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SUMMARY
Chimeric antigen receptor anti-CD19 (CAR19)-T cell immunotherapy-induced clinical remissions in CD19+

B cell lymphomas are often short lived. We tested whether CAR19-engineering of the CD1d-restricted
invariant natural killer T (iNKT) cells would result in enhanced anti-lymphoma activity. CAR19-iNKT cells
co-operatively activated by CD1d- and CAR19-CD19-dependent interactions are more effective than
CAR19-T cells against CD1d-expressing lymphomas in vitro and in vivo. The swifter in vivo anti-lymphoma
activity of CAR19-iNKT cells and their enhanced ability to eradicate brain lymphomas underpinned an
improved tumor-free and overall survival. CD1D transcriptional de-repression by all-trans retinoic acid re-
sults in further enhanced cytotoxicity of CAR19-iNKT cells against CD19+ chronic lymphocytic leukemia cells.
Thus, iNKT cells are a highly efficient platform for CAR-based immunotherapy of lymphomas and possibly
other CD1d-expressing cancers.
INTRODUCTION

Despite impressive early clinical efficacy, application of chimeric

antigen receptor (CAR)-T cell immunotherapy for B cell malig-

nancies is limited by disease relapse and tumor escape by

downregulation of the commonly targeted CD19 antigen (Nee-

lapu et al., 2017; Schuster et al., 2017). In addition, ability to

induce sustained complete remissions with a single infusion of

CAR-T cells and/or to exert a memory-like effect through long-

term persistence, which would induce second remission of re-

lapsing disease, are desirable but still not fully attained CAR-T
Significance

Anti-CD19 chimeric antigen receptor (CAR19)-T cell immunot
However, more than half of patients relapse, highlighting the ne
By exploiting the inherent biological properties of iNKT cells, w
anti-tumor effect against B cell malignancy comparedwith CAR
on target cells. This includes ability of CAR19-iNKT cells to era
sions. Anti-tumor efficacy can be further enhanced by transcri
and effective platform for CAR immunotherapy of lymphoma a
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cell attributes (Brudno and Kochenderfer, 2018). Recent efforts

have focused on developing CAR targeting to tumor-associated

antigens (Ruella et al., 2016) and on editing the endogenous

T cell receptor (TCR) of the CAR-modified T cells (Eyquem

et al., 2017; Qasim et al., 2017) to mitigate induction of acute

graft-versus-host disease (aGVHD), allowing the use of unre-

lated donor-derived, allogeneic CAR-T cells. However, this en-

tails additional genetic engineering that increases the complexity

of CAR-T cell manufacturing.

Invariant natural killer T (iNKT) cells are rare but powerful immu-

noregulatory and effector T cells, playing a pivotal anti-tumor role
herapy induces complete remissions in B cell lymphomas.
ed for improving the efficacy of CAR-based immunotherapy.
e demonstrate that CAR19-iNKT cells exert a more powerful
19-T cells, underpinned by dual targeting of CD19 and CD1d
dicate brain tumors and to induce sustained second remis-
ptional modulation of CD1D. Thus, iNKT cells are a versatile
nd possibly of other cancers.
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(Bendelac et al., 2007; Exley et al., 2011; Salio et al., 2014). iNKT

cells are restricted by CD1d, a non-polymorphic, glycolipid-pre-

senting HLA I-like molecule expressed on B cells, antigen-pre-

senting cells (APCs), and some epithelial tissues (Exley et al.,

2000; Nickoloff et al., 1999). We and others have demonstrated

the ability of donor iNKT cells to protect from experimental and

clinical aGVHD in the context of allogeneic stem cell transplanta-

tion (Chaidos et al., 2012; Leveson-Gower et al., 2011; Rubio

et al., 2016; Schneidawind et al., 2014).We also previously found

co-expression ofCD19 andCD1d inmany subtypes of B cell lym-

phoma, including the incurable marginal zone lymphoma (MZL)

and mantle cell lymphoma (MCL) (Kotsianidis et al., 2011), while

in B cell chronic lymphocytic leukemia (CLL), the commonest he-

matologic malignancy, expression of CD1d is lower than in

normal B cells or absent (Gorini et al., 2017; Kotsianidis

et al., 2011).

We therefore hypothesized that equipping iNKT cells with

CAR19 would potentially achieve dual targeting of CD1d and

CD19, thus enhancing the overall anti-lymphoma effect. Given

the protective impact of allogeneic iNKT cells against human

aGVHD (Chaidos et al., 2012; Rubio et al., 2016), CAR-iNKT cells

could be developed from healthy donors for ‘‘off-the-shelf’’ use.

Previous work demonstrated the feasibility of CAR engineering

of iNKT cells and their pre-clinical activity against neuroblastoma

and CD1d�CD19+ B cell lymphoma lines but not patient-derived

lymphoma cells (Heczey et al., 2014; Tian et al., 2016). However,

in vivo anti-tumor response required repeated cell dosing and/or

adjuvant IL-2 administration (Heczey et al., 2014; Tian et al.,

2016). In addition, comparative analysis of CAR-T and -iNKT

cells and exploration of the relative contributions of CD1d-versus

CAR19-CD19-dependent interactions in CAR19-iNKT cell acti-

vation are lacking.

RESULTS

Optimized Protocol for Generation of Poly-functional
CAR-iNKT Cells
There is a dearth of information as to how best to CAR-engineer

iNKT cells. To determine optimal conditions for efficient lentiviral

CAR19 transduction and subsequent CAR19-iNKT cell expan-

sion, we tested four different protocols using second- (19-28-z)

or third-generation (19-28-OX40-z) CAR against CD19 (Fig-

ure S1A). In a stepwise approach (Figures S1B–S1E), conditions

tested include transduction of sorted iNKT cells upfront versus
Figure 1. Optimized Protocol for Generation of Poly-functional CAR19

(A) Flow cytometric identification of iNKT cells as TCRVa24+Va11+ pre-selection

TCRVa24+ iNKT cells as assessed by staining against the marker RQR8 3 days a

(B) Expansion and absolute numbers of CAR19-T and CAR19-iNKT cells over 3

respectively). p values are for CAR19-iNKT versus CAR19-T cells using Friedma

(C) Intracellular expression of cytokines in resting (n = 10) and anti-CD3/CD28-bea

analysis was performed as shown in (D). D-B48 and dG9 monoclonal antibodies id

(D) Representative example of flow cytometric intracellular analysis of shown cyt

plots, intensity of perforin expression is projected as a heatmap according to the

(E) Proportions of cells co-expressing zero to three cytokines (mean of four inde

(F) Proportions of specific cytokines co-expressed by CD4� or CD4+ CAR19-T a

(G) Multiple cytokine secretion after 3 and 8 hr of activation of second- and third-

(A and B). Heatmap shows normalized CAR19-iNKT/CAR19-T cell ratios.

Error bars represent SEM.

Asterisks indicate p values as follows: *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
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post initial expansion in the presence of the iNKT cell agonist

alpha-galactosylceramide (aGalCer); activation and expansion

using anti-CD3/CD28-mediated stimulation versus CD1d-

expressing APC plus aGalCer. Through paired comparisons,

we first determined that upfront transduction of pre-selected

and not of pre-expanded iNKT cells results in the highest trans-

duction efficiency (protocol 3; Figures S1B–S1E) and next, use of

IL-15 but not of IL-2 during the CD3/CD28-based activation

phase and the first week post CAR19 transduction preserved

viability of iNKT cells (Figures S1B–S1E).

Overall, we found that the optimal approach (protocol 4),

comprising upfront selection and lentiviral CAR19 transduction

of CD3/CD28-activated iNKT cells in the presence of autologous

APC and IL-15, consistently generates highly transduced

and viable CAR-iNKT (and CAR-T) cells (Figures 1A and S1B–

S1E) and, over a period of 3 weeks, it results in significantly

higher expansion and absolute numbers of CAR19-iNKT than

CAR19-T cells (Figure 1B). This protocol is efficient irrespective

of the source of iNKT cells; i.e., fresh or frozen, normal donor,

or patient-derived lymphocytes (Figure S1F). Importantly, it

also ensures the preservation of the CD4– fraction of iNKT cells

(Figure S1G), which, compared with their CD4+ counterparts,

have a more polarized Th1 cytokine profile and express higher

levels of cytotoxic granules (Gumperz et al., 2002). Indeed, we

found that resting CD4– CAR19-iNKT cells express significantly

higher levels of perforin and granzyme B and, upon activation,

more granzyme B and interferon-g (IFNg) but less IL-4 than the

CD4+ subset (Figures 1C and S1H). Compared with their

CAR19-T counterparts, a higher proportion of CAR19-iNKT cells

express IFNg, perforin, and granzymes (Figure 1D) and a signif-

icantly higher proportion (40%versus <5%, p < 0.01) are tri-func-

tional; i.e., co-express these three molecules (Figures 1D–1F). Of

note also, while >20% of CAR19-T cells secreted none of the

above three molecules, the corresponding proportion for

CAR19-iNKT cells was <3%. Further, CAR19-iNKT cells secrete

higher levels of Th1/2 cytokines than CAR19-T cells over an 8 hr

period of activation (Figure 1G).

Co-operative Activation of CAR19-iNKT Cells
Next, we tested whether equipping iNKT cells with a CAR19 that

powerfully activates T cells when it engages CD19 would affect

the ability of iNKT cells to functionally interact with CD1d, the

sole restricting element of the iTCR (Brossay et al., 1998; Exley

et al., 1997; Nieda et al., 1999; Takahashi et al., 2000). For this
-iNKT Cells

and expression of second- and third-generation CAR19 in TCRVa24� T and

fter lentiviral transduction.

weeks using lymphapheresis (left) or peripheral blood (PB; right) (n = 3 and 4

n test.

d-activated (for 4 hr; n = 6) CD4� and CD4+ CAR19-iNKT cells. Flow cytometric

entify total and granule-associated perforin respectively. GZMB, granzyme B.

okines in CD4� and CD4+ CAR19-T and CAR19-iNKT cells. In GZMB/IFNg dot

shown color scale. PFN, perforin.

pendent experiments).

nd CAR19-iNKT cells.

generation (2 and 3) CAR19-T and CAR19-iNKT cells from two healthy donors

0.0001. See also Figure S1.
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B Figure 2. Co-operative Activation ofCAR19-

iNKT Cells

(A) Dot plots showing expression of CD19 and

CD1d in parental and derivative K562 cells after

retroviral transduction of corresponding cDNAs.

(B) Cytotoxic activity of second-generation

CAR19-iNKT cells against parental CD1d–19–

K562 cells (WT) or K562 cells expressing CD1d

and CD19 singly or in combination at the indicated

E/T cell ratios (representative of three experi-

ments).

(C) Cytotoxic activity of second-generation

CAR19-iNKT cells against parental CD19–CD1d–

K562 cells or K562 cells expressing CD19 and

CD1d singly or in combination with (right) and

without (left) pre-pulsing of targets with 100 ng/mL

aGalCer. E/T cell ratios are as shown (represen-

tative of two experiments).

Error bars represent SEM of triplicate assays.
purpose, we engineered the CD1d�CD19�K562 cells to express

CD1d and CD19 singly or in combination (Figure 2A). We found

that killing by CAR19-iNKT cells of CD1d+CD19�, CD1d�CD19+,
and CD1d+CD19+ targets proceeded incrementally (Figure 2B).

In the presence of aGalCer, a CD1d-presented glycolipid that

selectively activates iNKT cells, we observed further enhance-

ment of CAR19-iNKT cell cytotoxicity against CD1d+-only and

CD1d+CD19+ targets but not against CD1d�CD19� and

CD1d�CD19+ targets (Figure 2C). We conclude that the expres-

sion and engagement of CAR19 does not affect the ability of

iNKT cells to be activated in the presence of CD1d, suggesting

preservation of the ability of CAR19-iNKT cells to be activated

through CD1d interaction. These findings also support the hy-

pothesis that dual targeting of CD1d and CD19 results in co-

operative killing of target cells and can be further enhanced by

the use of aGalCer, thus further underscoring the importance

of functional interaction of CAR19-iNKT cells with CD1d on

target cells.

Enhanced Short- and Long-Term Reactivity of CAR19-
iNKT Cells against B Lineage Malignancies
We next examined the short- and long-term in vitro reactivity of

CAR19-iNKT cells in a B lineage cell context. First, we confirmed

that CAR19-engineered iNKT cells are reactive against mature B

lineage cell lines in a manner proportional to the expression

levels of CD19 and CD1d (Figures S2A and S2B). We started dis-

secting the functional profile of CAR19-iNKT cells by comparing

the proliferative potential of second- and third-generation

CAR19-iNKT cells with their same-donor CAR19-T cell counter-

parts. Over a period of 3 weeks, we found a significantly higher

expansion and higher absolute numbers of CAR19-iNKT cells,

which were more striking for third-generation CAR (Figure 3A).

This was corroborated in real-time imaging of second- and

third-generation CAR19-iNKT versus CAR19-T cell proliferation
Can
in the presence of CD19+CD1d+ B cells

over a period of 7 days (Figure 3B).

In cytotoxicity assays, we found higher

reactivity of CAR19-iNKT cells than

CAR19-T effectors against the CD19+
CD1d+ double-positive C1R-CD1d cells and Farage lymphoma

cells, an effect that was further enhanced by aGalCer (Figure 3C).

These findings were extended in an assay in which proliferation

of effector cells (i.e., CAR19-T or CAR19-iNKT cells) and survival

of CD19+CD1d+ target cells were concomitantly imaged in real

time over a period of 7 days (Figures 3D and 3E). Indeed, the

cytotoxic and proliferative activity of CAR19-iNKT cells at an

effector-to-target (E/T) ratio of 1:1 was similar to those of

CAR19-T cells at an E/T ratio of 10:1, suggesting a functional

equivalence of CAR19-iNKT:CAR19-T of 10:1.

To better reflect the clinical context, we set up cytotoxicity as-

says using as targets primary CD19+CD1d+ lymphoma cells from

one patient with blastic variant of MCL and two patients with

MZL, which co-express CD1d and CD19 as we previously re-

ported (Kotsianidis et al., 2011) (Figure S3A). In six out of seven

assays involving three healthy donors, CAR19-iNKT cells were

more cytotoxic than CAR19-T cells (Figure 3F). Further charac-

terization of lymphoma cell killing by assessment of cell size

and 7-AAD retention (Figure S3B) confirmed superior killing by

CAR19-iNKT cells of all patient lymphoma cells (Figures S3C

and S3D). In these ‘‘same-tube’’ assays we also observed low

to no killing of monocytes (Figure S3E), which express higher

levels of CD1d than malignant B cells (Figure S3F) (Exley et al.,

2000) but not CD19, suggesting a low ‘‘on-target, off-tumor’’

reactivity of CAR19-iNKT cells.

Transcriptional and Epigenetic Basis for Enhancing
CAR-iNKT Cell Reactivity
As previously reported, we found that CLL cells express low or

no CD1d in comparison with normal B cells (Gorini et al., 2017;

Kotsianidis et al., 2011) (Figure S4A). We found that CAR19-

iNKT cells effectively killed CLL cells and their cytotoxicity

was further enhanced in the presence of aGalCer, suggesting

that dual targeting of CLL cells can be further enhanced by
cer Cell 34, 596–610, October 8, 2018 599
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CD1d presentation of aGalCer despite the very low level of CD1d

expression (Figure S4B). Previous work reported transcriptional

regulation of CD1D expression in human B cells by the RARa

ligand all-trans retinoic acid (ATRA) (Allan et al., 2011). Accord-

ingly, we observed that CD1D mRNA and cell surface protein

expression increased in a time-dependent manner after treat-

ment with clinically relevant concentrations of ATRA (Figures

4A–4C and S4C–S4E) without affecting cell viability (Figure S4F).

Moreover, aGalCer-pre-loaded CLL cells were more effectively

killed by CAR19-iNKT cells than by CAR19-T cells (Figure 4D)

and, upon ATRA pre-treatment of CLL cells (Figure S4G), the

cytotoxic activity of CAR19-iNKT but not of CAR19-T cells

increased further (Figure 4D).

We dissected the epigenetic and transcriptional basis of CD1d

regulation in the U266 cell line as a paradigm of a B lineage ma-

lignant cell with transcriptional repression of CD1D expression

(Figure S4H). Using chromatin immunoprecipitation (ChIP) and

re-ChIP assays we found enrichment of both H3K4me3-acti-

vating and H3K27me3-repressive histone marks at the CD1D

promoter (Figures 4E and 4F). Notably, a similar bivalent histone

state was observed in primary CLL cells (Figure S4I). In U266

cells we also demonstrated enrichment of the Ser5- but not

Ser2-phosphorylated form of RNA PolII (Figure 4G), consistent

with a bivalent, poised transcriptional state of CD1D. Impor-

tantly, histone bivalency at the CD1D promoter was associated

with high levels of RARa binding as well as of EZH2, the Poly-

comb complex methyl-transferase responsible for H3K27me3

marks (Simon and Kingston, 2009) (Figure 4H), with direct inter-

action of EZH2 and RARa (Figure 4I), suggesting a co-operative

transcriptional repressive function upon CD1D. In a pharmaco-

logical approach, although an EZH2 inhibitor had no discernible

effect on transcription and surface expression of CD1d, it co-

operatively enhanced the effect of ATRA on CD1d expression

(Figures 4J–4L). These findings provide the mechanistic basis

for developing CAR-iNKT cell immunotherapy in conjunction

with transcriptional and epigenetic manipulation of CD1D.

Enhanced In Vivo Anti-tumor Activity of CAR19-
iNKT Cells
We compared second-generation CAR19-iNKT versus CAR19-T

cells in a systemic in vivo model of CD1d+CD19+ B cell malig-

nancy (C1R-CD1d cells; Figure 5A) based on a single infusion

of immunotherapy in tumor-engrafted NSG mice and monitoring

with serial bioluminescence imaging of the tumor burden. Ani-
Figure 3. Enhanced Short- and Long-Term Reactivity of CAR19-iNKT C

(A) Second- and third-generation CAR19-T and CAR19-iNKT cell expansion (fold

p value is for CAR19-iNKT versus CAR19-T cells using Friedman test. Error bars

(B) Proliferation analysis of second- and third-generation CAR19-T and CAR19-iN

(C1R-CD1d) cells over 7 days. p value is for CAR19-iNKT versus CAR19-T cells

(C) Cytotoxicity of third-generation CAR19-T and -NKT cells against C1R-CD1d (r

pre-loaded or not with aGalCer. Error bars represent SEM of triplicate assays.

(D) IncuCyte images of representative wells showing the final effector (gray) and liv

CAR19-NKT cells. Targets were CD19+ ARH-77-CD1d cells expressing mCherry

(E) Seven-day trajectory of effector and target cell proliferation and elimination r

Friedman test.

(F) Cytotoxicity of second-generation CAR19-iNKT, CAR19-T, and of untransdu

phoma (MCL; top) and two patients with marginal zone B lymphoma (MZL; bot

represent SEM of triplicate assays.

**p < 0.01; ****p < 0.0001. Cc, cell confluency; FP, fluorescent protein; RCU, red
mals treated with unmodified T or iNKT cells had poorer survival

compared with mice receiving CAR-based immunotherapy (Fig-

ure 5B). However, compared with the CAR19-T cell-treated

group, the CAR19-iNKT cell-treated group displayed a signifi-

cantly improved overall (Figure 5B) and tumor-free survival (Fig-

ure 5C). This could be at least in part explained by a significantly

swifter decline of tumor burden observed within 3 days following

transfer of CAR19-iNKT cells (Figures 5D and 5E).

Since human T cells may induce aGVHD in xenograft models

(Alcantar-Orozco et al., 2013), we monitored body weight and

clinical aGVHD score (Cooke et al., 1996). We found that body

weight increased comparably in all experimental groups (Fig-

ure S5A), thus excluding the occurrence of clinically significant

aGVHD, which is associated with >10% loss of weight (Cooke

et al., 1996); in line with this, the aGVHD score, on a scale of

0–10, was 0 in all groups (Figure S5B).

CAR19-iNKT Cells Eradicate Intracranial and Relapsed
Disease
In the tumor model described herein, we observed enhanced

bioluminescence over the head even at the time of engraftment,

before commencement of immunotherapy. Correlation of biolu-

minescence with MRI, magnetic resonance spectroscopy,

and histologic analysis, suggested the presence of intracranial

meningeal, brain, and pituitary disease in most animals (Figures

S5C–S5E and Table S1). While brain lymphoma persisted

above the threshold of detection in all but one animal receiving

CAR19-T cells as well as in all untreated animals, they were elim-

inated in 13/18 CAR19-iNKT cell-treated animals (Figure 6A).

This would be consistent with CAR19-iNKT cells gaining entry

into the brain and effectively controlling brain disease. In all

tumor-only, T-, iNKT-, and CAR19-T cell-treated animals

(n = 32; i.e., 11/11, 7/7, 7/7, and 7/19 animals respectively), sys-

temic and brain lymphoma progressed without evidence of first

or, in the case of one CAR19-T cell-treated animal, second

remission. By contrast, in four CAR19-iNKT cell-treatedmice, af-

ter initial clearance of systemic and brain lymphoma, relapse

developed primarily in the brain at a later stage (Figures 6B

and 6C) and in all four mice this relapsed disease eventually re-

gressed, leading to long-term survival (Figures 6B and 6C), a

finding consistent with persistence and ability for secondary

anti-tumor responses by CAR19-iNKT cells. Importantly, in

CAR19-T cell-treated animals with progressive brain disease

that died during the course of the experiment, histological
ells against B Lineage Malignancies

change) and absolute cell numbers (cell count) over a period of 3 weeks (n = 4).

represent SEM.

KT cells in the presence (stimulated) or not (resting) of irradiated CD1d+CD19+

using Friedman test.

epresentative of n = 3) and Farage lymphoma cell lines (representative of n = 2)

e target cells (red) after 7 days. Effectors were second-generation CAR19-T and

red fluorescent protein. Scale bar represents 400 mm.

espectively as per (D). p value is for CAR19-iNKT versus CAR19-T cells using

ced iNKT cells against lymphoma cells from one patient with mantle cell lym-

tom) using three different T/iNKT cell healthy donors (A, B, and C). Error bars

calibrated units. See also Figures S2 and S3.
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analysis revealed both CD3+ and CD19+ cell infiltration (Fig-

ure S5F), suggesting failure of CAR19-T cells to control brain

lymphoma. The same analysis was performed in CAR19-iNKT

cell-treated animals at the time of primary endpoint; i.e., at termi-

nation of the experiment on day 90. At that time, neither CD3+ or

CD19+ cells were detected in the brains of the CAR19-iNKT cell-

treated animals, including those four achieving second remission

(Figure S5G), suggesting that they receded following eradication

of relapsed disease.

Closer analysis of the four CAR19-iNKT cell-treated relapsed

animals showed that both their total body and brain tumor

burden 3 days following immunotherapy were significantly

higher, by 2.8-fold and 3.7-fold, respectively, than in the non-

relapsed CAR19-iNKT cell-treated animals, suggesting that fail-

ure to induce deep remission early post immunotherapy would

result in overt relapse (Figure 6D).

As well as through dual CD19 and CD1d targeting, achieve-

ment of remission of primary and relapsed brain disease in

CAR19-iNKT cell-treated animals might be related to enhanced

potential for chemotaxis toward the tumor cells and to enter

the brain. Previous work demonstrated that a much higher

expression of the chemokine receptors CCR1, CCR2, CCR4,

CCR5, CCR6, and CXCR3 by human iNKT cells than conven-

tional effector or memory T cells underpins the ability of iNKT

cells to migrate more effectively to peripheral, extra-lymphoid

tissues (Kim et al., 2002). Further, human iNKT cells can infiltrate

subcutaneous lymphoid tumors in NOD/SCID mice (Bagnara

et al., 2009). Consistent with the chemokine receptor repertoire

of human iNKT cells, transcriptome analysis of the CAR19-

iNKT and CAR19-T cells generated from the healthy donor

used in three out of the four animals with second brain lymphoma

remission showed thatCCR1,CCR2,CCR5,CCR6,CXCR3, and

CCR3 are also expressed at higher levels in CAR19-iNKT than

CAR19-T cells and only expression of CCR4 is modestly higher

in CAR19-T cells (Figures S6A–S6C). Further, analysis and com-

parison of themRNA chemokine receptor pattern of murine iNKT

versus conventional T cells revealed a very similar pattern as in

their human counterparts (Figures S6D and S6E), highlighting

an evolutionary conserved potential of iNKT cells to migrate to

peripheral tissues.

To gain some insight into the potential of the lymphoma cells

used in our model to incite chemotaxis, we assessed chemokine

expression by transcriptome analysis of the parental C1R-CD1d
Figure 4. Transcriptional and Epigenetic Basis for Enhancing CAR19-i

(A) CD1D mRNA quantification by qPCR in CLL cells from two patients upon AT

(B and C) Bar charts (B) and flow cytometry histograms (C) showing CD1d expres

(MFI) analysis of CD1d expression in comparison with isotype control.

(D) Cytotoxicity of second- and third-generation CAR19-T and -NKT cells again

ATRA. Error bars represent SEM of triplicate assays.

(E) ChIP-qPCR assay for H3K4me3 and H3K27me3 enrichment in the promoter

while HOXA2 is a repressed gene control. ChIP data are shown as a percentage

(F) ChIP-re-ChIP qPCR assay showing fold enrichment of H3K27me3 or IgG con

(G) ChIP-qPCR assay against RNA Pol II for Ser5 over Ser2 phosphorylated form

(H) ChIP-qPCR assay against RARa, EZH2, and Ig control at the promoters of th

(I) ChIP-re-ChIP qPCR assay showing enrichment of EZH2 or IgG control after IP

(J) qPCR quantification of CD1DmRNA in U266 cells treated with 0.1%DMSO, 10

normalized to CD1D mRNA expression levels in normal peripheral PB B cells (n

(K and L) Relative MFI analysis (K) and histogram depiction (L) of CD1d expressi

shown in (J).

Error bars represent SEM. See also Figure S4.
cells. We found that, with the exception of CCL2 (the CCR2

ligand), the lymphomacells express thechemokinesCLL3 (ligand

for CCR1, CCR4, and CCR5),CCL5 (ligand for CCR1, CCR3, and

CCR5), CCL20 (ligand for CCR6), CCL22 (ligand for CCR4), and

CCL10 (ligand for CXCR3; Figures S6A and S6F). Of note, the

CCR6-CCL20 axis is a critical determinant for T cell migration

to the brain through the choroidal plexus (Sallusto et al., 2012).

Finally, entry of T cells into the brain through the blood-brain

barrier (BBB) requires that they express integrin a4b1 (VLA-4).

We found higher expression of the corresponding ITGA4 and

ITGB1 genes by CAR19-iNKT than by CAR19-T cells (Fig-

ure S6G) (Sallusto et al., 2012).

Based on the above and published data, we postulate that the

inherent chemotactic and migratory properties of CAR19-iNKT

cells contribute to their enhanced in vivo anti-lymphoma activity

and their potential to gain access to and eradicate primary or

relapsed brain disease.

DISCUSSION

Here, we exploit biological properties of iNKT cells to overcome

shortcomings of conventional CAR-T cells and enhance the po-

tential of CAR-based immunotherapy.

Our optimized protocol for CAR-iNKT cell production is unlike

other CAR-T or CAR-iNKT cell generation protocols in that a

‘‘scale-down’’ approach, entailing CAR modification of a rela-

tively small number of pre-selected iNKT cells (104–106 cells),

precedes the scaling-up phase. The described approach is

robust enough to deliver high-purity, clinical-scale cell product

within 3 weeks from a variety of iNKT cell sources, and it requires

a fraction of lentiviral supernatant used in conventional CAR

transduction protocols; as such, it would be expected to signif-

icantly curtail cost of CAR-iNKT cell production. With an average

expansion of >3,000-fold, starting with 2 3 105 purified iNKT

cells will generate in excess of 5 3 108 CAR19-iNKT cells, thus

covering cell doses of 13 106 to 53 106 cells/kg used in conven-

tional CAR19-T cell immunotherapy protocols (Brudno and Ko-

chenderfer, 2018). Whether a similar or even lower cell dosing

range will be required for optimal CAR19-iNKT cell clinical immu-

notherapy will be determined in future clinical trials.

Upfront transduction of selected iNKT cells and the subsequent

expansionofCAR19-iNKTcells areanother two important features

that distinguish our approach from other protocols of CAR-iNKT
NKT Cell Reactivity

RA treatment (10�6 M) for 0–96 hr.

sion on malignant B cells upon ATRA treatment and mean fluorescent intensity

st aGalCer-pulsed CLL cells pre-treated with 0.1% DMSO control or 10�6 M

of CD1D using IgG as control in U266 cells. GAPDH is an active gene control,

of the input chromatin.

trol after immunoprecipitation (IP) against H3K4me3.

at the promoter of the indicated genes.

e genes shown.

against RARa in U266 cells for –(I) (n = 3).
�6 M GSK343, 10�6 M ATRA or 10�6 M GSK343 plus 10�6 M ATRA. Values are

= 3). ND, not detectable.

on in comparison with isotype control in U266 cells from the same experiment
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generation that entail CAR transduction of pre-expanded iNKT

cells and use of IL-2 (Heczey et al., 2014; Tian et al., 2016). The

use of IL-15 is likely to have significantly contributed to the survival

and the robust, and sustained expansion ofCAR19-iNKTcells.We

found that, compared with IL-2, IL-15 maintains higher levels of

iNKT cell viability during lentiviral transduction and during the first

week post transduction, a critical requirement for the subsequent

phase of expansion. Indeed, IL-15 has been shown to inhibit acti-

vation-induced cell death of T cells (Marks-Konczalik et al., 2000)

and to drive iNKT cell terminal effector-like differentiation as well

as expression of effector molecules such as granzymes and

IFNg by iNKT cells, while promoting cell survival through induction

of BCL2 family proteins (Gordy et al., 2011).

We provide direct evidence that iNKT cells retain functionality

of their endogenous iTCR-dependent activation in the presence

of CAR19-mediated activation, in a glycolipid- as well as CD1d-

dependent manner. The weaker iNKT cell-CD1d axis acts in a

co-operative manner with the stronger CAR19-CD19 axis for

iNKT cell activation. Downstream of these interactions,

CAR19-iNKT cells with a more robust proliferative, cytokine

secretion profile and enhanced cytotoxic activity outperform

same-donor CAR19-T cells.

Despite promising pre-clinical activity, the expectation that

third-generation CAR-T cells would lead to enhanced anti-tumor

effect has not materialized in pre-clinical or clinical studies so far

(Till et al., 2012; Zhao et al., 2015). Our data shows that the pro-

liferative potential of third-generation CAR19-iNKT cells is

considerably better than that of CAR19-T cells, suggesting that

iNKT cells might provide an optimal platform for clinical develop-

ment of third-generation CARs. In particular, given the previously

reported requirement for the co-stimulatory OX40L-OX40 axis

for optimal iNKT cell-mediated anti-tumor responses (Zaini

et al., 2007; Zhou, 2007), the inclusion of OX40 in a third-gener-

ation CAR configuration might be advantageous.

In line with the dual targeting hypothesis, enhanced cytotoxic

effect of CAR-iNKT cells against B cell lines extends to include

primary CD1d+CD19+ MZL and MCL cells. Therefore, enhanced

anti-tumor reactivity of CAR-iNKT cells requires interaction of

CAR19-iNKT cells with CD1d on target cells. While it is possible

that this interaction also involves the iTCR, definitive delineation

of its direct role in the activation of CAR19-iNKT cells via interac-

tion with CD1d would require deletion of the iTCR.

In previous work involving NSG mice with humanized he-

matopoiesis, including myelopoiesis, anti-GD2 CAR-T but not

CAR-iNKT cells incited aGVHD (Heczey et al., 2014). Since xeno-

geneic aGVHD requires presence of humanmyeloid as well as of
Figure 5. Enhanced In Vivo Anti-tumor Activity of CAR19-iNKT Cells

(A) In vivo experiment layout. 53 106 Luciferase-expressing C1R-CD1d cells wer

bioluminescence (BLI). After engraftment was confirmed by increasing photon act

same volume PBS control) were i.v. transferred followed by BLI monitoring of tu

vertical lines.

(B and C) Overall (B) and tumor-free (C) survival of tumor-bearing mice untreated

(n = 7), second-generation CAR19-T cells (n = 19, of which four were excluded fr

(n = 19, of which seven were excluded from tumor-free survival analysis; see note

comparison of CAR19-T versus CAR19-iNKT cell-treated animals.

(D) Cumulative data as per (E) from one cohort of mice showing tumor burden as

(E) Representative examples of ventral and dorsal BLI views of tumor burden on

shown in (D).

**p < 0.01; ****p < 0.0001. See also Figure S5.
T cells (Schroeder and DiPersio, 2011), it is likely that lack of clin-

ical aGVHD in our model was due to transfer to NSG mice solely

of highly purified CAR19-modified or unmodified T or iNKT cells.

Nevertheless, given the protective effect of allogeneic iNKT cells,

and in particular of the CD4� fraction, against aGVHD (Chaidos

et al., 2012; Rubio et al., 2016), effective CAR19-iNKT cell immu-

notherapy can in principle be delivered using iNKT cells sourced

from healthy donors. In this context, the consistent preservation

of the CD4– fraction of iNKT cells in our manufacturing protocol,

but not in others (Heczey et al., 2014; Tian et al., 2016), is another

important salient feature. Further, in contrast to current efforts to

delete the TCR of conventional CAR-T cells to abrogate TCR-

major histocompatibility complex interactions and thus reduce

the risk of aGVHD imparted by allogeneic CAR-T cells (Eyquem

et al., 2017; Qasim et al., 2017), CAR19-iNKT cells impart protec-

tion from aGVHD with their iTCR intact.

CAR19-T cell immunotherapy has been considerably less suc-

cessful in CLL (Mato et al., 2017) as compared with other B line-

age malignancies. Our work provides the cellular and molecular

rationale to employ CAR19-iNKT cells as a potentially more

effective immunotherapeutic approach for CLL. By dissecting

the epigenetic landscape that restricts transcription of CD1D in

CLL cells, namely transcriptional repression via a co-operative

effect of RARa and Polycomb complex, we define a clinically

applicable pharmacological approach that enhances the

in vitro effect of CAR19-based immunotherapy against CLL cells.

Further enhancement of the anti-lymphoma effect could be im-

parted by the use of aGalCer, to which CAR19-iNKT cells remain

selectively responsive, resulting in increased cytolysis of

CLL cells.

The potential toxicity of CAR-iNKT cell immunotherapy,

especially the ‘‘off-tumor, on-target’’ targeting of CD1d-ex-

pressing cells, will eventually be determined in clinical trials.

However, we found that CAR19-iNKT cell cytotoxicity against

monocytes, the highest CD1d-expressing blood cells, is very

low and comparable with that of CAR-T cells. Although the

mechanism of differential CD1d-dependent reactivity of

CAR19-iNKT cells against monocytes and lymphoma B cells re-

mains to be determined, it may reflect the differential endoge-

nous glycolipid repertoire presented by CD1d in each cell

type (Metelitsa et al., 2001). Previous work showed that normal

CD14+ monocytes within peripheral blood mononuclear cells

(PBMCs) do not activate autologous iNKT cells (Bosma et al.,

2012), and human primary B cells incite considerably lower

iNKT cell reactivity than autologous lymphoma B cells (Webb

et al., 2016), suggesting that CD1d+ primary non-malignant
e intravenously (i.v.) transferred to NSG mice. Tumor growth was monitored by

ivity in two consecutive BLI scans taken at least 72 hr apart, 107 effector cells (or

mor burden at the schedule shown. Timings of BLI imaging are shown as top

(n = 12) or treated with untransduced T cells (n = 7), untransduced iNKT cells

om tumor-free survival analysis. See note x in Figure 6C) or CAR19-iNKT cells

x below). Data are from two independent experiments. Shown p values are for

assessed by BLI radiance on days �1 and +3.

days �1 (pre-treatment) and +3 (post treatment) from the same cohort of mice
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cells are less sensitive than malignant cells to iNKT cell

reactivity.

Since normal B cells express both CD1d and CD19, B cell

aplasia, as is the case with CAR19-T cells, will also be expected

to develop with CAR19-iNKT cell immunotherapy. Of note,

adoptive transfer to patients with cancer of in vitro expanded,

autologous iNKT cells resulted in no more than grade 2 toxicity

(Exley et al., 2017).

In concordance with the in vitro findings, our in vivo model of

CD1d+CD19+ B lineage malignancy clearly demonstrated the

enhanced anti-tumor effect of CAR19-iNKT over CAR-T cells in

terms of both tumor-free and overall survival. This effect is asso-

ciated with a significantly more robust anti-tumor effect in the

first few days post immunotherapy, perhaps a reflection of the

physiological role of iNKT cells as the immune cells that modu-

late an emerging immune response well before conventional

T cells (Brigl et al., 2003). It is likely that the combination of swift

responses against two tumor-associated targets (i.e., CD19 and

CD1d) will induce deeper responses, will limit immune escape

associated with loss of the CAR target, and will eventually curtail

disease relapse. Highlighting further the importance of early

deep remissions, CAR19-iNKT cell-treated animals with the

highest tumor burden early following immunotherapy subse-

quently relapsed, although eventually a second remission was

seen in all four animals. This is consistent with the observation

that sustained long-term remissions in patients with acute

lymphoblastic leukemia (ALL) treated with CAR19-T cell immu-

notherapy are primarily achieved in those with early complete re-

missions (Brudno and Kochenderfer, 2018; Park et al., 2018).

In previous work (Heczey et al., 2014; Tian et al., 2016), anti-

tumor activity of CAR-iNKT cells required either repeated cell

dosing (neuroblastoma) or adjuvant administration of IL-2

(CD19+CD1d– lymphoma), implying a reduced in vivo fitness of

CAR-iNKT cells. This contrasts with our findings that a single

dose of CAR19-iNKT is sufficient for a drastic anti-lymphoma ef-

fect. While the reasons for these differences are not clear, they

might be related to differences in themanufacturing process dis-

cussed above.

While CAR19-T cells failed to control brain disease, which in

most cases was the cause of death, CAR19-iNKT cells almost

uniformly eradicated established tumors, implying ability to

access the brain. Based on the analysis of the expressed che-

mokine and corresponding chemokine receptor repertoire in tu-

mor and effectors cells and on published observations (Kim

et al., 2002), we postulate that CAR19-iNKT cells gain access
Figure 6. Eradication of Relapsed Lymphoma in CAR19-iNKT Cell-Tre

(A) BLI photon activity in the head of control (n = 11), CAR19-T (n = 18), and CAR

experiment. Detection threshold (dotted line) was set as the lowest BLI activity v

(B) BLI activity recorded throughout the duration of the experiment in tumor-onl

achieved in four animals receiving CAR19-iNKT immunotherapy but in none with

(C) Longitudinal BLI images and dynamics of radiance activity are shown for ea

immunotherapy. In three mice, a second complete remission was documented

restricted access to the IVIS instrument from day 70 (+59 post immunotherapy [itx

signs of tumor progression as assessed postmortem by fluorescence imaging, fl

xIn four and seven CAR19-T and CAR19-iNKT-treated animals, respectively, tu

restricted access to the IVIS instrument. However, all mice were maintained in th

(D) Total body and head BLI activity in relapsed and non-relapsed CAR19-iNKT ce

plots shows median and upper and lower horizontal lines of box represent 75th an

*p < 0.05; **p < 0.01; ****p < 0.0001. See also Figures S5 and S6.
to the brain through the BBB and the choroidal plexus and

migrate toward the tumor cells. Consistent with this, previous

work demonstrated the ability of human iNKT cells to infiltrate

subcutaneous lymphoid tumors in NOD/SCID mice (Bagnara

et al., 2009).

While a significantly higher disease burden, including in the

brain, 3 days after immunotherapy might have underpinned

disease relapse in 4 CAR19-iNKT cell-treated animals, the

mechanism of subsequent complete regression of relapsed

brain disease remains to be defined and it will be an important

focus for further investigation. Previous work demonstrated

that, determined by the CDR3b region of the Vb11 chain of the

iTCR, human iNKT cells differ widely in terms of iTCR binding af-

finity to CD1d and its ability to incite proliferation, IFNg secretion,

and cytotoxic activity against CD1d+ targets (Matulis et al.,

2010). We speculate that such highly active and fitter CAR19-

iNKT cells were at low frequency at the beginning of the experi-

ment and, by selectively surviving, were more effective against

the relapsing primary tumor. In contrast to CAR19-T cells, which

surrounded and failed to control progressing brain lymphoma,

we did not observe CAR19-iNKT cell infiltration of the brain tis-

sue; it is possible that such infiltration receded by the time histo-

logical analysis was performed several weeks after clearance of

relapsed disease.

Overall, these findings provide the impetus for further develop-

ment of iNKT cell-based immunotherapy for other types of brain

cancers as well as brain lymphoma.

Our in vitro work using CD19+CD1d� targets suggests that

CAR19-iNKT would also be effective against CD19+CD1d�

B cell malignancies, thus extending the application of CAR-

iNKT cell technology to the entire spectrum of B lineage tumors.

At the progenitor end of the spectrum, this, as well as common

ALL, could also include the adverse prognosis MLL-rearranged

CD19+CD1d+ ALL (Fais et al., 2005), while, at the mature end of

the spectrum, multiple myeloma (MM), a cancer of plasma cells

that we previously showed to express CD1d (Spanoudakis

et al., 2009), could be targeted by CAR-iNKT cells. In the case

of MM, anti-BCMA CAR immunotherapy has shown promising

early clinical efficacy (Rotolo et al., 2016) and thus we envisage

that CAR-BCMA-iNKT cells would further improve the prospects

of effective immunotherapy against this incurable blood cancer.

In summary, we provide the mechanistic cellular and molecu-

lar rationale for developing iNKT cells as a more effective and

versatile platform than conventional T cells for CAR-based

immunotherapy against CD1d+ B lineage malignancies. Since
ated Mice

19-iNKT (n = 18) cell-treated animals at engraftment and at completion of the

alue recorded in the head at engraftment in the whole cohort of animals used.

y control, CAR19-T, and CAR19-iNKT-treated groups. Second remission was

in the other groups.

ch of the four animals. Relapse occurred between 17 and 26 days following

by BLI. In the fourth mouse, a partial remission could be documented, due to

]) (x). However, all mice survived until the end of the experiment with no clinical

ow cytometry, or immunohistochemistry (not shown).

mor burden could not be monitored by BLI from day 70 (+59 post itx) due to

e study until achievement of survival endpoint or the end of the experiment.

ll-treated animals on day 3 post immunotherapy. Horizontal line in box-whisker

d 25th percentile respectively, and whiskers represent 95th and fifth percentiles.
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allogeneic iNKT cells do not incite aGVHD, CAR-iNKT cell immu-

notherapy would also be suitable for off-the-shelf universal use.
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Deposited Data
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19-CD28z CAR forward:
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This paper N/A

19-CD28z CAR reverse:

5’-CGATAAGCTTGATAT

CAAGCTTGCATGCCTGCAGGTCATCTGGGTG

This paper N/A

19-CD28OX40z CAR forward:
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This paper N/A

19-CD28OX40z CAR reverse: 5’-CGATAAGCTTGATA
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This paper N/A

CD1D Hs00939888_m1 Applied Biosystems Cat# 4331182

ACTB Hs99999903_m1 Applied Biosystems Cat# 4331182

GAPDH Hs03929097_g1 Applied Biosystems Cat# 4331182

U266 ChIP, CD1D forward:
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This paper N/A
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This paper N/A

U266 ChIP, GAPDH forward:
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This paper N/A
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This paper N/A

U266 ChIP, HOXA2 forward:
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This paper N/A
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This paper N/A
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This paper N/A

CLL ChIP, CD1d distal promoter reverse:
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This paper N/A
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This paper N/A
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This paper N/A
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This paper N/A
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19-CD28z CAR This paper N/A
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FlowJo v10 www.flowjo.com http://docs.flowjo.com/

IncuCyte� software EssenBio/Sartorius https://www.essenbioscience.com/

en/resources/incucyte-zoom-

resources-support/

Living Image software PerkinElmer http://www.perkinelmer.com/lab-

products-and-services/resources/in-

vivo-imaging-software-downloads.html
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upgrades/software-downloads/mri.html

OsiriX Pixmeo SARL http://www.osirix-viewer.com/

download_form/download_form.php
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download/

GraphPad Prism 7 GraphPad Software https://www.graphpad.com/

scientific-software/prism/

FastQC (version 0.64) Babraham Bioinformatics https://

www.bioinformatics.babraham.

ac.uk/projects/fastqc/

https://toolshed.g2.bx.psu.edu/

repository/display_tool?repository_id=

ca249a25748b71a3&render_repository_

actions_for=tool_shed&tool_config=%

2Fsrv%2Ftoolshed%2Fmain%2Fvar%
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bcl2fastq2 Conversion Software v2.18 http://emea.support.illumina.com/

sequencing/sequencing_software/

bcl2fastq-conversion-software/

downloads.html#

https://support.illumina.com/

sequencing/sequencing_software/

bcl2fastq-conversion-software/

downloads.html

STAR (version 2.5.3a) (Dobin et al., 2013) https://github.com/alexdobin/STAR

R package Rsubread (version 1.24.2) (Liao et al., 2013) https://bioconductor.org/packages/

release/bioc/html/Rsubread.html

R package edgeR v3.20.9 (Robinson et al., 2010) https://bioconductor.org/packages/

release/bioc/html/edgeR.html

TopHat 2.0.14 (Kim et al., 2013) http://ccb.jhu.edu/software/tophat/

downloads/

Cufflinks 2.2.1 (Trapnell et al., 2010) http://cole-trapnell-lab.github.io/

cufflinks/releases/v2.2.1/

Other

Anti-iNKT, microbeads, human Miltenyi Biotec Cat# 130-094-842

CD34 MicroBead Kit UltraPure, human Miltenyi Biotec Cat# 130-100-453

NucleoSpin RNA kit Macherey Nagel Cat# 740955

RevertAid first strand cDNA synthesis kit Thermo Fisher Scientific Cat# K1621

Qubit RNA HS Assay kit Life Technologies Cat# Q32852
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NEBNext� Ultra� II Directional RNA Library Prep Kit

for Illumina with rRNA depletion

New England Biolabs Cat# E7760S/L

NEBNext poly(A) mRNA Magnetic Isolation Module New England Biolabs Cat# E7490S/L

NEBNext Ultra RNA Library Prep kit for Illumina New England Biolabs Cat# E7530S/L

Qubit dsDNA High Sensitivity Assay kit Life Technologies Cat# Q32851

Bioanalyser High Sensitivity DNA kit Agilent Cat# 5067-4626

NEBNext� Library Quant Kit for Illumina New England Biolabs Cat# E7630S/L
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the corresponding author Anastasios Kar-

adimitris (a.karadimitris@imperial.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary Cells
Healthy volunteer peripheral blood (PB) and lymphapheresis samples as well as PB samples from mantle cell lymphoma (MCL),

marginal zone lymphoma (MZL) and chronic lymphocytic leukemia (CLL) patients were obtained after written informed consent

and research ethics committee approval (Research Ethics Committee reference: 11/H0308/9). Peripheral blood mononuclear cells

(PBMCs) were isolated by density gradient centrifugation and were used as a source of either CD3+ lymphoid cells for CAR engineer-

ing or CD19+ tumor cell targets for functional assays. In order to generate CAR iNKT cells, TCRVa24Ja18+ lymphocytes were immu-

nomagnetically purified from PBMC and apheresis mononuclear cells using anti-human iNKT cell microbeads (Miltenyi Biotec).

Primary cells were maintained in RPMI1640, 10% FBS, 2% glutamine, 1% Penicillin-Streptomycin, 1% sodium pyruvate; 1% essen-

tial and non-essential aminoacids, 10 mM Hepes buffer (Sigma-Aldrich) and 5.5x10-5 M beta-mercaptoethanol (Gibco�, Life Tech-

nologies). For CD3+ cells, human IL2 and/or IL-15 (premium grade, Miltenyi Biotec) were added at 100-200 IU/ml unless otherwise

stated.

Systemic Xenograft Tumor Model
Six-week old NOD/SCID/IL-2Rg-null (NSG) sex-matched mice were handled in accordance with the 1986 Animal Scientific

Procedures Act and under a United KingdomGovernment HomeOffice–approved project licence 70/8586. The animals were housed

at the Hammersmith Central Biomedical Services (CBS) facility, Imperial College London. On day 0 all animals received 5 3 106 lucif-

erase-expressing C1R-CD1d cells by tail vein (iv) injection, followed by bioluminescence imaging (BLI) monitoring twice a week.

Upon confirmation of engraftment, defined on the basis of increased photon signal in two consecutive scans performed 72 hr apart,

on day 11 themicewere randomized to no treatment or immunotherapywith either T, iNKT, 2nd generation CAR19-T or 2nd generation

CAR19-iNKT cells generated from the same donor. Thereafter, BLI was performed twice a week until day 21 and weekly until the end

of experiment on day 90. Primary endpoints were overall survival and tumor-free survival. Secondary endpoint was brain tumor-free

survival. All mice were sacrificed according to protocol when either experimental or humane endpoints were reached.

Cell Lines
The adherent Human Embryonic Kidney 293 (Lenti-X-293T) cells were purchased from Clontech and used for lentivirus production.

Lenti-X-293T cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma-Aldrich), supplemented with 10% Fetal

Bovine Serum (FBS) (Sigma-Aldrich), 2 mM L-Glutamine and 10 ml/L Penicillin-Streptomycin (Stem Cell Technologies). The K562

cells were obtained from ATCC, while the ARH-77, KMS-12-BM, NCI-H929 and U266 cell lines were purchased from DSMZ. C1R

and C1R-CD1d cell lines were provided by Prof Cerundolo (Medical Research Council (MRC) Human Immunology Unit, Weatherall

Institute of Molecular Medicine, University of Oxford, Oxford). The Farage cell line was kindly donated by Prof Ronald Gartenhaus

(University of Maryland School of Medicine, Baltimore, MD USA). All suspension cell lines were grown in RPMI-1640 medium

(Sigma-Aldrich) supplemented with 10-20% Fetal Bovine Serum (FBS) (Sigma-Aldrich), 2 mM L-Glutamine and 10 ml/L Penicillin-

Streptomycin (Stem Cell Technologies).

All cell lines were tested for mycoplasma contamination using the MycoAlert Mycoplasma Detection Kit (Lonza). The K562, C1R

and ARH-77 cell lines were transduced to express the human CD19 and/or CD1d. For the purposes of in vitro functional assays,

ARH-77 cells were also modified with the pHR-SIN plasmid described above to co-express the mCherry red fluorescent protein

together with CD1d+. The C1R-CD1d cell line was modified with the luciferase-tdRFP plasmid for in vitro and in vivo monitoring

by fluorescence and bioluminescence imaging (BLI) respectively.

METHOD DETAILS

Vectors and Constructs
To generate CD19-specific CAR iNKT and T cells, a 2nd generation 19-IgGFc-CD28z and 3rd generation 19-IgGFc-CD28OX40z

CAR constructs with FMC63-derived scFv (Almasbak et al., 2015) were kindly donated by Dr Martin Pule, University College

London. To protect CAR-expressing cells from in vivo opsonisation (Almasbak et al., 2015), the original IgGFc-derived spacers

were modified by removing the CH2 and CH3 extracellular domains and the resulting new constructs were re-cloned into pSew len-

tiviral vector via overlapping PCR using Gibson assay (New England Biolabs). The primer pairs used were: 2nd generation CAR

5’- CCCAGCACCTCCCGTGGC

CGGCCCGTCAGTCTTCTGGGTCCTGGTGGTGG and 5’- CGATAAGCTTG

ATATCAAGCTTGCATGCCTGCAGGTCATCTGGGTG; 3rd generation CAR

5’- CCCAGCACCTCCCGTGGCCGGCCCGTCAGTCTTTTGGGTGCTGGTG

GTG and 5’- CGATAAGCTTGATATCAAGCTTGCATGCCTGCAGGTTAGCG
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AGGAGGC. The modular structure is provided in Figure S1A. The RQR8 marker/suicide (Philip et al., 2014) gene was maintained

upstream of the CARs with an intervening FMD-2A peptide to allow early detection of CAR-transduced cells as previously described

(Philip et al., 2014). To generate CD19 and CD1d single- or double-expressing -cells, two sequences encoding for the human CD19

and CD1d, obtained from Dr Martin Pule and Prof Vincenzo Cerundolo, University of Oxford, respectively, were cloned singly or

together with an interposed FMD2A fragment into a retroviral SFG vector. For the purposes of real-time in vitro monitoring of CAR

cell cytotoxic activity, mCherry-labeled CD1d+ B cell targets were generated by using a lentiviral pHR-SIN plasmid encoding for a

hCD1d-mCherry fusion protein (Prof Vincenzo Cerundolo). To detect tumor cells and monitor tumor growth in vivo, firefly luciferase

was co-expressed with tandem dimer Tomato red fluorescent protein (tdRFP) in a single SFG vector as previously described (Whild-

ing et al., 2017).

Pharmacologic Agents
a-galactosylceramide (KRN7000, Cambridge Bioscience), all-trans retinoic acid (ATRA, Sigma-Aldrich) and the EZH2 inhibitor

GSK343 (Sigma-Aldrich) were purchased in lyophilized form. Stock solutions were prepared in 100% dimethyl sulfoxide (DMSO)

at 1 mg/ml (0.001 M), 3 mg/ml (0.01 M), 15 mg/ml (0.03 M) respectively. The DMSO solution of a-galactosylceramide (aGalCer)

was completely dissolved by heating at 80� for 1 hr, aliquoted and stored at -20�C until use. Prior to use, a working solution was pre-

pared by heating for another 60 seconds at 80�C, followed by dilution in PBS at 100 mg/ml (1000x). ATRA and GSK343 were used to

assess the transcriptional regulation of CD1d in primary CLL cells and the U266 cell line. The ATRA solution in DMSO was freshly

prepared before each experiment protected from light and diluted in PBS to 1 mM (1000X) for immediate use. The GSK343 stock

solution was stored at -20�C and diluted in PBS to 1 mM (1000x) prior to use. CLL cells were treated with 10-6 M ATRA. The

U266 cells were harvested during their exponential growth and treated with either 10-6 M ATRA or 10-6M GSK343 or a combination

of both. 0.01% DMSO was used as control. In all cases, the cells were incubated for up to 96 hr before proceeding to RT-PCR, flow

cytometry and ChIP/re-ChIP assays at the indicated time points.

Retroviral and Lentiviral Vector Constructs, Viral Production and Transduction
VSV-G pseudotyped retroviruses and lentiviruses were generated by transfection of 80% confluent Lenti-X-293T cells with the trans-

fer, packaging and envelope plasmids using the CaCl2 method (Kutner et al., 2009). pCMV-Gag-Pol and pVSV-Gwere used for retro-

virus, or pRsv-REV, pMDlg-pRRE and pMD2Gwere used for lentivirus respectively. Virus supernatant was harvested at 48 and 72 hr

post transfection, centrifuged and filtered through a 0.45 mmcellulose acetate filter, concentrated by ultracentrifugation at 23,0003 g

4�C for 120 min and re-suspended with 1 3 RPMI-1640 medium (Sigma-Aldrich). Cell lines were transduced with retrovirus in the

presence of 8 mg/ml polybrene (Sigma-Aldrich). Two days later, transduction efficiency was determined by flow cytometry as per-

centage of CD19+ and/or CD1d+ cells or tdRFP+ cells. Where required, positive cells were sorted by immuno-magnetic selection

or fluorescence-activated cell sorting (FACS) and further expanded in RPMI-1640 supplemented with 10% Fetal Bovine Serum

(FBS, Gibco) and 1% Penicillin-Streptomycin (Pen/Strep, Stem Cell Technologies) (standard culture medium). To generate CAR-en-

gineered T cells, mononuclear cells were activated with Dynabeads Human T-Activator CD3/CD28 (Gibco�) at 1:1 beads-to-cell ra-

tio in complete cell medium prepared as described above, supplemented with IL-15 (Miltenyi Biotec). Activated T were transduced

and expanded as reported below for iNKT cells.

Generation of CAR19-iNKT Cells as per Protocol 4
TCRVa24Ja18+ lymphocytes were immunomagnetically sorted from PBMC or apheresis mononuclear cells using anti-human iNKT

cell microbeads (Miltenyi Biotec). Purified iNKT cells were seeded in round-bottom 96-wells at 1:1 ratio with irradiated (3500 rad)

autologous mononuclear cells (iAPC) and activated with Dynabeads Human T-Activator CD3/CD28 (Gibco�) at 1:1 beads-to-cell

ratio in T cell medium at a density of 1-5 x 104 cells per ml. IL-15 (Miltenyi Biotec) at 30 IU/ml and 150 IU/ml was added at the

time of seeding and 12 hr later respectively. Within 24-48 hr, activated iNKT cells were transduced with concentrated CAR lentivirus

using an MOI of 2-5 in the presence of 4 mg/ml polybrene, with spinoculation for 90 min at 1000G. After 8-12 hr, cells were resus-

pended in fresh medium supplemented with 150 IU/ml of IL-15 and let rest for 2 to 4 days before assessment for viability and

CAR expression. Transduction efficiency was determined by flow cytometry as percentage of RQR8+ cells relative to untransduced

controls as previously described (Philip et al., 2014). Where required, CAR+ cells were immunomagnetically sorted by using anti-

CD34-microbeads (Miltenyi), re-plated as above and re-stimulated with 1:1 irradiated C1R-CD1d cells, IL-15 (30 IU/ml) and aGalCer

(100 ng/ml), with additional 150 IU/ml of IL-15 12-24 hr later. After 7 days cells were counted, assessed for purity by flow cytometry

using a F(ab’)2-Goat anti-Mouse antibody (Invitrogen) and switched to a low IL-15 (down to 20 IU/ml) medium for additional 7 days

towards resting phase prior to functional studies. Alternatively, CAR19-iNKT cells were propagated with IL-15 (100 IU/ml) every other

day for up to 4-6 days, harvested during exponential growth phase, cryopreserved in 10% DMSO and stored in liquid nitrogen un-

til use.

Antibodies and Intracellular Staining
CAR+ cells were identified by using the mouse anti-human APC-CD34 (QBend10, R&D Systems) or FITC-CD34 (QBend10, Abcam)

monoclonal antibody (MoAb) against the RQR8marker or the goat anti-mouse FITC-F(ab’)2 fragment (InvitrogenTM) against the CAR

hinge. For T cell phenotyping, the following antibodies were used: mouse anti-human PerCP-Cy5.5-CD3 (OKT3, eBioscience), Pe-

Cy7-CD8 (RPA-T8, eBioscience) and eFluor450-CD4 (OKT4, eBioscience). iNKT cells were defined as TCRVa24+, TCRVb11+,
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TCRVa24Ja18+ T cells using mouse anti-human PE-TCRVa24 (C15, Beckman Coulter), APC-TCRVb11 (C21, Beckman Coulter), or

FITC-TCRVa24Ja18+ (6B11, BD) pairwise combinations. Either a minimum of 0.5 x106 CD3+ cells or 200 iNKT cells were recorded to

facilitate accurate calculation of the total, CD4+ and CD4� iNKT cell frequencies. The B cell panel included the mouse anti-human

BV421-CD19 (HIB19, BD Biosciences), APC-CD1d (51.1, Biolegend), PerCP-eFluor710-CD5 (UCHT2, eBioscience), APC-

eFluor780-CD3 (OKT3, eBioscience). 4’,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) staining was used to exclude

dead cells. For intracellular cytokine profiling, T cells were fixed and permeabilized using BD Cytofix/Cytoperm Plus kit as per the

recommendation of the manufacturer, followed by staining with mouse anti-human eFluor450-CD3 (UCHT1, eBioscience),

PerCP-eFluor710-CD4 (SK3, eBioscience), BUV395-CD8a (RPA-T8, eBioscience), FITC-Perforin (d-G9, eBioscience and B-D48,

2BScientific), PE-GranzymeB (GB11, eBioscience), APC-IFNg (4S.B3, eBioscience), PE-IL-2 (MQ1-17H12, eBioscience), PeCy7-

IL-4 (8D4-8, eBioscience) and APC-eFluor780-IL17A (eBio64DEC17, eBioscience). Cytokine profile was assessed in resting cells

and upon stimulation for 4 hr with Dynabeads (1:1) or PMA/ionomycin (eBioscience) or C1R CD1d cells (1:1) in the presence of Mon-

ensin and Brefeldin (eBioscience).

Multiplex Cytokine Quantification Assays
CAR-modified cells were stimulated for 3 and 8 hr with Dynabeads at 1:1 ratio. Supernatants were collected and analyzed with a

Human ProcartaPlex immunoassay (Invitrogen) using the Luminex assay according to the manufacturer’s instructions.

Proliferation Assays
Up to 104 irradiated C1R-CD1d cells were plated in poly-L-ornithine-coated, flat-bottom 96-well microplates. Where required,

aGalCer or vehicle were added for 4 hr before the addition of up to 104 CAR-modified cells in RPMI 1640 medium supplemented

with 10% FBS, 1% Pen/Strep and 20 IU ml�1 IL-15. The cell plate was maintained at 37�C and 5% CO2 into the IncuCyte ZOOM�
instrument (Sartorius) for up to one week without any further manipulation. CAR cell proliferation was determined by the IncuCyte�
software, with a 24 hr scanning scheduled for every 1 hr with 10x or 4x objectives and using the confluence algorithm according to the

manufacturer’s instructions (EssenBio protocol 8000-0331-A00).

In Vitro Real-Time Monitoring of CAR Cell Cytotoxic Activity
CD1d-mCherry-transduced ARH-77 cells were seeded in a 96-well round-bottom ultra-low attachment (ULA) microplate (Corning)

with standard culture medium at a density of 500 cells/well and let settle for 1 hr. Effector cells were then re-suspended in standard

medium with 20 IU ml�1 IL-15 and added at the indicated ratio in triplicates. Wells with targets alone and effectors were included as

controls. The microplate was maintained at 37�C and 5%CO2 into the IncuCyte ZOOM� instrument for up to one week without any

further manipulation and scanned using a phase and a red channel every 1 hr with 10x objective during the first 48 hr and 4x objective

from day 3 until the end of the experiment. Targets cells were monitored as red fluorescent objects and quantified with IncuCyte�
software by using red mean image fluorescence (MIF) and red fluorescence area (mm2/image) according to the manufacturer’s

instructions (EssenBio protocol 8000-0330-B00). CAR cell proliferation was determined as described in the paragraph ‘Long-term

proliferation assay’.

Cytotoxicity Assays
CellTrace� Violet (Invitrogen)-labeled targets were incubated at the indicated ratios with effector cells for 3 hours. Where required,

targets were labeled with an antibody mix containing PeCy7-conjugated mouse anti-human CD3 (OKT3, Biolegend), CD56 (5.1H11,

Biolegend), CD11b (ICRF44, Biolegend), CD14 (HCD14, Biolegend) and CD16 (B73.1, Biolegend) mAbs to allow discrimination be-

tween CD19+ and CD19- mononuclear cells. As controls, targets and effectors alone were simultaneously incubated to determine

spontaneous cell death. Where indicated, targets were pre-incubated with aGalCer or vehicle at 37�C for 4 hr before addition of

the effector cells. Cells were then harvested and 7-AADwas added prior to flow cytometric analysis on BD Fortessa Flow Cytometer,

using BD FACSDiva software version 6.0. Specific cytotoxic activity was determined as ((% sample (7-AAD+, Violet+) � % sponta-

neous (7-AAD+, Violet+)) / (100 -%spontaneous (7-AAD+, Violet+)) x 100. All assays were run in duplicates or triplicates. Data analysis

was performed using FlowJo 10.2.

Gene Expression Analysis
Total RNA fromprimary CLL cells andU266 cell linewas extracted using theNucleoSpin RNA kit (Macherey Nagel), followed by cDNA

synthesis with RevertAid first strand cDNA synthesis kit (Thermo Fisher Scientific), as per the manufacturer’s instructions. For gene

expression quantification, RQ-PCR of template cDNA was performed in triplicate on StepOnePlus� Real-Time PCR System using

Taqman Gene ExpressionMaster Mix and Assays (Applied Biosystems). CD1d transcript levels were determined relative to the refer-

ence genes ACTB andGAPDH, using the DDCTmethod. Taqman probes wereCD1DHs00939888_m1, ACTBHs99999903_m1 and

GAPDH Hs03929097_g1.

Chromatin Immunoprecipitation Assays
Chromatin immunoprecipitation (ChIP) combined with real-time quantitative polymerase chain reaction (ChIP-RQ-PCR) was per-

formed for anti-H3K4me3, anti-H3K27me3, anti-RNA polymerase II CTD phospho Ser2, anti-RNA polymerase II CTD phospho

Ser5, anti-EZH2, anti-RARa and control IgG as previously described (Caputo et al., 2013). For Re-ChIP assays, the wash and
e8 Cancer Cell 34, 596–610.e1–e11, October 8, 2018



chromatin elution steps of the first IPwere performedwith protease inhibitor-containing buffers and the first elution was performed by

incubating the magnetic beads in 10 mMDTT/TE for 30 min at 37�C. The eluate of the first IP was diluted at least 20X in ChIP dilution

buffer, followed by a second IP according to the same protocol as above. Expression of immunoprecipitated DNA was calculated,

either relative to input DNA or DNA immunoprecipitated by control IgG antibody, using the DDCT method.

ChIP Primers
For the experiments with U266 cells, ChIP primers were designed to analyze the upstream regulatory element of the CD1D gene,

approximately 1.5kb from the ATG translational start site, consistent with the reported location of the RARE (Chen and Ross,

2007). As controls, the upstream regulatory regions of HOXA2, a putative target of polycomb mediated repression, known to be

marked by bivalent histone modifications, and GAPDH, as transcriptionally active housekeeping gene, were also evaluated. The

primer sequences pairs used were: CD1D 5-CCCTGAGAAAGTGACCTTGG and 5’-TGGCTGTTAGCTTTCAGTTCC, GAPDH

5’-CCGGGAGAAGCTGAGTCATG and 5-TTTGCGGTGGAAATGTCCTT,HOXA2 5’-AGGAAAGATTTTGGTTGGGAAG and 5’-AAAAA

GAGGGAAAGGGACAGAC. For the experiments with primary CLL cells, 3 primer sets were designed to analyze 2 regions upstream

the ATG start codon at -3047 (distal, DP) and -1240 (proximal, PP) and 1 region within exon 2 at +382 (I2P). The corresponding se-

quences were: DP 5’-TGGACGTCCGAGAGGTAAGAG and 5’-CACAGTAACCTGGAGATCCACTA, PP 5’-AATGATGCTGGGGTGT

GAGG and 5’-GCACGGCCTGCAAGATTATG, I2P 5’-CTCCAGATCTCGTCCTTCGC 5’-CTGGGACCAAGGCTTCAGAG.

Systemic Xenograft Tumor Model
On day 0, six-week old NOD/SCID/IL-2Rg-null (NSG) sex-matched mice received 5 3 106 luciferase-expressing C1R-CD1d cells by

tail vein (iv) injection, followed by bioluminescence imaging (BLI) monitoring twice a week. Upon confirmation of engraftment, defined

on the basis of increased photon signal in two consecutive scans performed 72 hr apart, on day 11 the mice were randomized to no

treatment or immunotherapy with either T, iNKT, 2nd generation CAR19-T or 2nd generation CAR19-iNKT cells generated from the

same donor. Thereafter, BLI was performed twice a week until day 21 and weekly until the end of experiment on day 90. Primary

endpoints were overall survival and tumor-free survival. Secondary endpoints were acute Graft-versus-Host disease (aGvHD) and

brain tumor-free survival. aGvHD was assessed at least twice a week by means of a five-parameters scoring system incorporating

non-tumor related weight loss greater than 10%, hunched posture, reduced activity, raffled fur and scaling skin, as previously

described (Cooke et al., 1996). Specifically, each criterion was graded from 0 to 2 according to severity and finally a clinical aGvHD

score (min 0 = no GvHD, max 10 = severe aGvHD) was obtained. All mice were sacrificed according to protocol when either exper-

imental or humane endpoints were reached.

Bioluminescence Imaging (BLI)
Bioluminescence images were collected on an IVIS Lumina XR III Imaging System using Living Image software (PerkinElmer). Before

imaging, mice were anesthetized and maintained under inhalational anesthesia via a nose cone with 2% isoflurane (Zoetis UK)/med-

ical oxygen. All mice received a single intraperitoneal (IP) injection of 150 mg/Kg D-luciferin (Goldbio) in PBS 10 min before scanning.

Up to three mice were imaged simultaneously in a 12.5 cm field of view (FOV) with minimum target count of 30,000 and exposure

times ranging from 0.5 to 2 min at medium binning, with additional images acquired at low binning levels to maximize sensitivity

and spatial resolution where required. Both ventral and dorsal scans were acquired for each mouse. The dorsal and ventral signals

were quantitated separately through region of interest (ROI) analysis using Living Image software and expressed in radiance (unit of

photons/s/cm2/sr) as a total signal summation normalized to the ROI area. Where required, normalized background signal from simi-

larly sized ROIs was subtracted.

Magnetic Resonance Imaging (MRI) and MR Spectroscopy (MRS)
Brain tumors were assessed and monitored with MRI and MRS in 12 animals. All MRI scans were performed on a pre-clinical 9.4 T

scanner (94/20 USR Bruker BioSpec; Bruker Biospin, Ettlingen, Germany) housed at the Biological Imaging Centre, Imperial College

London. Mice were anesthetized as described above and positioned prone in a dedicated mouse bed provided with a circulating

warm water heat mat to control body temperature. Respiration and body temperature were continuously monitored (1030-MR,

SA Instruments, Stony Brook, NY, USA) and the amount of isoflurane and heat delivered were adjusted through the MRI scans to

maintain the respiratory rate within the range of 35-45 breaths per min and the body temperature at 36.5�C. Brain images were

acquired with Paravision 6.01 (Bruker, BioSpin) using an 86 mm inner diameter volume transmit quadrature coil combined with an

actively decoupled mouse brain array receiver. The imaging datasets consisted of T1 weighted FLASH and T2 weighted RARE

sequences in sagittal, axial and coronal orientation obtained within 10 min and 25 min respectively after iv injection of Gadovist (Ga-

dobutrol, Bayer). The contrast agent was diluted in 0.9% saline and used at a concentration of 0.3 mmol/kg in all but 1 mouse. For T1

FLASH images the following settings were applied: T1 sagittal: TR/TE = 250/2.6 ms; FOV = (18 x 14) mm2, in plane spatial resolution

(58 x 56) mm2, slice thickness 500 mm, 10 mm slice gap, 20 slices, scan time 6 min 30 s; T1 axial: TR/TE=320/2.6 ms; FOV = (16 x 14)

mm2, in plane spatial resolution (62 x 61) mm2, slice thickness 500 mm, 10 mmslice gap, 30 slices, scan time 6min 30 s, T1 coronal: TR/

TE = 200/3 ms, FOV = (14 x x16) mm2, in plane resolution (34 x 62) mm2, 500 mm slice thickness, slice gap 50 mm, 10 slices. Scan time

3 min 50 s. T2 RARE images were generated with: T2 sagittal: TR/TE = 3000/40 ms, FOV = (18 x 14) mm2, in plane spatial resolution

(70 x 55) mm2, slice thickness 500 mm, 10 mm slice gap, 20 slices, scan time 5min. T2 axial: TR/TE = 2500/45 ms, FOV = (14 x 14) mm2,

in plane resolution (55 x 55) mm2, 700 mmslice thickness, slice gap 50 mm, 12 slices. Scan time 4min. T2 coronal: TR/TE = 3600/40ms,
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FOV = (18 x 14) mm2, in plane spatial resolution (70 x 55) mm2, slice thickness 500 mm, 10 mm slice gap, 30 slices, scan time 6 min. All

images were analyzed using OsiriX software. Image quality and contrast enhancement were determined based on assessment of

contrast-to-noise ratio between the areas of clinical relevance (regions of interests (ROI) with higher signal intensity, SA) and

same-size, reference areas with no evidence gadolinium uptake (ROI with lower signal intensity, SB), scaled to image noise, accord-

ing to the following formula: CNR = j SA – SB j / so, where so is the standard deviation of the pure image noise. For MRS, the voxel was

positioned within the pituitary gland avoiding inclusion of surrounding tissue. Field-map based shimming (up to 4th order) was per-

formed prior to the MRS acquisition to optimize the main field homogeneity in the voxel of interest. Single voxel spectra (SVS) were

acquired at both long and short echo times (LTE and STE respectively), with: LTE PRESS: TR/TE = 2500/100 ms, voxel size (2 x 1.2 x

1.35) mm3, total scan time 13 min 20 s; STE STEAM: 2500/3 ms, voxel size (2 x 1.2 x 1.35) mm3, total scan time 13 min 20 s. Relative

quantification of Creatine/NAA, Choline/NAA ratios was computed from the LTE spectra. The spectra were pre-processed (phased,

apodized) and quantified afterwards using AMARES (jMRUI software).

Histologic Analysis
Mouse tissues were fixed in 10%Neutral Buffered Formalin for up to 36hr. Animal heads underwent additional treatment with aceto-

zinc formalin for 12 hr and Gooding and Stewart’s decalcification fluid for 8.5 hr prior to further processing. All samples were then

processed on a Tissue Tek Sakura VIP 5. Blocks were embedded in paraffin wax and sectioned on Polysine coated slides at

1 mm (organs) or 2 mm (heads). Tissue sections were stained either with Haematoxylin and Eosin using a Leica ST5020 autostainer

or anti-human CD19 and CD3 primary antibodies using a Leica DAB polymer staining kit on a Leica Bond III staining platform. Stained

sections were viewed and images acquired using an EVOS XL Imaging System (ThermoFisher Scientific).

RNA-sequencing and Analysis
Total RNA was isolated from resting CAR19-iNKT and -T cells by using NucleoSpin� RNA (Macherey-Nagel) omitting carrier RNA.

Treatment with DNAse I was performed to remove all traces of DNA. Total RNA concentration was measured using Qubit� RNA HS

Assay Kit on a Qubit� 2.0 Fluorometer (Thermo Fisher Scientific), whereas RNA integrity was assessed on an Agilent Bioanalyzer

RNA 6000 Pico Chip. Next, RNA sequencing libraries were prepared using NEBNext� Ultra� II Directional RNA Library Prep Kit

for Illumina with rRNA depletion (NEB #E7760S/L), according to the manufacturer‘s protocol, applying the algorithm for intact

RNA (RIN >7). Sequencing was performed on an Illumina HiSeq4000 sequencer to obtain 75bp paired-end reads. Base calling

and demultiplexing and conversion to fastq file were performed using the ‘Real Time Analysis’ (RTA) and bcl2fastq2 v2.18 illumina

software respectively. Reads were subsequently mapped onto the Genome Reference Consortium Human genome build 38

(GRCh38) using STAR (version 2.5.3a)(Dobin et al., 2013) with a threshold of 10,000 alignments per read (command: –alignTranscript-

sPerReadNmax 100000), allowing generation of chimeric outputs for downstream analysis. Processing of large reads files was

completed by further increasing the STAR limits (command: –limitGenomeGenerateRAM 20000000000). Raw counts were obtained

by using the ‘Rsubread’ v1.24.2 Bio-conductor package (Liao et al., 2013). Normalisation analysis was carried out using the ‘edgeR’

v3.20.9 Bio-conductor package (Robinson et al., 2010).

For RNA-seq of C1R-CD1d parental cells, the same procedures were followed, except for the fact that libraries were prepared

.using the NEBNext poly(A) mRNA Magnetic Isolation Module and the NEBNext Ultra RNA Library Prep kit for Illumina (New Engand

Biolabs) and sequenced on an Illumina HiSeq 2500 platform to obtain paired-end 100bp reads. Reads obtained from parental C1R-

CD1d RNA-seq experiments were aligned using TopHat (v2.0.14) (Kim et al., 2013) against the Hg19 human reference genome using

the default settings. ‘Cuffdiff’ part of the Cufflinks package (Trapnell et al., 2010) was used for data normalization.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample Size
In vitro assays were planned to achieve at least 3 biological replicates per set of experiments. For in vivo experiments, sample size

was determined to show a 30% survival improvement in CAR19-iNKT vs CAR19-T -treated animals at 5% significance and

80% power.

Replicates
The in vitro data were reproduced in technical duplicates or triplicates using samples fromdifferent donors and lymphoma patients as

a source of CAR-engineered and target cells respectively. For in vivo studies, to show enhanced anti-lymphoma activity of CAR19-

iNKT compared to CAR19-T cells, after completing two pilot experiments, two repeats were performed, obtaining similar results.

In Vivo Randomization
At the beginning of the in vivo experiment a numeric ID was randomly assigned to each mouse. At the time engraftment, all animals

were assessed in a consecutive order according to their ID, from the smaller to the larger. Same sex mice with comparable weight

were assigned to one of the 5 treatment arms only based on the bioluminescent signal, aiming to ensure an equal distribution of tumor

burden across the groups.
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Statistical Analysis
Statistical analysis was performed on GraphPad Prism 7 software. For comparisons between two groups, the Wilcoxon (paired) or

Mann–Whitney U (unpaired) test were used, with correction for multiple t tests according to the two-stage step-up method of

Benjamini, Krieger and Yekutieli. For comparison between more than two groups, either one of the following tests were performed

depending on the number of variables: non-parametric Friedman (paired) or Kruskal-Wallis (unpaired) test with post-hoc Dunn’s test

(one variable, non-parametric for one-way ANOVA) or two-way ANOVA adjusted by Tukey (more than one variables). Survival was

calculated using the Kaplan-Meier method, with log rank analysis for comparing survival between groups. All experimental data

are presented as mean ± standard error mean (SEM) unless otherwise stated. All p values given are two-tailed values. A p value

below 0.05 was considered significant.

DATA AND SOFTWARE AVAILABILITY

The RNA-seq data generated in this study will be available from the European Genome-Phenome Archive (EGAS00001003176).
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