social and environmental settings. Nonetheless, SES
and the many variables that correlate with social inequality can have a pervasive influence on
an individual’s diet, stress physiology, and general health. A more comprehensive study that in-
cludes macro- and micronutrients, metabolic markers, SES, and psychosocial stress remains to
be done.

Here we note that both the CANDLE and HapMap methylome were quantified using Illu-
mina 27K arrays and technical artifacts can be a potential source for some of the population ef-
fects. For instance, one could speculate probe design artifacts that bias more efficient
hybridization for one ancestral group compared to another. However, a study that measured
methylation in leukocytes using [3H]-methyl acceptance assay [17] also found a generally
hypomethylated state in AAs compared to EAs. The hypomethylation we have observed in the
current data is therefore unlikely to be an array specific effect. Nevertheless, we must

Fig 2. Interaction between ancestry and vitamin D in the Meth7 co-methylation network.Meth7 is a co-methylation network that is influenced by both
ancestry (based on self-reported race by mothers) and levels of maternal vitamin D. These are regression plots for the Meth5 module eigengene, and the top
two hub genes in Meth5:MRPS34 andNEO1. Average methylation of the CpG network is higher in African Americans (AAs). Negative correlation between
vitamin D (ng/ml) and methylation levels (M-value) is seen only in European Americans (EAs; for EAs, R = -0.35, p-value = 0.004 for Meth7 and vitamin D; R
= -0.28, p-value = 0.025 forMRPS34 and vitamin D; and R = -0.46, p-value< 0.0001 for NEO1 and vitamin D).

doi:10.1371/journal.pone.0118466.g002
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emphasize that the 27K array by no means provides a comprehensive coverage of the methy-
lome [63]. The ~27,000 probes interrogates only a fraction of CpGs and none of the non-CpG
methylation sites [64]. Within the confines of this limited view of the human methylome, our
results demonstrate an overall lower methylation in African ancestral groups that is robust and
independent of cell type and age.

Genetic regulation of DNAmethylation
Genetic variation most certainly contributes to some of the differences in methylation profiles.
Recent studies have defined significant heritability and genetic regulation in DNAmethylation
in different cell types [18, 20–24, 65]. While we see enrichment in cis-meQTLs among the
genes that show differential methylation, it is unlikely that cis-effects alone explain the
global hypomethylation in the AAs and YRIs since we expect individual alleles with positive
additive effect on methylation to average out between both European and African ancestral
groups. In other words, multiple cis-acting variants distributed across the genome that lower
methylation of CpGs should not show higher allele frequency in the African populations sim-
ply by chance.

Alternatively, the global downregulation in AAs and YRIs could be due to one or more
trans-acting variants that have widespread effect on the epigenome. In such a scenario, perti-
nent candidates would include regulators of methylation and demethylation pathways such
as the DNA (cytosine-5-)-methyltransferase (DNMT) and tet methylcytosine dioxygenase
(TET) genes [66]. We did not examine trans-acting meQTLs in this present study but other
groups have used comparable sample sizes for candidate gene and genome-wide exploration
of trans-meQTLs [22, 67]. An example is the candidate gene analysis by Bell et al. [67] that
found multiple trans-meQTLs map to SNPs near DNMT1. Variants in this gene and other
DNA methylation regulators are viable candidates that could have a global effect on
the methylome.

Nutritional difference and effect on gene methylation
Studies in both animal models and humans show that the epigenetic state is particularly sensi-
tive to nutritional factors and maternal dietary differences can have far reaching effects on
child development [3, 27, 68, 69]. We propose that nutritional differences, particularly of nutri-
ents that are known to be variable between African and European groups, could result in the
distinct methylation profiles. Vitamin D is one such factor that has lower plasma levels in peo-
ple of African descent compared to Caucasians [35, 36, 61, 62]. In fact, currently there is wide-
spread global vitamin D deficiency including in parts of Africa and Asia, which may pose a
major health challenge [70]. There is also an emerging role for vitamin D in the prevention of
chronic diseases including cancer, diabetes, and dementia [70–72] and we consider this an im-
portant micronutrient to evaluate in the context of health disparities and epigenetics. Other nu-
trients that can influence gene methylation are those that are involved in single carbon
metabolism (e.g., folate, B vitamins, methionine) [73, 74].

In the present study, we considered the influence of only two micronutrients measured at
16–28 weeks of pregnancy in the CANDLE mothers. We found no deficiency but modestly
lower folate levels in AA compared to EA mothers. 25-hydroxy Vitamin D, on the other hand,
had high prevalence of deficiency according to the recommended plasma concentration of
�20.0 ng/ml [59, 60] and was significantly lower among AAs [35, 36, 61, 62]. As folate is di-
rectly involved in methyl-group metabolism, there have been more studies examining the rela-
tion between folate and the epigenome. Some studies, particularly in animal models, have
found significant influence of maternal folate [29–31], but others have found no association
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between maternal folate and DNA methylation in offspring [3, 73, 74]. There have also been
studies on the relation between vitamin D and DNAmethylation and these are starting to re-
veal a role for vitamin D in shaping the epigenome [32, 34, 35].

The gene-level analysis we performed found only limited influence of these nutrients on
DNAmethylation. Since this is on a genome-wide scale, we reason that the nutrients may exert
only a small effect on any one site and the likelihood of detecting an individual effect is low
after multiple test correction. To more effectively capture the summation effect of multiple
sites, we applied a weighted correlation method [22, 55, 56]. This essentially reduces the data to
fewer dimensions, and aggregates genes with shared variance into tightly correlated networks.
We find that race and maternal vitamin D are influential factors at the network level. The an-
cestry-specific module, Meth7, enriched in genes involved in response to organic substance,
represents a co-methylation network that is jointly modulated by race and vitamin D with sig-
nificant interaction between the two predictors.

Of the 641 CpG members in Meth7, 217 have significant variation between AAs and EAs
(at FDR 5%) and 240 are associated with maternal levels of vitamin D (at nominal p-value of
0.05). However, we should note that unlike the overall trend, 214 of the 217 differentially meth-
ylated CpGs in this module have higher methylation in AAs. The ME of this module is nega-
tively correlated with vitamin D but this effect is seen mainly in the EA subset. This indicates
that higher vitamin D among EAs is associated with lower methylation of CpGs that belong to
this module. This shows a more complicated relationship between ancestry, vitamin D, and
DNAmethylation. The influence of vitamin D on Meth7 does not explain the global hypo-
methylation among AAs relative to EAs. What our results show is simply that circulating levels
of vitamin D and ancestry both exert influence on the methylome, and the effect of maternal vi-
tamin D on neonate methylome appears stronger than that of folate.

Health implications
The genes that show hypomethylation in the AA/YRI groups are enriched in tumor suppres-
sors and cell cycle regulators (S3 Data). The four genes linked to colorectal cancer (NRAS,
PIK3CA,MCC, APC) all show lower methylation in the AA/YRI groups. This observation is
particularly important in light of the documented racial disparity in the occurrence of certain
cancers and chronic diseases and differences in disease progression and mortality [25, 75, 76].
Colorectal cancer has a much higher prevalence among AAs and this is associated with higher
expression of genes involved in cell cycle regulation [77, 78]. However, there is also evidence
that differences in cancer prevalence arise from socioeconomic and cultural variables [79, 80].
The intersection between the various biological, social, and environmental factors could very
well leave a mark in the epigenome, and these basal differences in newborn methylation could
be a predisposing factor for later disease development.

Conclusion
In summary, our results show that ancestry and maternal circulating levels of vitamin D have a
joint influence on DNA methylation in infants but vitamin D differences do not explain the
lower overall methylation in African ancestral groups. A number of other nutrients and social
and environmental variables will have to be factored in to draw a more comprehensive picture.
The profile of genes that show ancestry-dependent methylation (e.g.,MCC, APC, BRCA1) and
the potential role of maternal nutrition in shaping the methylome of newborns have important
health implications.
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