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ABSTRACT

Currently, most paired link based scaffolding algo-
rithms intrinsically mask the sequences between two
linked contigs and bypass their direct link infor-
mation embedded in the original de Bruijn assem-
bly graph. Such disadvantage substantially compli-
cates the scaffolding process and leads to the in-
ability of resolving repetitive contig assembly. Here
we present a novel algorithm, inGAP-sf, for effec-
tively generating high-quality and continuous scaf-
folds. inGAP-sf achieves this by using a new strategy
based on the combination of direct link and paired
link graphs, in which direct link is used to increase
graph connectivity and to decrease graph complexity
and paired link is employed to supervise the travers-
ing process on the direct link graph. Such advan-
tage greatly facilitates the assembly of short-repeat
enriched regions. Moreover, a new comprehensive
decision model is developed to eliminate the noise
routes accompanying with the introduced direct link.
Through extensive evaluations on both simulated
and real datasets, we demonstrated that inGAP-sf
outperforms most of the genome scaffolding algo-
rithms by generating more accurate and continuous
assembly, especially for short repetitive regions.

INTRODUCTION

As an integral step in any genome sequencing project, de
novo assembly reconstructs the genome from scratch using
a collection of reads (1,2). An accurate and complete as-
sembly is crucial, as downstream analyses would be severely
affected by low-quality assemblies (3). As the most widely
used assembly strategy, de Bruijn graph based algorithms
(4–8) split sequenced reads into kmers and then infer the
sequence by decomposing the graph and finding the Eu-
lerian path with relatively low computational cost (9,10).
Although de Bruijn graph based approaches have intrinsic
high computational efficiency, the complex repeats will re-

sult in a large number of fragmented contigs owing to the
limited kmer size (11). Moreover, when the repeat length
exceeds the read length, it will increase the difficulty of as-
sembly (12,13).

One possible solution is to employ long read sequencing
technologies (i.e. PacBio) to tackle with repetitive genome
regions (14,15). But the relatively high sequencing cost
and error rate have limited their wide application in de
novo genome sequencing projects (16,17). An alternative ap-
proach is to utilize paired links between contigs produced
by Illumina sequencing and then to perform the scaffold-
ing process, in which the contigs will be ordered, oriented
and connected. Genome scaffolding, however, usually faces
two obstacles, noisy paired links from mapping biases or er-
rors and repetitive regions in the genome. Traditional scaf-
folding algorithms generally employ two different strategies
(Supplementary Figure S1A and S1B): (i) to choose seed
contigs and extend from both ends through a specified min-
imum overlap with a limited number of mismatches (18);
(ii) to take contigs as vertexes and paired links as edges to
build paired link graph, and then linearize the graph (19–
21). Both strategies are implemented in a post-assembly
manner, and mainly focus on eliminating paired link noises
and extending contigs. SSPACE (18), for example, hierar-
chically selects the longest contig and extends this contig
by searching appropriate consistent sequences with a se-
ries of flexible parameters. SCARPA (21) proposes two de-
noising models, the odd cycle transversal model and feed-
back arc set model, to orientate and order contigs. SOPRA
(22) takes several sophisticated models to denoise paired
link, determine the direction of contigs using paired link
and remove misassemblies. OPERA (23) creates scaffolds
by gradually adding adjacent contigs sharing the most reli-
able paired links and removes noises through dynamic pro-
graming. Collectively, these paired link-based algorithms
have made extensive efforts to establish criteria to abandon
redundant contigs and to reduce paired link noises. How-
ever, repetitive contigs have been largely neglected by these
tools. For example, Bambus2 (24), OPERA and SOPRA
simply mask these repetitive contigs to simplify the assem-
bly process, while some scaffolders can assemble a small
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fraction of them that are strongly associated with unique
contigs but discard the remainders. For example, as shown
in Supplementary Figure S1C–E, repetitive contig R4 and
R5 are abandoned because of their forward forks, whereas
R1, R2 and R3 can be successfully connected at the end
of the scaffold, owning to the sharing paired links between
them and non-repetitive contigs N1 and N2.

Paired link, as an indirect linkage, intrinsically masks the
sequences between two linked contigs and complicates the
scaffolding process. Moreover, above paired link based ap-
proaches bypass the direct linkage embedded in the original
de Bruijn graph, which are generated by splicing the forks
during the stage of decomposing the assembly graph into
contigs. Obviously, incorporating direct link will greatly in-
crease the connectivity of the scaffolding graph and sim-
plify the layout of contigs. Such advantage will improve
the efficiency of denoising and more importantly facili-
tate the assembly of repetitive contigs. Recently, SPAdes
(25) has been developed to assemble single-cell and multi-
cells bacterial datasets, in which it employs a paired assem-
bly graph for genome assembly. ExSPAnder (26), a mod-
ule of SPAdes, creates pairing information on the assembly
graph and extends scaffolds along the high scored edges.
Although SPAdes was designed for single-cell sequencing,
it outperforms other assemblers by producing increased as-
sembly length and improved accuracy on isolated bacterial
genomes or mini-metagenomes (25). However, it still cannot
resolve complex regions including numerous short repeti-
tive contigs, partly due to the fact that these regions are lack-
ing of read pairs support and exhibit severe mapping biases.
This situation is even more fundamentally skewed consider-
ing that short repetitive sequences represent the majority of
the assembled contigs. Although most assemblers, such as
SOAPdenovo2 (8) and ALLPATHS (4), have incorporated
original connection information in the de Bruijn graph into
the scaffolding process, the challenge of assembling repeti-
tive regions is still unsolved.

Here, we propose a novel algorithm, inGAP-sf, based on
the combination of direct link and paired link graphs to ad-
dress above scaffolding obstacles. inGAP-sf employs direct
link to provide extra routes and decreases the complexity
of repetitive contigs enriched regions. With the supervision
of paired link, true routes are determined and short repeti-
tive contigs are specifically grouped by allocating into their
corresponding routes. In addition, we construct a compre-
hensive model based on read pairs support estimation to
eliminate the noise routes. By testing on simulated and real
datasets, we demonstrated that inGAP-sf can significantly
improve assembly continuity and genome coverage, as well
as genome accuracy.

METHODS

Overview of inGAP-sf

The workflow of inGAP-sf can be divided into three main
steps (Figure 1): (i) Direct link graph construction. Direct
link is created based on the overlapped subsequence be-
tween two contigs. (ii) Paired link creation and pre-scaffold
construction. Paired link is created between two contigs ac-
cording to a bundle of paired reads mapped to these contigs.

Unique contigs with exclusive paired link support are as-
sembled into pre-scaffolds. After this step, the sketch of the
genome is established. The pre-scaffolds containing gaps are
filled and repetitive regions are resolved by DProute in the
next step. (iii) DProute creation and extension (Figure 2).
Firstly, DProutes are created by traversing the direct link
graph under the guidance of paired link and are then fil-
tered using a statistic-based estimation (SBE) model. Sec-
ondly, DProutes are extended and merged based on their
overlapping paths and are split at the fork. Finally, the
merged DProutes are used to fill gaps and to connect the
pre-scaffolds that are broken by repetitive regions. inGAP-
sf is freely available together with full documentation at
https://sourceforge.net/projects/ingap-sf.

Direct link graph creation and simplification

We define direct link as a direct connection between two
adjacent contigs decomposed from the de Bruijn assembly
graph, sharing a certain length of overlaps with each other.
Most of these directly connected contigs share a kmer-sized
overlap, whereas a small number of them may have fewer or
even no overlap due to the denosing process when decom-
posing the de Bruijn assembly graph. Therefore, to build a
comprehensive direct link graph from pre-assembled con-
tigs, the first step is to determine the kmer size used in con-
structing the de Bruijn graph. If the kmer size is not pro-
vided by the user, inGAP-sf utilizes a scanning approach to
determine it. Briefly, subsequences with length ranging from
128 to 30 bp, are chopped from two ends of each contig, as
well as their complementary sequences. A hash is built with
the key representing the subsequence and the value rep-
resenting its frequency. Kmer size is determined based on
the change point of the frequency of hashed subsequences
(Supplementary Figure S2A). For the assemblies generated
by different assemblers (e.g. IDBA and SPAdes), we found
that this kmer scanning strategy could also determine their
actual kmer size (Supplementary Figure S3). After obtain-
ing kmer size, direct link is created when a pair of contigs
sharing kmer-sized overlap (Supplementary Figure S2B).
Moreover, the remaining pairs of contigs, sharing overlaps
shorter than kmer size, are also connected by gradually re-
ducing the length of subsequences (Supplementary Figure
S2C). Here, we define direct link graph as GD = (V, E),
V = {ci }, E = {ci , c j , dgi j }, where ci denotes contig i, and
dgi j is the gap size between contig ci and c j . This value is
negative and generally equals to –k.

Once the direct link graph is constructed, bubble struc-
tures are merged to reduce the complexity of the direct link
graph. To achieve this, inGAP-sf employs a key contig de-
tection strategy. As shown in Supplementary Figure S2D, a
key contig is defined as the removal of this contig will break
the connectivity among the vertexes in a range of traversing
depth (default 5). After detecting all key contigs, the routes
between two adjacent key contigs are merged if both the
difference and length of these routes are smaller than the
parameters, maxDiff (default difference coverage rate is 0.3
and difference bases are 5) and maxBubbleLength (default
one fold insert length). The former represents the threshold
of divergence among the routes in the bubble, and the later

https://sourceforge.net/projects/ingap-sf
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Figure 1. Overview of the inGAP-sf framework. (A) The workflow of inGAP-sf including direct link (Dlink) graph construction (light green), paired link
(Plink) creation and pre-scaffold construction (light orange), and DProute-based scaffold construction (light blue). (B–E) A brief description of the three
key steps implemented in inGAP-sf. (B) Direct link graph construction. Subsequences (red lines) are chopped from two ends of each contig. Direct link is
created between two contigs if they share an overlapped subsequence. In the direct link graph, nodes denote the contigs and the line between two nodes
refers to the direct link. (C) Paired link creation. Paired link is created between two contigs based on a bundle of pairing reads from paired-end or mate pair
library. The curve and polyline denote the paired link. (D) Pre-scaffold construction. The layout of contigs can be determined by paired link. Conflict-free
regions are assembled into pre-scaffold, whereas repetitive contigs are left unassembled. Red nodes/lines and blue nodes/lines denote repetitive and unique
contigs, respectively. (E) DProute-based scaffold construction. DProutes are obtained by traversing on the direct link graph under the guidance of paired
link (blue arcs). Then DProutes are merged or extended according to the consistent path. Finally, DProutes are used to fill the gaps in pre-scaffolds and to
connect adjacent pre-scaffolds. The red quadrangles indicate newly assembled regions by the incorporation of DProutes, where the gap in the scaffold1 is
closed, and scaffold1 and scaffold2 are connected by the extended DProutes.

represents the threshold of length of the routes in the bub-
ble.

Paired link creation and pre-scaffold construction

Paired link represents an indirect connection between two
contigs, which are supported by a bundle of mapped
paired-end or mate-pair reads. It is defined as a tu-
ple ci , c j , pgi j , supporti j (ci , c j as abbreviation), where
supporti j is the number of mapped read pairs between con-
tig ci and c j , and pgi j is the gap size between these two con-
tigs. The mean value of pgi j is estimated by the following
equation:

E(pgi j ) = μins + mapPosi + mapPos j − length(ci ) − length(c j ),

and the standard deviation is SD(pgi j ) = σins/
√

supporti j ,
where mapPosi is the average position of mapped reads
on the contig ci , μins and σins is the mean and standard
deviation of library insert length, respectively. Consider-
ing that the bias in the real data may lead to a thicker tail

or multiple peaks in the insert length distribution, we in-
tegrate a bias correction model into our paired link cre-
ation process, which contains three steps (Supplementary
Figure S4). (i) Data cleaning and insert length estimation.
Abnormal mapping with overwhelming mapping indels, ex-
tremely large insert length or false mapping direction, is
detected and discarded. The remaining mapping informa-
tion will be used to estimate the insert length distribution.
Firstly, the distribution of library insert length is taken
as a Gaussian mixture distribution. Expectation-maximum
(EM) algorithm is used to recognize these Gaussian distri-
bution, with a cluster number k ranging from 1 to 3. Sec-
ondly, according to Bayesian Information Criterion (BIC),
the best cluster number k is further validated using Maxi-
mum Likelihood Estimation (MLE). Thirdly, the estimated
insert length is determined and other Gaussian distribu-
tion are treated as noise, of which the proportion is cal-
culated. The dataset Burkholderia sp. serves as an example,
in which the best cluster number k is 3 and the EM result
is: Mean = (762, 209, 427), and SD = (21, 56, 149). Be-
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Figure 2. The algorithms of DProute creation and extension. (A) The direct link graph of a KIR region in the S. aureus assembly. The dashed lines represent
the omitted direct link graph. (B) The traversal tree from the seed contig cseed. If the distance between a node and cseed falls outside the range of estimated
gap size of paired link, this node is removed. Subsequently, the route score of each DProute is calculated using the SBE model and any DProute with
route score below the given threshold is removed. The bold branches denote the traversal results which meet the gap size restriction and the black branches
refer to the results which meet the SBE constraint. These DPoutes are put into library and will be extended in the next step. (C) Iteratively bidirectional
extension of DProutes. The unused and partly extended DProutes are extended toward two directions using overlapped routes. If fork (red line) occurs
which is caused by conflicting routes, the inconsistent parts on these routes are chopped. The chopped DProutes are reput into the DProute library and
the fork position is recorded. This step is executed until all the DProutes are extended.

cause this dataset was produced using a library length of
800 bp, the real insert length is approximated to N(762, 212)
and the other peaks were treated as lower noise, which ac-
counted for a proportion of 51% (Supplementary Figure
S4A). (ii) Bias correction. After estimating the insert length
and the proportion of noises in the library, the bundle of
read pairs mapped to two contigs is extracted. For each bun-
dle, the sum value, mapPosi + mapPos j , for a pair of reads
is recorded into the set SUMPEM. Considering that these
read pairs are sampling from the library, they should follow
the same distribution with the library insert length. There-
fore, we eliminate the noise with the same proportion from

the set SUMPEM, and the remainders of read pairs in this
bundle are used to estimate the gap size with the equation
mentioned above (Supplementary Figure S4B). (iii) Repet-
itive contig splitting. In case that the standard deviation
of SUMPEM σset is far more larger than σins , which indi-
cates a repetitive contig occurs multiple times within insert
length, we split SUMPEM into several subgroups based on
the ratio of σset to σins (Supplementary Figure S4C). After
performing these steps, paired link ci , c j , pgi j , supporti j is
created based on the read pairs mapped to contig ci and c j

′,
where c j

′ refers to the reverse complement sequence of con-
tig c j .



PAGE 5 OF 14 Nucleic Acids Research, 2017, Vol. 45, No. 6 e43

In order to reduce computational complexity, unique re-
gions are determined by the topology structure of direct
link graph and contig depth, and the contigs in these re-
gions are assembled into pre-scaffolds by using paired link.
To achieve this, we first extract the contig pairs containing
at least one large contig and sharing paired link. Then, the
paired link is bypassed if the paired link support is more
than triple estimated read pairs support standard deviation
which is determined by the latter model. Finally, the con-
tigs are assembled into pre-scaffolds using a greedy algo-
rithm if there is no competition fork. After this process, the
resulting pre-scaffolds are divided into three groups: pre-
scaffolds without gaps, with gaps and with overhang regions
caused by fork. Moreover, direct link will be employed in the
following step to fill the gaps and to resolve the remaining
unassembled contigs under the supervision of paired link.

Accurate gap size estimation is essential in determining
the layout of the contigs, which are connected by paired
link. In most cases, the estimated gap size can efficiently su-
pervise the traversing to generate correct routes. However,
the estimated gap size among contigs alone is unable to fil-
ter noise routes in complex regions. To address this problem,
we develop a new model to estimate read pairs support, as
well as a Bayesian scoring function depending on the SBE
model to filter these routes.

Statistic-based estimation (SBE) model

The SBE model is designed to estimate the read pairs sup-
port between two contigs based on their length, distance
and the distribution of insert length. In detail, inGAP-sf
first classifies all contigs into three categories according to
their length, large (above insert length), medium (between
insert length and double kmer size) and small (below dou-
ble kmer size) contigs. The insert length and double kmer
size are used as thresholds, because the mapping distance of
read pairs are limited by insert length and two directly con-
nected contigs usually share a kmer-sized overlap. Next, the
SBE model is developed based on the combination of dif-
ferent sized contigs (Supplementary Figure S5):

1) Combination of two large contigs (L1 > L2 > ins). As
the paired-end reads are sequenced from both strands
of insert fragments, the start position st and end posi-
tion en of an insert fragment from each 5’-end are the
same as the mapping position of the paired reads. As-
sume that the start positions of insert fragments are sub-
ject to uniform distribution and the insert length is sub-
ject to normal distribution. Given the start position st,
if st + ins > gap + m, meaning that the reads mapping
across the gap and the read pairs support will be accu-
mulated by 1, where the ins, gap and m/2 represent the
length of insert fragment, the gap between two mapped
contigs and the minimum match length of the aligner,
respectively (Supplementary Figure S5A). If all the in-
sert fragments are taken as a whole, the read pairs sup-
port subjects to binomial distribution B(n, p). The sam-
ple size n is L1 · paircov and the probability p equals

to 1
L1

L1∑
x=0

P(ins > gap + m + x), where paircov refers

to reads pairs coverage and L1 is the length of contig
c1.

The probability p can be calculated as p = − 1
2L1

gap + b,

where b = 1
L1

(− σ√
2π

+ μ−m
2 ), μ and σ refer to the mean

value and standard deviation of the insert length, respec-
tively. The sample size n is reduced to ins · paircov. For bi-
nomial distribution, the expectation E(sup) = np and the
deviation SD(sup) = np(1 − p).

The average of read pairs support between two large
contigs has a significant linear correlation with their gap
size. In most instances, the deviation of the read pairs sup-
port decreases with the increasing of gap size. To explain
these result, we consider the mapping position of paired
reads as a Gaussian mixture distribution and the mean
value of these Gaussian distributions have equal difference
when the reads are sequenced uniformly (Supplementary
Figure S5B). Thus, probability density function (PDF) of
the mixture distribution (the mapping position of paired
reads) can be determined while one read is mapped to con-
tig c1. As shown in Supplementary Figure S5C (upper), the
probability p reduced linearly with the increasing gap size,
but this reduction rate shifts slowly when the gap size in-
creased enough (to insertlength-minmatch). To demonstrate
this point, we used a Monte Carlo simulation (gapmin =
−81, gapmax = 500, miu = 500, sigma = 45, minmatch =
80, samplefrequence = 0.5) and found that the simulation
performed as expected (Supplementary Figure S5E). In ad-
dition, we assembled the simulated dataset Ec-skewed into
contigs and extracted the gap size and the read pairs sup-
port among contigs which shared the same paired link. In
most cases, the correlation between the gap size and the read
pairs support fitted this model perfectly. Interestingly, when
the gap size was negative, the read pairs support decreased
slightly compared with expectation. The primary factor re-
sponsible for this result should be the mapping bias on over-
lapped contigs (Supplementary Figure S5F).

2) Combination of one large and one medium contigs (L1 >
ins > L2 > 2kmer ). Following the assumptions men-
tioned above, the distribution of end position en can
be calculated. As shown in Supplementary Figure S5C
(lower), the probability of paired reads falls on the contig
c2, p∗, decreases with the decreasing of contig c2 length.
Approximately, the reduction rate (rreduction) is:{

rreduction = L2
μ−m−gap L2 < μ − m − gap

rreduction = 1 L2 ≥ μ − m − gap
,

where L2 refers to the length of contig c2. Given rreduction
and gap, the probability p∗ is calculated with an extremely
small approximation error: p∗ = p · rreduction . Supplemen-
tary Figure S5F shows the correlation between gap size
and read pairs support in simulated data. rreduction can be
expressed as the slope and also fitted this model perfectly.

3) Combination of two medium contigs (ins > L1 > L2 >
2kmer ). Most of the calculation processes are the same
with the situation 2, except the sample size n∗ is replaced
by L1 · paircov according to the length of contig c1.

4) Combination of one small contig and one contig with ar-
bitrary length (2kmer > L1 > L2 or L1 > 2kmer > L2).
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The calculation of read pairs support used by above sit-
uations is no longer applicable, because the approximate
error is too large to be ignored. Considering that contig
c2 is such short that the positions of mapped reads are
limited in a small range, we simplify the start position st
with a constant. As a result, st + ins is subject to Gaus-
sian distribution and thus, the probability p+ is easily cal-
culated as F( gap+L1−μ+m

σ
) − F( L1−μ+m

σ
), where F refers to

the cumulative density function (CDF) of Gaussian dis-
tribution, and gap + L1 − μ + m and L1 − μ + m are the
end and start positions of contig c1, respectively. The sam-
ple size n+ is L2 · paircov according to the length of contig
c2 (Supplementary Figure S5D).

DProute creation and extension

A DProute starting from seed contig cseed refers to a route,
which is a list of connected contigs with determined gaps. It
is generated by connecting the marker contigs, which share
paired link with the seed contig cseed , on the direct link
graph (Figure 2A). Here, two types of contigs are selected as
seed contigs: (i) large contigs (above insert length), because
the paired link connecting these contigs has a high level of
reliability; (ii) traversed contigs which have reads mapped,
because the KIR regions can be resolved by the DProutes
starting from these contigs. After selecting the seed contigs,
an exhaustive strategy is employed to create DProute for
seed contig cseed and this process can be described as three
major steps. Firstly, a heuristic search method is used to ob-
tain DProutes. This approach starts at cseed and uses con-
tig ck sharing paired link with cseed as landmarks to reduce
search space using the gap size based score, gscoreseed k, to
limit search direction. Once gscoreseed k is out of range (de-
fault 0.004), the search branch of ck is cut entirely. For a pair
of contigs: ci and c j , we define gscorei j = f ( E(pgi j )−ga pi j

SD(pgi j )
),

where ga pi j refers to the traversing distance between ci and
c j , f refers to the Gaussian density function. The calcula-
tion of E(pgi j ) and SD(pgi j ) is mentioned in paired link
creation part. Subsequently, traversal results are treated as
DProute candidates (Figure 2B). Secondly, after obtaining
these candidates, the distance between each contig in these
DProutes on the route is determined. Then, the read pairs
support based score, sscore, is calculated for the seed con-
tig cseed with each contig ct on the DProutes. For a pair of
contigs: ci and c j , we define sscorei j = f ( supporti j −E(su pi j )

SD(su pi j )
),

where supporti j is the real read pairs support between con-
tig ci and c j . The calculation of E(su pi j ) and SD(su pi j )
are mentioned in SBE model part. Especially, if there is no
paired link between contig ci and c j , supporti j is equal to
0 and E(su pi j ) and SD(su pi j ) are calculated based on con-
tig length and the traversing distance. As read pairs sup-
port based score is more accurate than the gap size based
score, the route score, which feasibly represents the prob-
ability of the DProute being correct, can be calculated as∑ Lt−kmer

Lroute
sscoreseed t, where Lt is the length of contig ct

and Lroute refers to the length of DProute. Notably, when
scaffolding with multiple libraries, the gscore and sscore
are calculated for each library separately and the maximum
score is reserved. Although being less accurate, the gap size
based score is still employed prior to the read pairs sup-

port based score. The main reason responsible for this is
that the read pairs support based score must be calculated
through the determined distance between seed contig and
every contig on the DProute. Moreover, calculating the read
pairs support based score for a large number of DProutes in
complex regions is a substantial computational challenge.
In contrast, the gap size based score can be easily calcu-
lated based on the paired link during the process of travers-
ing the direct link graph, which can efficiently reduce the
amount of candidate DProutes and computational cost.
Thirdly, DProutes starting from the same seed contig are
extracted and the routes with high route read pairs support
score are put into the DProute library (Figure 2B). In case of
the coverage of cseed is one fold, only one DProute starting
from this contig will be reserved. Thus, DProute expressed
as (cr1 , cr2 , . . . , crm−1 , crm ) is created, where contig cr1 is the
seed contig and two adjacent contigs cri and cri+1 share di-
rect link.

After the DProute library is created, DProute ex-
tension process is performed based on the overlapped
contigs between DProutes. Given a target DProute
(cr1 , cr2 , . . . , cri , cri +1, . . . , crm−1 , crm ), if another
DProute (cri , cri +1, . . . , crm−1 , crm , crm+1 , . . . , crm+n )
shares a consistent path (cri , cri +1, . . . , crm−1 , crm )
with the target DProute, the extension process
can be executed. The DProute which is used
to extend the target DProute is called extended
DProute. If more than two DProutes, for example,
(cri , cri +1, . . . , crm−1 , crm , crm+1 , . . . , crm+n , crp , crp+1 , . . . , crp+ j )
and (cri , cri +1, . . . , crm−1 , crm , crm+1 , . . . ,
crm+n , crq , crq+1 , . . . , crq+l ), share consistent path with
the target DProute, but the inconsistent paths
(crp , crp+1 , . . . , crp+ j ) and (crq , crq+1 , . . . , crq+l ) exist
between them, the extension process will be stopped at
the fork (mark after crm+n ). The detailed route extension
process can be described as follows (Figure 2C): Firstly,
the DProute starting from the longest seed contig is chosen
to be the target DProute, because the DProute starting
from long contigs tend to be more reliable. Secondly, the
DProutes in library sharing consistent path with target
DProute are used to extend the target DProute forward
and backward. The extension process continues until the
fork occurs in extended DProutes. The resulting routes
are termed as merged DProutes. Thirdly, entirely extended
DProutes including target DProute are removed from the
DProute library, whereas partly extended DProutes with
recorded fork are put back into the DProute library and
will be extended again. This whole DProute extension
process is executed until DProute library is empty. At last,
all merged DProutes are checked to merge bubble routes
(redundant assembly sequence), remove tip routes (noise
assembly sequence), and resolve circle routes (repetitive
sequence).

Finally, these merged DProutes are used to fill the gaps
within pre-scaffolds and to connect adjacent pre-scaffolds.

Assembly continuity evaluation based on counting break-
points

To evaluate the continuity of an assembly, all breakpoints
between adjacent contigs along the reference genome were
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detected. Firstly, a contigs list, representing the order of all
the contigs on the genome linked by the direct link, was
created by aligning the contigs to the reference genome.
The unambiguously aligned contigs were recorded and used
to determine the location of conflicting repetitive contigs
based on their direct link connections. Next, the combined
sequence derived from the contig list was aligned back to
the reference genome to correct false placements in the con-
tig list. Finally, spliced diplex and triplet contigs list were
aligned to the assembly to determine breakpoints. Obvi-
ously, scaffolding results with fewer assembly breakpoints
are better.

Test datasets and parameter settings

All simulated datasets were generated by a sequencing data
simulator pIRS v111 (27). The error rate was set to 0.5%,
and other parameters were set to default values. Firstly,
to test the dependency of short library in genome scaf-
folding, a pair of datasets, Sa-multi and Sa-single, were
simulated from Staphylococcus aureus (GCF 000027045.1).
The former contained two libraries with insert length
of 180 and 500 bp, respectively. The later contained
a library with insert length of 500 bp. Secondly, to
test the performance on biased insert length, a pair of
datasets, Ec-norm and Ec-screwed, were simulated from Es-
cherichia coli (GCF 000005845.2). Dataset Ec-screwed had
a lower tail compared with dataset Ec-normal. Thirdly, to
test the performance of paired-end contamination in the
mate pair library, a pair of datasets, Rs-confree and Rs-
contaminate, were simulated from Rhodobacter sphaeroides
(GCF 000012905.2). The former contained one paired-end
library with insert length of 300 bp and one mate pair
library with insert length of 3 Kbp. Whereas, the later
contained an additional 25% of paired-end reads in the
mate pair library. Besides, to test the performance on large
genomes, Sc-sim and Pf-sim were simulated from Sac-
charomyces cerevisiae (GCF 000146045.2) and Plasmodium
falciparum (GCF 000002765.3), respectively. Detailed de-
scription of these datasets was shown in Supplementary Ta-
ble S1.

Eight real sequencing datasets were downloaded from the
NCBI SRA database, with SRR522165 and SRR522163
for Escherichia coli, DRR008626 and DRR008628 for
Burkholderia sp., ERR422403 and ERR163029 for P. falci-
parum, SRR018008, SRR018009 and SRR018012 for Gros-
mannia clavigera, respectively. Detailed insert length, se-
quencing coverage, read number and read length were
shown in Table Supplementary Table S3. For each dataset,
the reads were first trimmed by Sickle v1.210 (https://github.
com/najoshi/) and then corrected by using SOAPec v2.01
(http://soap.genomics.org.cn/) on the trimmed reads.

For each dataset except P. falciparum and G. clavigera,
pre-assembled contigs were generated using SOAPdenovo2
(with arguments “all -R -F -E -w -u -s -D 1 -d 1 –M 1”).
For these two exceptions, the reads were pre-assembled us-
ing SOAPdenovo2 (with modified arguments “map -k 31”).
Note that the multiple kmer module of SOAPdenovo2 was
used when assembling these datasets. Five widely used scaf-
folders, OPERA, SCARPA, SOPRA, SSPACE and scaf
module implemented in SOAPdenovo2, were executed on

these datasets with their default parameters. As for inGAP-
sf, to save computing time, it performed scaffolding based
on the combination of contigs and scaffolds generated by
SOAPdenovo2. After obtaining the scaffold sequences, all
the assembled sequences larger than 1kbp are evaluated by
QUAST v4.3 (28).

RESULTS

The introduction of direct link graph can improve genome
scaffolding

Compared with the paired link graph, the direct link
graph exhibits significantly decreased graph complexity. To
demonstrate such deduction and quantify their difference,
we used sequencing reads from E. coli to compare the prop-
erties of both types of graphs. This dataset was assembled
into contigs using SOAPdenovo2 (8), and linkages among
the resulting contigs were used to construct the direct link
and paired link graphs separately. We first used the ratio
of edges to vertexes and degree of vertexes to evaluate the
graph complexity. As shown in Supplementary Figure S6,
the ratio of edges to vertexes for the paired link graph was
5.49, and 1.33 for the direct link graph, which contained
857 additional vertexes compared to the paired link graph.
In addition, >15% of the vertexes on the paired link graph
had a degree >10. In contrast, nearly all the vertexes on the
direct link graph had a low level of degree, ranging from 2
to 4. Such significantly decreased complexity in the direct
link graph will greatly facilitate the graph traversing and
route selection. To obtain a more intuitive understanding
of the direct link graph complexity, we explored the kmer-
sized interspersed repetitive (KIR) contigs in the direct link
and paired link graphs, which represented the most dom-
inant type of repetitive contigs in the assembly graph. As
shown in Supplementary Figure S6, it is evident that on the
paired link graph, the vertexes of KIR contigs were tangled
together and they had an average degree up to 12. Thus,
the scaffolding algorithms solely relying on the paired link
tend to misassemble these vertexes into chimeras or to break
them into fragmented assemblies. In contrast, most of the
vertexes in the direct link graph exhibited a substantial re-
duced topological complexity.

During the scaffolding process, the assembly continuity
should benefit from the reduced complexity of direct link
graph, especially when resolving repetitive contigs. To val-
idate this point, inGAP-sf, SOAPdenovo2, OPERA, SS-
PACE, SOPRA and SCARPA were used to scaffold a pre-
assembled dataset E. coli (7,032 contigs with mean length
of 729 bp assembled from 150 × paired-end reads with
540 bp insert length). For each tool, the assembled scaf-
folds were aligned to the reference to detect breakpoints
using spliced contig order list, which could reflect the con-
tinuity of the assembly. As shown in Supplementary Fig-
ure S7, inGAP-sf outperformed all other tools, with the
smallest number of breakpoints, indicating that the intro-
duction of direct link graph in inGAP-sf can remarkably
improve the assembly. Since KIR regions are widely present
in all kinds of genomes, we further tested the ability of each
tool on decomposing these regions. We detected all KIR
regions on the reference genome using a kmer-based scan-
ning approach and checked whether these regions were as-

https://github.com/najoshi/
http://soap.genomics.org.cn/
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sociated with the breakpoints of the assembly by each scaf-
folder. As shown in Supplementary Figure S8C, all paired
link based scaffolders failed to assemble most of these KIR
regions. In contrast, inGAP-sf correctly ordered nearly all
the repetitive contigs (>90%) in these regions, except those
with a length larger than insert size (technically insertlength-
minmatch). To get a comprehensive understanding on how
inGAP-sf resolves such KIR regions, we surveyed the KIR
contigs that could be assembled by inGAP-sf and explored
their associated direct link and paired link. We found that
the KIR contigs can be specifically allocated by paired link
into different routes through integrating with direct link,
which connected single KIR contig. As shown in Figure 3A
and B, all the given contigs were connected by direct link
and several possible routes in this region could be obtained.
N2, R3 and R1, R4 grouped KIR contigs R1, R2 and R3 to-
gether. R1, R7 and R2, R8 separated R1, R2 and R2, R3 into
different groups, respectively. As a result, the KIR region
from N2 to R4 was successfully assembled with the supervi-
sion of all the paired link in this region (Figure 3C). Simi-
larly, the other two complex regions were also resolved. Two
examples of assembled KIR regions using the dataset E. coli
were illustrated, where Figure 3D showed a long tandem re-
peat and Figure 3E showed an interspersed repeat with three
mixed routes located on the E. coli genome at around 737K,
1530K and 3623K, respectively. For both cases, inGAP-sf
could make an accurate assembly.

Taken together, the introduction of direct link graph can
greatly improve genome scaffolding, especially for KIR re-
gions. Besides the direct link graph, such improvement can
also be attributed to precise gap estimation and the SBE
model implemented in inGAP-sf, which will be evaluated
in next sections.

Precise gap size estimation

We compared the accuracy of inGAP-sf on gap size esti-
mation with other five tools using two simulated datasets,
Ec-normal and Ec-skewed (Supplementary Table S1). The
insert length of the former followed a normal distribu-
tion, whereas the later possessed a skewed lower tail. For
both data sets, we used the above six tools to scaffold pre-
assembled contigs, and compared the contigs against both
the reference genome and the resulting scaffolds to measure
the distance between adjacent contigs. As shown in Supple-
mentary Figure S8A, compared with other tools, inGAP-sf
exhibited a decreased standard deviation of estimated gap
size and the smallest difference between the estimated and
true gap size on both data sets. Considering that gap size
estimation can severely affect the continuity, accuracy and
the length of uncertain bases, we compared the assemblies
of inGAP-sf with those of other tools. For the dataset Ec-
skewed, all tools except inGAP-sf showed much worse per-
formance on NGA50, assembly accuracy and the number
of uncertain bases compared with the Ec-normal dataset.
In contrast, the NGA50 and accuracy of inGAP-sf only
dropped slightly in the skewed dataset, suggesting its ad-
vanced performance on gap size estimation.

We further tested these tools on a real dataset Burkholde-
ria sp., and as expected, inGAP-sf achieved the best perfor-
mance on gap size estimation (Supplementary Figure S8B).

We calculated all gap sizes in the scaffolds, which was in-
ferred from aligning the paired linked contigs to assem-
bled scaffolds, and compared them to the true gap sizes. As
shown in Table 1, inGAP-sf outperformed the other tools at
all levels of accuracy. Moreover, most of the detected gaps
by inGAP-sf matched the ground truth. Notably, the other
five tools either produced poor gap estimations on repet-
itive contigs or failed to assemble these contigs into scaf-
folds (Supplementary Figure S8C). inGAP-sf remarkably
increased both the accuracy of gap estimation and the num-
ber of assembled repetitive contigs, indicating its substantial
advantage over other tools.

The SBE model facilitates DProute filtering and traversal

Accurate gap estimation is necessary but not sufficient for
selecting correct DProutes. As an essential improvement,
inGAP-sf leveraged a newly developed mathematical model
to further screen out correct routes by estimating the read
pairs support between two linked contigs. To examine the
accuracy of this model, we used the assembly result of the
dataset E. coli as a benchmark. First, we extracted the refer-
ential gap size which was inferred by aligning contigs back
to the reference genome and paired link support. Next, we
classified all contigs into three categories according to their
length (above insert length, below double kmer size and the
remainder), and then the combination of these categories of
contigs resulted in four situations (see Methods). For each
situation, we evaluated the accuracy of the SBE model by
measuring the difference between estimated and referen-
tial read pairs support, as well as the estimation deviation.
We found that this model was consistently reliable across
all four situations (Figure 4A–H and Supplementary Fig-
ure S9). The expectation of estimated read pairs support
based on the referential gap size was equal to the regres-
sion of referential read pairs support, with most referen-
tial read pairs support cases in the range of estimation. In
the first three situations, the estimation deviation followed
a normal distribution (P > 0.1, Shapiro-Wilk test). We also
revealed that this excellent performance should not be at-
tributed to a large standard deviation of estimated read
pairs support (Figure 4C). Regarding to the last but most
complicate situation, at least one of the adjacent contigs
was shorter than double kmer size and in most cases it was
a KIR contig. Therefore, we used an entirely different strat-
egy to estimate the read pairs support, where the estimation
deviation approximately followed a normal distribution and
only 124 (6.31%) and 67 (3.41%) data points were out of the
triple and quadruple standard deviation, respectively (Sup-
plementary Figure S9F). It should be noted that these data
points could be corrected in the latter DProute creation and
extension. When applying the SBE model to the dataset P.
falciparum (Supplementary Figure S10), we also observed
an excellent performance on read pairs support estimation,
indicating a high level of robustness of the SBE model.

To further evaluate the SBE model on DProute selec-
tion, we compared read pairs support based score with the
gap size based score using the dataset E. coli. After con-
structing the direct link graph, the DProutes were extracted
from the KIR regions and the correctness of each DProute
was determined by aligning the corresponding sequence of
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Figure 3. The assembly of KIR regions by introducing the direct link graph. (A) The paired link layout of a KIR region in the dataset Sa-multi. Thick green
curves denote the paired links that are used for generating scaffolds by most paired link based algorithms, whereas thin green curves represent the paired
links that are excluded because of the occurrence of the fork. Dashed curves refer to the paired links which connect the other part of the genome. The
repetitive contigs, R4 and R5, are failed to be assembled because the downstream paired links of R1, R2 and R3 are conflicting. (B) The direct link graph
of the same KIR region. (C) Improved assembly of the KIR region by the combination of direct link and paired link graphs. R1, R2 and R3 are connected
by direct links and are grouped together by the paired link, N2, R3 and R1, R4. Because R1, R2 and R2, R3 are grouped together by other paired links, R4
is successfully assembled into the scaffold. R5 is also assembled in the same way. (D and E) Two examples of KIR regions in the E. coli assembly. The long
tandem repeat (D) and the interspersed repeat (E) are pre-assembled into fragmented contigs but they can be assembled into scaffolds by inGAP-sf. Light
red, blue and green routes refer three mixed routes which are resolved by inGAP-sf, located on the E. coli genome at around 737K, 1530K and 3623K,
respectively.
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Table 1. Performance comparison between inGAP-sf and other five assemblers on four real datasets

Dark gray and light gray highlight the first and second rank for each indicator, respectively. LargeMA, LocalMA, Indel, N and GF are the indicators
which are given by QUAST, which refer to the number of large misassembly, the number of local misassembly, indel length, uncertain bases and genome
fraction, respectively.

this route back to the reference genome. Subsequently, two
scores were obtained by measuring each DProute. Then, the
DProutes sourced from the same seed contig were ranked
according to their calculated scores. We firstly surveyed the
accuracy of each rank obtained by using these two models.
As shown in Figure 4I, the accuracy of both models showed
a tendency towards deduction from the first rank to the last
rank, suggesting that the higher the score, the more feasi-
ble the DProute was. Secondly, we compared the first rank
accuracy between the two models and found that the SBE

model outperformed the gap size estimation model, with
the accuracy increased from 74.8% to 93.3%. Such enhance-
ment was essential to the continuity of the assembly, be-
cause DProutes in the first rank were always chosen as true
routes. Notably, for KIR regions, there should be more than
one true DProutes. Therefore, it was crucial for the model to
screen out these DProutes in each rank. To examine the abil-
ity of the SBE model on DProute selection, we evaluated its
sensitivity and specificity by comparing selected DProutes
to true DProutes. As shown in Figure 4J, the SBE model
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Figure 4. Performance evaluation of the SBE model on DProute creation and selection. The performance of the SBE model on the first two situations,
L(contig1) > L(contig2) > insertlength (A–D) and L(contig1) > insertlength > L(contig2) > 2*k (E–H), were evaluated. (A, E) The sketch of the SBE model.
The probability of the event (paired reads mapped across the gap), p, decreases with increasing gap size between contigs (A) and decreasing contig length
(E). Light green and green regions represent decreased p and remaining p, respectively. (B, F) Relation between the gap size and the paired link support.
After estimating read pairs support by the SBE model and the gap size model, most of the paired link support, 96.65% for the first situation (B) and 91.57%
for the second situation (F), fell within the range of triple standard deviation of estimation. Notably, for the first situation, the estimation of read pairs
support was calculated based on the gap size model. Since the estimation of read pairs support was determined by the gap size and the length of contig2,
for the second situation, the estimation was calculated separately according to the mean length of each interval. (C, G) Relation between gap size and the
standard deviation of the estimation. (D, H) Distribution of the estimation biases for the two situations. (I) Comparison between gap size based score and
read pairs support based score for DProutes. DProutes sourced from the same seed contig were ranked according to the calculated scores. Obviously, the
read pairs support based scoring system was more efficient to select the correct DProute than gap size based scoring system. (J) DProute filtrations. The
read pairs support based scores of DProutes from the same seed contig were in the same column and ranked. The DProute, of which the score below the
cutoff, was abandoned and expressed as down arrow. Conversely, the remaining DProutes were put into the DProute library and expressed as up arrow.
The length of the arrow refers to the score. True positive and true negative were shown in red color, which accounted for 92.56%. False positive and false
negative were shown in green color.

achieved substantially high sensitivity (98.7%) by detecting
most of the true DProutes with sacrificing some specificity
(85.8%). These false routes can be easily filtered during the
route extension process (see Methods and Supplementary
Figure S11), because these routes may form tip structures.

Benchmarking with simulated datasets

To comprehensively evaluate the performance of inGAP-
sf, we constructed eight simulated datasets (Supplementary
Table S1). The sequencing library simulation was designed
to test the influence of short insert length on scaffolders.
The bias simulation was to investigate the impact of bi-
ased library insert length on scaffolding. The contamination

simulation was designed to examine whether the scaffolder
could avoid the influence of PE-contamination in mate-pair
libraries. The species simulation was to investigate the abil-
ity of scaffolders on assembling large eukaryotic genomes.
All these datasets were firstly assembled into contigs using
SOAPdenovo2, and then the contigs were assembled into
scaffolds by inGAP-sf and five other tools. We evaluated the
performance of these tools on the continuity, misassemblies
and genome coverage. It should be noted that NGA50 and
uncertain bases represent the continuity of genome assem-
bly, but aggressively greedy algorithm implemented in most
scaffolding tools tends to boost NGA50 by sacrificing as-
sembly accuracy. Hence, we surveyed the number of large
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and local misassemblies, as well as indel length, in the as-
sembled scaffolds.

As shown in Supplementary Table S2, for all simulated
data sets, inGAP-sf produced an improved or comparable
performance with increased NGA50 and genome coverage,
as well as decreased number of misassemblies and uncertain
bases. The library simulation showed that owing to the util-
ity of the direct link graph and the SBE model, inGAP-sf
could overcome the drawbacks of other tools that were de-
pendent on multiple short-read libraries with different in-
sert sizes to fill gaps and to increase the linkage density on
the paired link graph. The bias simulation indicated that
owing to its highly accurate gap estimation, inGAP-sf was
robust to biased sequencing data with non-normal insert
size distribution, which may cause significantly increased
uncertain bases in other tools. Similarly, inGAP-sf could
also distinguish paired-end reads contamination from mate
pair sequencing data using precise gap size estimation. The
species simulation showed that the difficulty of scaffolding
grows with increasing genome size. For the dataset Sc-sim,
inGAP-sf outperformed all other tools in all compared as-
pects, whereas for the dataset Pf-sim, it ranked the second
after OPERA on all aspects except the number of uncertain
bases.

These results collectively indicated that by applying ac-
curate gap estimation and the SBE model, inGAP-sf can
enhance genome assembly in the aspects of continuity, ac-
curacy and completeness. Moreover, by introducing the di-
rect link graph, inGAP-sf achieved the best genome cov-
erage, especially on repetitive regions, across all simulated
datasets. Such improved genome assembly will profoundly
facilitate downstream analyses.

Performance evaluation on real datasets

We further evaluated the performance of inGAP-sf and
the other five tools using four real datasets with different
genome sizes (Table 1). Similar to the results on simulated
datasets, inGAP-sf exhibited much better performance on
the two small genomes than the other five tools, with in-
creased NGA50 length and genome coverage, as well as de-
creased number of misassemblies. For the two datasets P.
falciparum and G. clavigera with 23.6 and 29.8 Mb genome
size, respectively, inGAP-sf achieved a comparable perfor-
mance with respect to the other tools. We found that the pri-
mary factor responsible for this result was the fragmented
direct link graph in these two datasets, in which the ratio of
edges to vertexes was as low as 0.64 and 0.46, respectively.
In contrast, in the other two datasets, the ratio of edges to
vertexes was more than 1.6. If there is no sufficient direct
link information among the pre-assembled contigs, inGAP-
sf has to use the paired link graph for scaffolding and thus
the results should be comparable to other tools.

SPAdes performed assembly by finding a genomic path in
the assembly graph based on read pairs mapping (25). Dif-
ferent with most scaffolders, SPAdes generated both con-
tigs and scaffolds through paired assembly graph. We fur-
ther compared the performance of inGAP-sf with SPAdes
on three real datasets (Supplementary Figure S12). For each
dataset, inGAP-sf scaffolded the contigs pre-assembled by
SOAPdenovo2. Regarding to SPAdes, each dataset was as-

sembled into scaffolds from scratch. After contig genera-
tion, we found that the NGA50 of SPAdes was at least 1.8-
fold larger than that of SOAPdenovo2. However, after scaf-
folding, inGAP-sf significantly increased the continuity of
each assembly and outperformed SPAdes in the Burkholde-
ria sp. and P. falciparum genome assemblies, and yielded
a comparable result in the dataset E. coli. In particular,
inGAP-sf produced a NGA50 >2- and 1.5-fold larger than
that of SPAdes in the datasets P. falciparum and G. clavigera,
respectively. Notably, the initial contig NGA50 length used
for scaffolding of SPAdes was at least 2-fold larger than that
of inGAP-sf, indicating that although SPAdes introduced
the direct link into genome scaffolding, inGAP-sf obtained
more integrated scaffolds by resolving complicated repeti-
tive regions.

Running time and memory usage

To evaluate the efficiency of inGAP-sf, the running time,
memory usage and CPU utilization rate were compared
with other five scaffolders using four datasets. As shown
in Figure 5, for smaller genomes with fewer KIR contigs,
inGAP-sf achieved a comparable time consumption and
memory requirement compared with all other scaffolders.
But the memory and CPU time cost of inGAP-sf dramati-
cally increased accompanied with the increase of KIR con-
tigs and it exhibited a medium level of performance as
compared with other tools (Supplementary Figure S13).
It should be noted that both SOAPdenovo2 and SSPACE
performed read mapping during the scaffolding process,
which may lead to an overestimation of running time in
all cases, whereas the other scaffolders started from parsing
read mapping files. SOPRA had the highest time consump-
tion and the factor attributed to this result was that it em-
ployed several sophisticated but time-consuming modules
in scaffolding and resolving misassemblies (22).

DISCUSSION

Paired link based scaffolders abandoned the original con-
nectivity of assembled contigs and the scaffolding was
treated as an independent process. However, the lost con-
nectivity information has precluded these methods from
assembling repetitive contigs, especially the KIR regions.
Considering that the length of assembled contigs follows a
power law distribution, KIR contigs account for a signif-
icant proportion in assembled sequences. Moreover, such
small-sized repetitive contigs were widely distributed along
the genome, including coding regions. For example, when
assembling the Escherichia coli genome by SOAPdenovo2
using a kmer size of 63, 37% of the genes were fragmented
by KIR contigs (Data not shown). Although small in size,
the high fraction of KIR contigs should severely affect
downstream genome analyses. To address this challenge, we
present a novel algorithm, inGAP-sf, for effective KIR con-
tigs resolving and efficient genome scaffolding. The main
advantage of inGAP-sf is that it introduces the direct link
graph to cluster and link KIR contigs and also the SBE
model to screen out correct routes from numerous noise
routes in repetitive regions. Through extensive evaluations
on both simulated and real datasets, we demonstrated that
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Figure 5. Comparison of time consumption, real-time tracking of memory usage and CPU utilization rate among six methods on the dataset Burkholderia
sp.

inGAP-sf has improved continuity, accuracy and complete-
ness of genome assembly than other known scaffolders.

Compared with the paired link graph, the direct link
graph exhibits decreased graph complexity in the aspects
of the ratio of edges to vertexes and the degree of ver-
texes. In addition, this type of graph contains remark-
ably simplified topology structures on KIR regions com-
pared with the paired link graph. More importantly, the
layout of KIR contigs on the direct link graph can be di-
rectly and accurately determined by direct link, and they
can further be specifically allocated into the correspond-
ing DProutes using paired link. Therefore, most of the KIR
regions within insert length can be resolved by integrating
direct link with paired link graphs. Collectively, these fea-
tures of the direct link graph remarkably facilitate improved
continuity, accuracy and completeness of genome assem-
bly. Similar to inGAP-sf, SPAdes performed assembly by
finding a genomic path in the assembly graph based on the
mapping position of read pairs and this assembler also in-
cluded a scoring function to resolve repeats (25). SPAdes
has been successfully used to assemble single-cell genomes
and mini-metagenomes (29,30). However, the regions con-
taining multiple connected KIR contigs are bypassed dur-
ing scaffolding by SPAdes, because these regions are lack-
ing of paired link support, which may result in failures of its
scoring system. In contrast, inGAP-sf addresses this prob-
lem by utilizing the SBE model, which is independent to
paired link supports.

inGAP-sf is a stand-alone software and can serve as a
drop-in replacement for current de Bruijn graph based as-
semblers. The input files for inGAP-sf include the contigs
and the read mapping results, which can be generated by us-
ing BWA (31), BWA-mem, Bowtie (32,33) or SOAPaligner

(34). inGAP-sf parses the read mapping results to generate
the paired link graph, the efficiency of which varies among
different read mappers. For example, due to their inher-
ent limitation on mapping reads to contig ends, both BWA
and Bowtie exhibit considerably decreased paired link sup-
ports compared with SOAPaligner and BWA-mem. Espe-
cially for small contigs, this situation is even worse for BWA
or Bowtie, which usually leads to a severe paired link loss on
the KIR regions. Take the assembly of dataset Burkholderia
sp. for example, the paired link supports derived from BWA
mapping results were only ∼40% of those by SOAPaligner
(Supplementary Figure S14), which resulted in a signifi-
cantly increased number of assembly breakpoints. The di-
rect link creation of inGAP-sf largely relies on the provided
contigs, which may vary among different de Bruijn graph-
based assemblers. When the overlapped sequences between
two adjacent contigs contains mismatches, hashing based
strategy will fail to create the direct link for them. To address
this problem and ensure the applicability to various assem-
blers, inGAP-sf leverages a direct link recovery strategy to
improve the connectivity of the direct link graph by finding
overlaps between any two contigs from the region within a
paired link. In most cases, this strategy exhibits an excellent
performance. For example, as shown in Supplementary Fig-
ure S15, after applying the direct link recovery process on
the E. coli datasets (ERX002508, ERX008638), the connec-
tivity of the direct link graph significantly increased. How-
ever, if the pre-assembled contigs have been extensively fil-
tered when decomposing the de Bruijn graph, the direct link
graph will not be improved by using this strategy.

In summary, we present an efficient scaffolder for assem-
bling short repetitive contigs. More importantly, we propose
a new strategy that combines the direct link and paired link
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graphs to achieve accurate genome assembly and to improve
the continuity of genome scaffolding. Further efforts could
be made to improve the running time and the efficiency of
assembling large genomes by partitioning the graph into
many small overlapped subgraphs. We believe that inGAP-
sf is a significant improvement over current genome scaf-
folding algorithms and provides novel insights into de novo
assembly algorithm development.
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