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Background: PBPs are involved in the construction of peptidoglycan, which is the
major constituent of bacterial cell walls and the target of β-lactam antibiotics.
There is little published research analysing the relationship between β-lactams
with differing bacterial PBP targets and how they can be manipulated in combina-
tions with respect to clinical or microbiological (e.g. resistance) outcomes (i.e.
does expanded PBP activity via a combination lead to better in vitro/in vivo
outcomes).

Figure 1. Conceptual matrix of antibiotics and the associated PBPs covered as monotherapy and combination therapy. 1, amoxicillin Etest; 2, aztreonam Etest; 3, ceftazi-
dime Etest; 4, ceftazidime/avibactam Etest; 5, meropenem Etest; 6, piperacillin Etest; 7, (piv)mecillinam Etest; 8, temocillin Etest; 9, piperacillin/tazobactam Etest; 10,
co-amoxiclav Etest.
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Objectives: To systematically explore the relationship between double β-lactam
therapy (with and without at least one partner being a β-lactamase inhibitor anti-
biotic such as co-amoxiclav) and in vitro activity against susceptible Escherichia
coli strains.

Methods: We systematically explored the relationship between double β-lactam
therapy combinations against seven E. coli strains of variable resistance in vitro.
This included fully susceptible isolates, ESBL producers and carbapenemase produ-
cers (CPEs). For each of 10 antibiotics, the MICwas determined individually, and sub-
sequently in combination with 9 further antibiotics, using the MTS™ ‘cross’ synergy
method (Liofilchem, 2012).

Results: Overall, 86/630 (13.6%) of all combinations tested showed synergy and
408/630 (64.8%) were additive; 136/630 (21.6%) combinations showed indiffer-
ence. Of the 86 ‘bug–drug’ combinations that showed synergy, 42/86 (49%) in-
cluded ceftazidime/avibactam, representing 42/126 (33%) of all ceftazidime/
avibactam-based combinations tested, and 56/86 (65%) of synergistic combina-
tions covered PBP2. Synergy was most commonly detected in ESBL producers (58/
86; 67% of combinations) and less frequently seen in CPEs (2/86; 2% of combina-
tions) and fully susceptible isolates (8/86; 9% of combinations). Additive effects
were seen in 92/180 (51%) combinations versus ESBLs, compared with 18/90
(20%) in CPEs, versus 154/180 (86%) in fully susceptible isolates. No antagonism
was identified with any antibiotic combination.

Conclusions: In the combinations tested, synergy or additive effects were common
(78%); similar to our previous work with fosfomycin/β-lactam combinations (89%),
but higher thanwe foundwith fosfomycin/non-β-lactam combinations (28%). Many
of the synergistic bug–drug combinations identified contained a β-lactam inhibitor
as a partner and/or provided PBP2 activity. This provisionally suggests a role for
PBP2 (also targeted by avibactam) in synergy, although the presence of a β-lacta-
mase inhibitor may also be important. Confirmation using an alternative method
and mechanistic elucidation is required. The clinical/microbiological importance of
such effects remains unclear.
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