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Abstract: In many complex manufacturing environments, the running equipment must be monitored
by Wireless Sensor Networks (WSNs), which not only requires WSNs to have long service lifetimes,
but also to achieve rapid and high-quality transmission of equipment monitoring data to monitoring
centers. Traditional routing algorithms in WSNs, such as Basic Ant-Based Routing (BABR) only
require the single shortest path, and the BABR algorithm converges slowly, easily falling into a local
optimum and leading to premature stagnation of the algorithm. A new WSN routing algorithm,
named the Quantum Ant Colony Multi-Objective Routing (QACMOR) can be used for monitoring
in such manufacturing environments by introducing quantum computation and a multi-objective
fitness function into the routing research algorithm. Concretely, quantum bits are used to represent
the node pheromone, and quantum gates are rotated to update the pheromone of the search path.
The factors of energy consumption, transmission delay, and network load-balancing degree of the
nodes in the search path act as fitness functions to determine the optimal path. Here, a simulation
analysis and actual manufacturing environment verify the QACMOR’s improvement in performance.

Keywords: wireless sensor network (WSN); energy; ant colony optimization (ACO); routing algorithm;
quantum-inspired evolutionary algorithms

1. Introduction

Recent years have seen a worldwide interest in Wireless Sensor Network (WSN) [1] technology,
which has been considered one of the most promising technologies in smart manufacturing. Actually,
the development tendency of WSN is in accordance with its context of Industry 4.0 [2]. Together with the
Industrial Internet, the Internet of Things (IoT) [3], whose kernel is WSN, contributes to the achievement
of the connectivity and communication of Cyber-Physical Systems (CPS) [4]. WSN techniques are
appropriate for long-term data acquisition for IoT representation in an industrial environment.

WSNs are distinguished from traditional wireless networks by their dissimilar purposes: WSNs are
data-centric, while the latter aim for data transmission. In traditional wireless networks, such as
Ad hoc and Wireless Local Area Networks (WLANs), the main task is to find the low-latency path
between the source node and the destination node, and to improve the utilization of the whole
network in order to avoid communication congestion and simultaneously balance network flow.
However, in WSNs, a routing method has two main functions: to find the optimal path from the
source node to the destination node, and to transmit a data packet along that path. The main
aim of network routing improvement is to extend network life and prevent connection errors [5].
The routing method’s emphasis is on energy efficiency, because of limited node energy and long
lifetime requirements. Meanwhile, since the number of sensor nodes tends to be very large, and these
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nodes can only obtain local topological information, a suitable route should be chosen by considering
local network information.

Since the network is resource- and power-limited, general wireless communication network
routing methods are not well-suited for WSNs, especially in industrial fields in which there is demand
for high performance in energy efficiency and longevity. Accordingly, some routing approaches have
emerged, such as swarm intelligence-based schemes [5,6]. Social insect colonies, such as those of ants
and honeybees [7,8], have complex collective behaviors and decentralized management structures,
which are similar to parallel, dynamic, and distributed systems. Researchers have studied ant colony
optimization (ACO)-based routing schemes to develop high-performance routing methods [9].

In order to improve the limitations of ACO-based routing methods, such as earlier stagnation and
slow astringency, this paper considers the idea of using quantum-inspired evolutionary algorithms
(QEAs) [10,11] and ACO together, balancing load, real-time transmission, and energy consumption with
a multi-objective fitness function. A novel and efficient routing approach for WSNs, called the Quantum
Ant Colony Multi-Objective Routing (QACMOR) algorithm, is proposed accordingly. In QACMOR,
some quantum computing mechanisms of QEAs, including the quantum bit (qubit) and the quantum
rotation gate, are introduced into ACO. The former represents the node’s pheromone, and the latter
updates it. QEAs are able to avoid premature convergence with a simple implementation, which has
more potential for solving large-scale problems than do other general evolutionary algorithms.
In multiple objectives, more attention is paid to computation speed by using the look-up table of the
rotation angle of QEAs and setting a time-delay factor in fitness function.

The rest of the paper is organized as follows: Section 2 presents the literature review on WSN
routing methods. Section 3 sheds light on ACO-based routing in detail. Section 4 explains the proposed
QACMOR approach. Section 5 shows the experimental results of performance evaluation and case
study validated in a continuous steel casting production line. Finally, Section 6 discusses conclusions
and future work.

2. Literature Review

The routing protocol of WSNs should be devised with properties such as energy efficiency,
scalability, robustness, and rapid convergence, compared to that of traditional networks. A large
number of routing methods have been proposed. Roughly, they can be divided into four categories
through the analysis of relevant literature—that is, data-centric, clustering, geographic location-based,
and Quality of Service (QoS)-based routing methods.

Data-centric routing was proposed to reduce the flooding overhead caused by transmitting query
and data information. In data-centric routing, data request and collection are based on data attributes,
rather than only using local interactions [12,13]. Clustering is the most common technique used for
achieving energy-efficient and scalable performance in large-scale sensor networks. Cluster formation
is a process whereby sensor nodes decide which cluster head they should associate with among multiple
clusters [14,15]. The low-energy adaptive clustering hierarchy (LEACH) [15], a typical cluster-based
algorithm, divides a sensor network into a set of clusters, through which energy consumption is balanced
and reduced. In geographical routing, the physical location of the sensor node is used to guide the path
that a packet takes in the network [16,17]. In some cases of WSN application, a higher-communication
QoS is demanded, such as reliability and real-time data transmission. The method in [18,19] can be
classified in this category.

Routing methods based on swarm intelligence have robust, adaptive, and scalable performance,
suitable for autonomous distributed systems [20,21]. Inspired by the foraging principles of honeybees,
Saleem et al. [22] proposed a distributed and decentralized routing protocol called the BeeSensor
protocol. Camilo et al. [23] studied the application of the ACO metaheuristic to solve the routing
problem in WSNs, and came up with an energy-efficient, ant-based routing algorithm (EEABR).
Zungeru et al. [24] improved the EEABR algorithm by applying a new scheme to intelligently initialize
and update routing tables, reducing the flooding ability of ants for congestion control. In [25],
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a self-adaptive routing mechanism is presented to ensure reliability and efficiency during data
transmission by adopting the dissemination of a pheromone as a model for dealing with dynamic
changes in WSN.

QEAs are based on the concept and principles of quantum computing, such as the quantum bit
and the superposition of states. As a kind of evolutionary algorithm, a QEA is also characterized by the
representation of the individual, the evaluation function, and population dynamics. Learning from the
quantum rotation gate strategy of QEAs, Xing et al. [26] introduced an adaptive evolution mechanism
for QoS multicasting in IP/DWDM networks, which allowed each chromosome in a population to
update itself to a fitter position according to its own situation.

3. Preliminaries

3.1. Energy Consumption Model

Communication is the activity responsible for the bulk of the energy consumption in WSNs [27].
An energy consumption model used in Reference [27] is applied in this study (see Figure 1).
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Figure 1. The energy consumption model.

Assumptions are that: the data can reach every node from its neighbors; the data contain
information on distance and residual energy; the radio circuit in the sensor has a power control, and can
expend the minimum required energy to reach the intended recipients; and radio circuit can be turned
off to avoid receiving unintended transmissions. The transmission computation costs and receiving
costs for a k-bit message at a certain distance d are shown as follows:

Transmitting
ET(k, d) = Eelec × k + Eamp × k× d2 (1)

Receiving
ER(k) = Eelec × k + EBF × k (2)

Total energy cost
E = ET + ER (3)

where Eelec = 50nJ/bit, Eamp = 100pJ/bit/m2 for the transmitter amplifier, and EBF = 5nJ/bit when
beamforming is used. d represents the distance of two nodes, and k represents the number of message bits.

Thus, by decreasing the communication distance and the volume of data to transmit, energy can
be saved.

3.2. Basic Ant-Based Routing (BABR) Algorithm

In ACO, ants exchange data by pheromones, and according to the positive feedback principle,
a path with a high density of pheromones has a higher probability of being selected. Such optimization
can be adapted to implement basic ant-based routing for WSNs [9,23]:

Step 1: At regular intervals, a forward ant k starts to move from the source node toward the
destination. While moving, the identifiers of every visited node are recorded in a list, Mk, and each
forward ant avoids traversing a node that has been visited previously.
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Step 2: At each node r, a forward ant selects the next hop node in accordance with a certain
probability distribution:

Pk(r, s) =


[T(r,s)]µ·[E(s)]ν∑

s<Mk
[T(r,s)]µ·[E(s)]ν , if s <Mk

0, otherwise
(4)

where Pk(r, s) is the probability of individual k that moves from node r to node s, and T is the routing
table at each node with the amount of pheromone on the link (r, s) stored. E represents the heuristic
information given by 1/(C− es) (C is the initial energy level of the nodes and es is the actual energy level
of node s), and µ, ν are weight parameters that signify the importance of pheromones versus heuristics.

Step 3: When a forward ant reaches the destination, a backward ant goes back along the links
that the forward ant has visited. Before moving, the amount of pheromones that the ant will drop
during the trip is computed:

∆Tk =
1

N − Fdk
(5)

where N is the total number of nodes, and Fdk is the distance traveled by the forward ant k.
Step 4: Whenever a node r receives a backward ant from a neighbor node, the routing table

is updated:
Tk(r, s) = (1− ρ)Tk(r, s) + ∆Tk (6)

where ρ is a coefficient, and then (1 − ρ) represents the evaporation of pheromones.
Step 5: Once a backward ant returns to the source node, the next interval is continued.
After several iterations, each node will find the best neighbors to which to send a data packet.

While the ability and robustness of the ACO-based method qualify it to find a good solution, it still has
the possibility of getting stuck in slow astringency and early stagnation.

4. The QACMOR Routing Method

This section first introduces the basic concepts and rules of QEAs, and then elaborates on the
QACMOR algorithm for WSNs routing.

4.1. Mechanisms of QEAs

4.1.1. Basic Elements of QEAs

The memory unit in a classical computer is the bit, which only has two states: “0” or “1”,
whereas the smallest information unit in QEAs is defined as the qubit [10,11]. A qubit could be in the
“0” state, the “1” state, or in a linear superposition of both, which is denoted as α|0〉 + β|1〉, where |0〉 and
|1〉 represents the quantum state, and a pair of complex numbers (α, β) is defined with

∣∣∣α∣∣∣2+∣∣∣β∣∣∣2 = 1 ,

and the value of |α|2 and
∣∣∣β∣∣∣2 indicates the probability of the “0” state and the “1” state, respectively.

A qubit with the size of n can be represented as the following, which has 2n kinds of states:(
α1

β1

∣∣∣∣∣∣ α2

β2

∣∣∣∣∣∣ . . .
∣∣∣∣∣∣ αi
βi

∣∣∣∣∣∣ . . .
∣∣∣∣∣∣ αn

βn

)
(7)

For example, a quantum individual with three qubits is given like this: 1
√

2
1
√

2

∣∣∣∣∣∣∣
1
√

2
−1
√

2

∣∣∣∣∣∣∣
1
2√
3

2

 (8)

It can also be represented as:

1
4
|000〉+

√
3

4
|001〉 −

1
4
|010〉 −

√
3

4
|011〉+

1
4
|100〉+

√
3

4
|101〉 −

1
4
|110〉 −

√
3

4
|111〉 (9)
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which means that the probabilities of the states |000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, and |111〉 are
1/16, 3/16, 1/16, 3/16, 1/16wh, 3/16, and 1/16, separately.

Commonly, ξ(ξ ⊂ (−π,π]) denotes the phase of the qubit, and the ith bit phase is ξi = arctan(βi/αi).
The position of ξi in coordination is given in Figure 2.
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4.1.2. The Updating of Qubit in QEAs

In QEAs, the quantum rotation gate updates the qubit. The following formula represents a qubit

which rotates θi degrees from the original vector,
(
αi βi

)T
to

(
α′i β′i

)T

[
α′i
β′i

]
=

[
cos(θi) − sin(θi)

sin(θi) cos(θi)

][
αi
βi

]
(10)

θi is the rotation degree according to the following formula:

θi = ∆θ× s(αi, βi) (11)

∆θ = 5× exp(−t/tmax) (12)

In Formulas (11) and (12), ∆θ represents the rotation step, controlling the rotation speed; t represents
the current number of iterations; and tmax represents the predefined maximal times of calculation
determined by the scale of the problem. The function s(αi, βi) defines the direction:

s(αi, βi) = (dibest/dinow)(ξibest − ξinow) (13)

where
dinow = βinow/αinow

dibest = βibest/αibest

ξibest = arctan(βibest/αibest)

ξinow = arctan(βinow/αinow)

(14)

In Formula (14), αinow, βinow, αibest, βibest are the probability of the ith qubit of the current
and optimal solution, respectively. Finally, if s(αi, βi) < 0, the θi rotates clockwise—otherwise,
it rotates counterclockwise.

4.2. The QEAs in QACMOR

4.2.1. Representing the Pheromone with Qubit

In QACMOR, a qubit represents the pheromone for a population with the size of m
individuals—that is, Q =

(
q1, q2, . . . , q j, . . . qm

)
, j = 1, 2, . . . , m, and

q j =

(
α1

β1

∣∣∣∣∣∣ α2

β2

∣∣∣∣∣∣ . . .
∣∣∣∣∣∣ αn

βn

)
(15)
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where n is the number of qubits,
∣∣∣αi

∣∣∣2+∣∣∣βi
∣∣∣2 = 1 , i = 1, 2, . . . , n.

4.2.2. Updating the Pheromone with Quantum Rotation Gate

In QACMOR, similarly to Formulas (10) and (11), the quantum rotation gate G acting on the ith bit
of the jth individual q j of solution Q is described as follows: α′jiβ′ji

 = G
[
α ji
β ji

]
(16)

G =

(
cosθ ji − sinθ ji
sinθ ji cosθ ji

)
(17)

θ ji = ∆θ ji × s(α ji, β ji) (18)

where i = 1, 2, . . . , n,
(
α′ji, β

′

ji

)T
represents the updated bit, θ ji is the rotation angle, ∆θ ji signifies the

magnitude of the rotation angle, and s(α ji, β ji) is a function of α ji and β ji, and controls the direction of
rotation. For the computation speed, the look-up table was applied to compute the rotation angle as
shown in Table 1, which includes all feasible solutions. f (·) denotes the fitness function as Formula (20);
x ji and bi represent the ith bit of the jth individual of the current solution x and the best solution b,
respectively. The schematic diagram in Figure 3 shows the rotation gate polar plot for a qubit individual.

Table 1. The look-up table of the quantum-inspired evolutionary algorithm (QEA) rotation angle [28].

xi bi f(x)>f(b) ∆θi
s(αi,βi)

αiβi>0 αiβi<0 αi=0 βi=0

0 0 False 0 0 0 0 0
0 0 True 0 0 0 0 0
0 1 False 0 0 0 0 0
0 1 True 0.05π +1 −1 0 ±1
1 0 False 0.01π +1 −1 0 ±1
1 0 True 0.025π −1 +1 ±1 0
1 1 False 0.005π −1 +1 ±1 0
1 1 True 0.025π −1 +1 ±1 0
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Additionally, a conventional binary solution is significantly important for performance evaluation,
and can be obtained by observing the qubits. For example, it is assumed that xi (i = 1, 2, . . . , n) is
a certain bit of the binary individual x, then αi of the qubit individual is compared with a random
number w (0 < w < 1). If |αi|

2 > w, then set the value of xi to be “0”, otherwise set the value of xi to be “1”.
Therefore, for Q =

(
q1, q2, . . . , q j, . . . qm

)
, j = 1, 2, . . . , m, its binary solution is P =

(
p1, p2, . . . , p j, . . . pm

)
,

while p j( j = 1, 2, . . . , m) is a n-length binary individual, and then every element of p j (for example, p ji)
is determined by comparing α ji of q j with w, 0 < w < 1.
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4.3. The QACMOR Algorithm

The flowchart of the proposed approach is shown in Figure 4. The basic algorithm of QACMOR
can be described as follows:Sensors 2019, 19, x FOR PEER REVIEW 8 of 14 
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Step 1: The initialization step. Add every node and its neighbor nodes into the routing table.
A forward ant is generated from source nodes which carry the information of source nodes, sink nodes,
and passing nodes. The population is represented as Q(t) = (qt

1, qt
2, · · · , qt

j, · · · , qt
m) with the size of

m individuals, where qt
j( j = 1, 2, · · · , m) is the jth individual in the tth iteration. The representation is

shown as:

qt
j =

 αt
j1
βt

j1

∣∣∣∣∣∣∣ · · · α
t
ji
βt

ji

∣∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣∣ α

t
jn
αt

jn

 (19)

where n is the number of qubits. Initialize α ji, β ji(i = 1, 2, · · · , n) with 1/
√

2. The maximum iterations
are represented as tmax, and the initial value of the current iterations t is 0.

Step 2: Compute the binary solution P(t). P(t) = (pt
1, pt

2, · · · , pt
j, · · · , pt

m), pt
j( j = 1, 2, · · · , m) is

a binary individual with n-length. The probable solution is obtained by measurement of Q(t). The value
of element p ji in p j is determined by comparing α ji of q j with w, 0 < w < 1.

Step 3: Generate the routing path. Assign m individuals into the source nodes at random. We used
the state transition rule to generate the routing path of these individuals. In each step of the decision,
an individual positioned on node r moves to the node s in line with Equations (4)–(6).

Step 4: Evaluate the solution and store the best solutions in B(t). The evaluation function of the
routing tree is shown as follows:

f (t) =
1

[Z1(t)]
C1 [Z2(t)]

C2 [Er(t)]
C3 [σr(t)]

C4
(20)

Z1(t) =
∑

Kdλrs, (r, s) ∈ Tree(t) (21)
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Z2(t) = maxFdk(t) (22)

F(t) = max f (n), (n = 0, 1, . . . , t) (23)

where C1, C2, C3, and C4 are weight parameters, and Er(t) and σr(t) are factors which describe the
network load balance, and respectively represent the average value and standard deviation of the
load for node r. Z1(t) is the energy consumption factor, K is an array which indicates the total number
of leaf nodes extended from each node in the routing tree, λ is a parameter with a value from 2 to
4 which generally approaches 4, drs is the distance of link (r,s), Tree(t) denotes the routing tree, Z2(t) is
the time-delay factor, and Fdk is the distance traveled by the forward ant k.

After the sink node receives forward ant packages, evaluate the solution by Equations (20)–(23),
and then save in B(t).

Step 5: Update the pheromone according to the rules of the quantum rotation gate, after receiving
back the ant.

Step 6: If the current iterations are less than the maximum iterations, return to Step 3.
It should be noted that QACMOR is an evolutionary algorithm rather than a quantum algorithm,

in spite of the fact that the proposed approach is based on quantum computing mechanisms.
In QACMOR, some problems in basic ACO can be tackled. The representation of qubit introduces the
probability research method, making the balance between exploration and exploitation easier than
the conventional ACO algorithm, and adjustment of the magnitude of the rotation angle can make
convergence speeds faster. Exploring the unused nodes by using heuristic information, as Formula (4)
shows, updating the local pheromone according to Formula (5) and (6) in Step 2, and updating the
global pheromone with the quantum rotation gate will generate population diversity, preventing the
algorithm from becoming trapped in local convergence or premature stagnation.

5. Experimental Results

5.1. Performance Evaluation

Routing is a crucial process to consider in WSNs when dealing with multiple performance metrics,
since routing decisions can impact network lifetime, packet delivery rates, and end-to-end packet
delays [29]. Different performance metrics can be used for comparing different routing algorithms
in WSNs. The main metrics considered in this paper to validate the performance of the proposed
algorithm are as follows:

(1) General property, such as communication distance, energy consumption, and hops.
(2) Convergence rate, that is, the number of iterations needed to find an approximation to a fixed point.
(3) Network lifetime, that is, the duration up to the time when data can no longer be forwarded due

to the depletion of energy of the sensor nodes.

Sensor nodes are assigned at random. Figure 5 shows an instance in which the network range
was 1000 m2, and the total number of nodes was 50. Each link between a node and its accessible
neighbors was denoted by a dotted line. Figure 5 shows the optimal path obtained by QACMOR,
shown as a solid red line. Source nodes were numbered 16, 21, 22, 24, 30, 47, and 50, and the sink node
was numbered 1. Notice that the value of tmax should be greater than the number of iterations for the
algorithm to converge.

Three groups of experiments were conducted on a MATLAB simulation platform. Table 2 lists the
values of parameters used in this simulation.
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Table 2. Parameter-setting in experiments.

Item Experiment 1 Experiment 2 Experiment 3

Number of nodes 10, 20, 30, . . . , 100 50 50
Network range 1000 m2 1000 m2 5000 m2

Initial energy / / 0.5 J
C1 0.5 0.5 0.5
C2 0.1 0.1 0.1
C3 0.1 0.1 0.1
C4 0.1 0.1 0.1

tmax 400 400 400

In the first experiment, a comparison of the value of F(t) in cases in which the number of nodes
ranges from 10 to 100 was conducted between two algorithms, that is, BABR and QACMOR. The curve
lines in Figure 6 show that the values of F(t) for the two algorithms are same at the beginning,
and descend as the number of nodes increases. Compared with BABR, the curve of QACMOR has
a more sluggish downtrend. The reason for this is that QACMOR takes more properties into account,
including energy efficiency, load balance, and time delay.
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Figure 6. Value of optimal route vs. number of nodes.

The aim of the second experiment was to estimate the convergence property by observing the
optimal value F(t) of QACMOR and BABR when the number of iterations grows. As iterations grow,
it can be seen in Figure 7 that the value of F(t) tends to be stable. In addition, we notice that QACMOR
begins to converge at nearly 200 iterations, while it takes approximately 350 iterations for BABR.
This demonstrates that QACMOR has a faster convergence rate than BABR.
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The third experiment evaluates the network lifetime of QACMOR. The experiment is performed
on the condition that the number of dead nodes grows. In Figure 8, the x-axis denotes the number
of dead nodes, and the y-axis represents the lifetime of the network. It can be seen that the value of
lifetime for QACMOR is consistently higher than the same value for BABR, the gap becomes bigger
with increasing dead nodes, and maintains a fixed value after 35 nodes, nearly 900 h.Sensors 2019, 19, x FOR PEER REVIEW 11 of 14 
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The above experimental results indicate that the QACMOR algorithm is capable of use as
an efficient and reliable solution for routing, with balanced energy consumption and an improved
network lifetime.

5.2. Case Study

In this section, a case study of a maintenance, repair, and overhaul (MRO) system for a steel
manufacturing enterprise is illustrated, in order to evaluate the practicality of QACMOR.

Some situations requiring WSNs, such as continuous steel casting lines, present unique
characteristics, mainly due to their harsh industrial environment. In the case of a casting line,
this is at high temperature and full of powder, dust, and noise. The installation site of the sensor nodes
and sink makes it inconvenient to charge or replace the power supply. Therefore, network longevity
should be considered. It is important to build routing algorithms which can be adapted to monitor
equipment conditions and prolong the WSN lifetime as much as possible. Another major challenge in
the harsh environment is insufficient QoS in WSNs, such as delay, bandwidth, and packet loss.
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The role of the online monitoring system is to obtain the status information of equipment,
including temperature, pressure, and revolving speed. The system architecture is depicted in Figure 9.
The complex structure of the continuous casting line made it difficult to install and deploy a reliable
cable network, while a WSN had the ability to overcome the field wiring problem. In the WSN,
these field data were sent to the Advanced RISC Machines (ARM)-based gateway for data collection,
fusion, and processing. Then, the data were sent to the server. At the server, the collected data were
imported into a database for further analysis and diagnosis of potential faults by the MRO system.
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Figure 9. Online monitoring system architecture.

Sensor nodes distributed within the continuous casting line constitute the system’s perception
layer. Figure 10 shows the installation site of three frame-offset wireless sensors on a segment. In this
section, we chose one segment as the test object. Specifically, in one segment, 24 temperature sensors
were used to collect information about the working status of the hydro-cylinders; 24 pressure sensors
were installed to collect information about the bearings; eight revolving speed sensors were embedded
to collect information about the rollers; and three frame-offset wireless sensors were installed onto
each segment to monitor the displacement of the segment’s frame.
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We conducted a test on one segment in a real casting-shop environment to compare the network
lifetime of three algorithms—that is, BABR, AODV, and QACMOR, and verify the running practicality
of QACMOR. In this test, the total number of nodes is 60, with one sink node and 59 sensor nodes for
one segment. The parameter settings are listed in Table 3, which shows the same weight value (C1, C2,
C3, C4) as that listed in Table 2 in Experiment 3 in Section 5.1. As in that experiment, the comparison of
the whole network lifetime was made by observing the number of dead nodes. Results in Figure 11
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indicate that in terms of time elapsed before first node death or total network lifetime, QACMOR still
has an advantage over BABR, even in harsh working conditions.

Table 3. Parameter-setting in case study.

Item Value

Number of nodes 60
Network range 300 m × 280 m
Initial energy 0.5 J

C1 0.5
C2 0.1
C3 0.1
C4 0.1

tmax 500
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6. Conclusions and Future Work

ACO-based routing has been used widely in WSNs. To improve convergence performance and
save energy consumption in basic ACO routing methods, quantum computing mechanisms were
introduced in the QACMOR method. This paper studied two performance metrics: convergence rate
and network lifetime, with reference to the features of industrial continuous steel casting production.
Simulation results indicated that the algorithm proposed can rapidly obtain the optimal path with
a fast convergence rate, and prolong the network lifetime. A WSN, based on the proposed QACMOR
algorithm, was also deployed in an MRO system for a steel manufacturing enterprise. Physical WSN
deployment and experiments showed that the proposed QACMOR algorithm is reliable in such
applications, after consideration of packet loss based on our previous work [21,30]. In future work,
focus and attention should be given to the potential synergies between WSNs and other existing
and emerging technologies, such as Cloud Computing and Big Data, so as to improve their overall
performance and efficiency.
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