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Abstract

millions of variants at once.

Background: The landscape of cancer-predisposing genes has been extensively investigated in the last 30 years
with various methodologies ranging from candidate gene to genome-wide association studies. However, sequencing
data are still poorly exploited in cancer predisposition studies due to the lack of statistical power when comparing

Method: To overcome these power limitations, we propose a knowledge-based framework founded on the

characteristics of known cancer-predisposing variants and genes. Under our framework, we took advantage of
a combination of previously generated datasets of sequencing experiments to identify novel breast cancer-predisposing
variants, comparing the normal genomes of 673 breast cancer patients of European origin against 27,173 controls
matched by ethnicity.

Results: We detected several expected variants on known breast cancer-predisposing genes, like BRCAT and BRCA2,
and 11 variants on genes associated with other cancer types, like RET and AKTT. Furthermore, we detected 183 variants
that overlap with somatic mutations in cancer and 41 variants associated with 38 possible loss-of-function genes,
including PIK3CB and KMT2C. Finally, we found a set of 19 variants that are potentially pathogenic, negatively correlate
with age at onset, and have never been associated with breast cancer.

Conclusions: In this study, we demonstrate the usefulness of a genomic-driven approach nested in a classic case-control
study to prioritize cancer-predisposing variants. In addition, we provide a resource containing variants that may

affect susceptibility to breast cancer.
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Background

Breast cancer is one of the most common cancers with
more than 1,300,000 cases and 450,000 deaths per year
worldwide [1]. It is caused, as any other tumor, by the
accumulation of somatic mutations over time. Somatic
mutations arise spontaneously in somatic cells and they
are passed on to all descendants of these cells. The prob-
ability of acquiring mutations that can lead to breast
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cancer is sometimes increased by pre-existent germline
variants that predispose to cancer or cause cancer-
related syndromes. Germline variants are present in all
the cells of a person and they can be inherited and
passed on to the next generation. It is estimated that
approximately 5-10% of women have germline mutations
and polymorphisms that lead to hereditary predisposition
to breast cancer [2]. Although specific mutations in
BRCA1 and BRCA2 are known to be responsible for
inherited susceptibility to breast cancer in families with
early-onset disease [3], BRCAI/2 mutation carriers
account for just 20% of the enhanced risk in first-degree
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relatives [3]. Mutations in other genes, such as PALB2,
PTEN and TP53, have been also associated with increased
risk of breast cancer. Nevertheless, many familiar breast
cancers (approximately 50%) are still unexplained at the
genetic level and many predisposing variants are yet to be
found [4].

Beside the use of linkage analysis, which requires
families with a penetrant phenotype, the discovery of the
majority of well-known cancer-predisposing genes
(CPGs) has been through the analysis of candidate genes
[5]. To shed light on the remaining hidden heritability in
breast cancer, genome-wide association studies (GWAS)
have been extensively carried out [6]. A large meta-
analysis and integration of multiple GWAS carried out
by the Collaborative Oncological Gene-environment
Study (COGS) consortium led to the identification of
dozens of susceptibility loci [4, 7]. However, GWAS suf-
fer from a number of well-recognized limitations. First,
they can only suggest the regions where the pathogenic
variants might actually reside, but not their identity.
Second, they rely on single nucleotide polymorphisms
(SNP, by definition occurring in >1% of the population)
and thus are poorly suited to identify rare variants.
Whole exome sequencing (WES) and whole genome
sequencing (WGS) can theoretically overcome most of
these limitations. WES/WGS-based studies to investigate
breast cancer-associated risk variants have not been car-
ried out to date, since the size imposed by the millions
of variants to be tested simultaneously is technically
unreachable [8]. However, germline sequencing is
routinely performed in projects aimed at identifying
somatic tumor variants. Indeed, looking at matched
germline DNA in a consecutive series of tumors
sequenced to find somatic mutations, it could be
demonstrated that disease susceptibility due to rare
variants in sporadic cancers is much more common
than previously anticipated [9].

Large collections of WES/WGS of both tumor
patients and healthy subjects are available through
multicentric efforts like The Cancer Genome Atlas
(TCGA) [10] and the Exome Aggregation Consortium
(ExAC) [11] and can be leveraged to identify putative
risk variants. For reasons highlighted above, a straightfor-
ward case-control comparison on allele frequencies would
be underpowered. Thus, we planned a computational
framework based on our knowledge of the characteristics
of known cancer-predisposing genes and variants. In
particular, we took advantage of the characteristics of
somatic driver genes (like their gain or loss-of-function) to
reproduce a candidate gene analysis. Cancer is, in fact, a
unique example of disease causation and disease pre-
disposition, being strongly linked to clear definitions
of gain-of-function/oncogenes and loss-of-function/
tumor suppressor genes [5]. Using these cancer
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unique characteristics, we have been able to identify a
set of variants and genes that may affect susceptibility
to breast cancer.

Method

Study design

We designed this study as a classic case-control study,
with emphasis on variants rather than entire genes. In
particular, we took advantage of several databases for the
annotation of the variants, to produce a hypothesis-
based framework that could preselect valid candidates
and apply statistical tests afterward. Within this frame-
work, we studied the normal genomes coming from 673
breast cancer patients of European origin from the
TCGA against over 27,000 control genotypes, unselected
for cancer phenotype, from the ExAC database with
matched ethnicity (Fig. 1).

Study data

Case dataset

We downloaded from the TCGA the original
Binary Alignment/Map (BAM) files of the normal
sample for all the 695 women and men of Caucasian
origin diagnosed with breast cancer. We then used
673 (7 men and 666 women) of the 695 samples,
considering only WES data and blood-derived normal
samples. We analyzed the BAM files, following the
exact same Genome Analysis Toolkit (GATK) pipeline
and the same level of sensitivity used for the control
dataset (see Additional file 1: Data preprocess). We
retrieved from the TCGA open access database the
available clinical information for these patients,
including age and sex, estrogen receptor (ER) status
and molecular subtypes.

Control dataset

We used the aggregated results from the ExAC database
as control population. This resource aggregates more
than 60,000 samples with germline genotype data, of
which 33,370 are classified as of European origin. The
original data source is both from population studies
(1000 Genome Project, HapMap, Exome Sequencing
Consortium) and from disease-related studies (including
part of the TCGA). To avoid any overlap with tumor sam-
ples, we filtered our data against cancer samples,
remaining with a total of 53,105 samples, of which 27,173
were of Caucasian origin.

Annotation data

To perform our analysis we took advantage of several
resources and custom-made datasets to annotate and
filter variants. In particular we used:
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Fig. 1 Workflow scheme for the whole analysis. Blue cylinders represent the data (obtained from available databases or processed during the analysis);
hexagons are the analyzed datasets of cases and controls; red squares and triangles represent analysis and output. Flag shapes represent post-process
annotation and statistical testing; brown trapezoids represent the three main analysis branches presented in this paper. NFE non-Finnish European
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phenotypic effect from nine different tools using
ANNOVAR annotations [12]. The phenotypic effect
was summarized as a deleteriousness score (DS),
calculated as the proportion of tools calling a
particular variant as damaging or probably
damaging [13].

. Presence of the variants in “target genes”, a
manually curated list of 758 genes known to be
cancer predisposing, somatic cancer drivers or
belonging to DNA repair pathways (see Additional
file 2: Table S1 and S2 and Additional file 3)

between our variants and cancer-associated SNPs
from the Human Genome Research Institute’s Catalog
of Published genome-wide association studies
(NHGRI-EBI GWAS Catalog) [14] (Additional file 2:
Table S3 and S4). Each SNP define a linkage
disequilibrium (LD) region, called LD block.

. Annotations regarding the presence of the variants

in cancer-specific databases Clinic Interpretation of
Variants in Cancer (CiViC) [15], Database of
Curated Mutations (DoCM) [16], Catalogue of
Somatic Mutations in Cancer (COSMIC) [17],
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cBioPortal [18]) and in databases of pathogenic
variants (HumSavar [19], ClinVar [20]). Cancer-related
pathogenic variants are used in particular to define a
set of prototype in Results — age-dependent polygenic
model (Additional file 2: Table S5).

Further details can be found in Additional file 1:
Annotation data.

Statistical analyses

Statistical power is a critical issue in genome-wide case-
control studies. In particular, exome data are even more
underpowered than GWAS, since potentially millions of
variants can be tested at a time. The initial call from all
the 673 samples included millions of variants that were
filtered to keep only coding and non-synonymous
events. Since we did not perform any imputation and we
applied a strict quality filter after the raw calls, retaining
only exonic variants was the best way to maximize
coverage in a dataset composed for the large majority by
exome sequencing data (including all cases). We thus
performed the following three analyses (Fig. 1):

1. Hypothesis-driven analysis of rare variants in target
cancer genes. We devised the following scheme to
prioritize candidate cancer-predisposing variants in
target genes:

o Identification of variants in known breast
cancer-predisposing genes
o Identification of variants in CPGs with no known
association with breast cancer
o Identification of somatically mutated germline
variants. A germline variant able to favor
carcinogenesis may have a higher chance of being
also somatically mutated in cancer genomes [5].
We called these variants (“somatically mutated
germline variants”, SMGVs). To identify SMGVs,
we composed a large set of somatic variants from
WGS and WES studies, combining the COSMIC
and cBioPortal databases, and checked for possible
matches between germline variants and somatic
mutations (see Additional file 1: Annotation data).
2. Tumor suppressor-like analysis. All known breast
CPGs, and at least 90% of all CPGs across cancer
types, show their oncogenic potential through
loss-of-function mutations. In the same way,
tumor suppressor genes at the somatic level are
generally hit by truncating mutations (nonsense
or frameshift insertions or deletions) that disrupt
the original function of the gene. We therefore
selected truncating variations in our dataset and
checked for any positive imbalance between the
minor allele frequency (MAF) in the cases and in
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the controls gene-wise (see Additional file 1:
Annotation-based analysis).

3. Age-dependent polygenic modeling. In this analysis
we put no filter on frequency by running a
completely unbiased regression analysis on all
non-synonymous variants over age at onset. As
explained in the section Additional file 1:
Age-dependent polygenic model, we implemented
a double-step machine-learning approach
composed by (1) a tree-based supervised classification
with variants as subjects (dimensionality reduction
step via random forest), and (2) a penalized linear
model regressing the age to the cases’ genotypes, so
that the variants become now covariates (feature
selection step via elastic net).

Detailed information about these three analyses can be
found in Additional file 1: Statistical analyses.

Results

Hypothesis-driven analysis of rare variants in target
cancer genes

Variants in known breast cancer-predisposing genes

We first asked whether known breast cancer-predisposing
variants were present in our dataset. We collected a list of
15 known breast cancer susceptibility genes from the
literature (Table 1) [5, 21, 22] and checked for variants in
the TCGA dataset, considering both known pathogenic
and truncating variants (Table 1). We decided to take into
account also rare truncating variants, since they are gener-
ally considered de facto pathogenic when the gene exerts
its oncogenic function via loss-of-function. This is the case
for all the known predisposing genes in breast cancer and,
in general, for the large majority of CPGs.

We obtained 16 different mutations that cover 36 of
our 673 cases (approximately 5%). The frequency of the
identified variants in the breast cancer dataset is com-
patible with a sample of sporadic cases, especially given
the fact that many potential pathogenic variations are
still not reported in databases like ClinVar [20]. We
found no variation for both PTEN and PRKARIA
(Table 1) but it is rare to find mutations on these genes.
The cancer syndromes linked to them (Cowden
syndrome and Carney complex) are in fact extremely
infrequent in the population: the former has an inci-
dence of one in 200,000 individuals [23], the latter a
total prevalence of few hundred reported cases [24].

Variants in CPGs with no known association with breast
cancer

Many CPGs are associated with complex tumor syndromes
or have multiple tumor associations in which more than
one tumor type can arise [5]. Known examples are the
aforementioned BRCA1 and BRCA2 that are linked to both
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Table 1 Breast cancer-predisposing genes and variants found in our case dataset

Gene Somatic driver Total number Number of pathogenic Number of truncating Number of highly
gene of variants variants variants damaging mutations

ATM X 21 5

BRCAT X 18 2 3

BRCA2 X 21 5 2

BRIPT 5 1

CDH1 3 1

CHEK2 6 2 1

MRETTA 4 1

NBN 5 1 2

PALB2 1

PRKARITA

PTEN X

RAD50 5

RAD51C 3 1

STK11 X 3

TP53 X 4 1

The second column reports if the gene is also considered to be a somatic driver gene. The next three columns report the total number of non-synonymous
variants, the number of variants considered being pathogenic, and the number of rare truncating variants (control minor allele frequency below 1%) not
already included in the list of pathogenic variants. The last column shows instead all the missense variants that are not considered to be pathogenic but have
a very high deleteriousness score (8/9 tools for predicting functional damage report the variant as damaging). As pathogenic reference we used the ClinVar

and Humsavar databases

breast and ovarian cancers [25], or the more recent discov-
ery of PALB2, linked to breast and pancreatic tumors [26,
27]. We therefore looked for any variant connected to add-
itional cancers or cancer syndrome genes and, on 11 genes,
we found 11 different rare variants that showed a higher
MATF in the cases than in the controls (Table 2). The refer-
ence list of cancer-related variants was derived from Hum-
savar, ClinVar, DoCM and CiViC (see Additional file 1:
Annotation data). Some of these variants are extremely
rare, found in one patient over 673 and therefore they
would fail any statistical test trying to assess their

enrichment in cancer. Nevertheless, our hypothesis-driven
approach allowed us to identify them as candidates among
thousands of rare variations.

Among the genes, we found COL7A1, a collagen gene
linked to epidermolysis bullosa, a severe skin syndrome
with elevated lifetime risk of melanoma [28]. We also
detected a variant on RET, a gene connected to MEN2A
syndrome that confers an extremely high penetrant risk
of thyroid cancer [29]. To our knowledge, RET has been
connected to breast cancer only through deregulation in
its expression levels [30]. Evidence of a connection to

Table 2 List of rare cancer-related pathogenic variants [control minor allele frequency (MAF) below 1%)]

Gene - variant Control MAF Case MAF log2 MAF ratio Summary of ClinVar and Humsavar annotations
COL7AT - R1538C - (3,48619779,GA) 0.002% 0.07% 535 Malignant melanoma

AKTT - E17K - (14,105246551,CT) Novel 0.08% 447 Colon, ovary and breast cancer
FANCC - R185% - (9,97912338,G,A) 0.006% 0.07% 3.76 Fanconi anemia

MSH6 - T955fs - (2,48030639,-,C) 0.213% 2.61% 3.62 Lynch syndrome

ELAC2 - R741H - (17,12896274,C,T) 0.072% 0.23% 1.66 Prostate cancer

RET - Y791F - (1043613908 AT) 0.244% 0.69% 1.50 MEN2A syndrome/thyroid carcinoma
FLCN - R239C - (17,17125879,G,A) 0.033% 0.08% 1.20 Renal cell carcinoma

PKHDT - T36M - (6,51947999,G,A) 0.075% 0.15% 0.98 Renal cancer

GALNT12 - D303N - (9,101594229,G,A) 0.185% 0.30% 0.72 Colorectal cancer

PRFT - N252S - (10,72358722,T,C) 0.501% 0.82% 0.72 Non-Hodgkin lymphoma

SDHD - G12S - (11,111957665,G,A) 0.992% 1.04% 0.07 Cowden disease 3

This list includes all those genes that are not breast cancer predisposing but are connected to other types of cancer or cancer syndromes.

*translation termination (stop) codon
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another thyroid cancer-related syndrome (MEN1) was
recently demonstrated in breast cancer [31], but a pos-
sible link to MEN2A is novel and, if confirmed, would
represent an unusual case of a gain-of-function mutation
linked to breast cancer risk. Interestingly, we identified
three truncating or frameshift alterations on FANCC,
FLCN, and MSHE6, three loss-of-function genes associ-
ated, respectively, to Fanconi anemia (like PALB2,
BRCAI, and RADSIC reported in Table 1) [32], renal
cell carcinoma [33], and Lynch syndrome [34], with no
previous direct connections to breast cancer. Lastly, we
discovered AKT1 E17K, a variant linked to many cancer
types, including breast cancer, at the somatic level. It is
reported in databases such as ClinVar or OMIM [35]
(that are generally focused on hereditary genetic traits)
because it is considered a high-frequency somatic driver
mutation [36]. This gene was also linked to a minority of
Cowden syndrome cases along with PIK3CA since it
belongs to the same pathway as PTEN, whose mutations
are causative of 85% of the cases [23]. This variant is
particularly relevant because it represents both an
example of a gain-of-function mutation in a breast
cancer frequently somatically mutated oncogene and a
risk-associated germline variant in our dataset.

Co-occurrence of known cancer-predisposing variants
To summarize our findings, we drew a co-occurrence
heatmap of all the aforementioned variants in our dataset
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(Fig. 2). The sum of all the cases with at least one of these
mutations is 110 and approximately covered 16% of our
dataset and included 11 non-breast-related pathogenic
variants, 12 pathogenic breast-related variants, and four
truncating variants on breast CPGs. However, co-occurrent
mutations were quite rare: only seven of the 110 samples
had more than one variant. Furthermore, variant frequency
in the dataset was extremely unbalanced: the top eight
variants in Fig. 2 account for 13% of patients, while 19
variants cover the remaining 3%.

Somatically mutated germline variants

We identified approximately 70,000 non-synonymous
variants; of these we kept the rare variants which showed a
higher prevalence in the cases respect to the controls (ap-
proximately 50,000). We then computed their deleterious-
ness score (DS), by adding up the individual scores obtained
through the nine different methods evaluating the functional
impact of the mutations, and retained the variants with a
DS >0.5 (ie., those defined as damaging in four or more
methods, see Additional file 1: Annotation data) [13]. DS fil-
tering yielded approximately 16,000 variants (Fig. 3). Un-
biased inference of causality for such rare variants would
require exceedingly large datasets. However, the results de-
scribed above suggest that a simple comparison of variant
allele frequencies in the TCGA cases using sufficiently large
control datasets allows re-discovering known risk associa-
tions. Thus, it should be possible to transfer this approach
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RAD518 - 14:68352609,G,A
RAD51B - 14:68352608,C,T
EP300 - 22:41574637, C,T
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Fig. 3 Analysis of rare variants. This flowchart represents the step-wise procedure in the central arm of Fig. 1 and is performed by filtering 73,544
non-synonymous coding variants down to 16,014 rare variants (MAF <1%), with a deleteriousness score over 0.5 and where the MAF in the cases
is higher than in the controls. Rare variants are prioritized into two branches: on the left, variants falling in GWAS breast cancer linkage
disequilibrium blocks (LD blocks); on the right, variants overlapping with cancer somatic mutations from COSMIC or cBioPortal (see Additional file 3:
Table S6 and S7). For both datasets, overlaps are shown both at the initial level and after filtering for variants belonging to our list of 758 target genes
(known cancer-predisposing genes, known somatic driver genes, and DNA repair genes). Six common (i.e,, both overlapping with somatic mutations
and falling into a GWAS LD block) variants on our target gene list, are reported at the bottom of this figure

2441
Variants
overlapping

\

183
variants
belonging to

to exploratory analyses aimed at identifying candidate loci to
be validated externally. Accordingly, we further selected our
variations, keeping only perfect matches with the somatic
mutations in the COSMIC and cBioPortal databases and
440 variants were finally retained; of these, 183 belong to
our list of manually curated target genes reported in Add-
itional file 3: Table S6 (see Additional file 1: Annotation
data). Among the 183 variants, we found 37 monomorphic
alterations in the ExAC database that represented our con-
trol. The most relevant result of this analysis branch is prob-
ably the already mentioned variant E17K on AKTI
(rs121434592). The AKTI gene is a known somatic driver
kinase and this mutation was found in the cBioPortal data-
base in 46 different samples from many different tumor
types, including breast. E17K is also in the CIVIiC and
DoCM database lists of curated somatic driver mutations
[36]. Along with ATM R337C (rs138398778), this variant is
in the list of cancer hotspots curated by Chang et al. [37],
both variants representing a case of known somatic driver
mutation that can be considered a cancer-predisposing
variant. In addition, we found other germline variants
present in more than two samples in COSMIC or cBioPor-
tal on the following genes: HNFIA, FGFR3, and ASXLI.
Interestingly, these genes are included in our list of CPGs
or somatic driver genes, and none of them has been con-
nected to breast cancer predisposition before.

We also developed a way to annotate if a variant falls
close to at least one of 130 manually selected breast
cancer-associated SNPs from the NHGRI-GWAS catalog
(see Additional file 1: Annotation data), which are re-
ported as GWAS blocks in Additional file 2: Table S3—4
[14]. A variant in proximity of one these SNPs can be
considered in linkage disequilibrium with the SNP itself.
We identified 436 variants within the GWAS blocks as-
sociated with breast cancer (Additional file 3: Table S7).
Using STRING [38], we found that the genes containing
these variants had more interactions among themselves
than what would be expected from a random set of
genes of the same size (p value: 0.000279). Interestingly,
three genes in our list (ZNF365, SGSM3, and LSP1) were
significantly annotated (using Webgestalt [39] and Dis-
genet [40]) with the “category mammographic density”,
that is a strong risk factor for breast cancer [41]. Among
the list of SMGVs, only 73 out of 436 fell in such GWAS
regions (Fig. 3 and Additional file 3: Table S7). The over-
lap of these two groups is apparently random as it is not
significantly different from a bootstrap of random over-
laps (p value of permutation Z test=0.19). This result
highlights two important aspects. First, the lack of
enrichment in somatic mutations in GWAS-associated
regions confirms the results of Machiela et al. [42],
which show no correlation between regions around



Melloni et al. Breast Cancer Research (2017) 19:63

cancer-associated SNPs and enrichment in somatic
mutations. Second, while GWAS are designed to work
on common variants, somatic mutations are usually rare.
Thus, these two types of analysis represent two different
layers of hereditability. After subsetting for our list of
target genes, only six variants in four genes ended up
being SMGVs and fell in the GWAS regions. These vari-
ants form a list of highly valuable candidates (reported
at the bottom of Fig. 3), as theorized by one of the
COGS flagship papers [7]. In particular, RAD5IB is a
known breast cancer-associated gene [43]. TET2, an-
other variant discovered in our dataset, is only approxi-
mately 80 kb away from the COGS SNP rs9790517.
Notably, TET2 has been already associated with breast
cancer at the RNA level [44] and it is considered a
known somatic driver in leukemia and melanoma [45].
Another COGS variant (rs132390 on EMIDI) is in a low
recombination region together with the NF2 R335C vari-
ation. NF2 has been associated with hereditary neuro-
fibromatosis syndrome 2 and it is mutated at both
germinal and somatic levels in breast cancer [46]. The
same COGS SNP was found in LD with CHEK2, a
known breast cancer-associated gene [47]. Although our
HapMap data do not support this linkage disequilibrium,
we found a variant on CHEK?2 (rs201206424) at approxi-
mately the same distance as the NF2 variant described
above (approximately 400 kb) [7]. This CHEK2 variant
was also found as somatically mutated in breast cancer
in our database. Finally, we found two different alter-
ations on EP300 in LD with the COGS SNP rs6001930.
EP300 has a well-established role as a tumor suppressor
gene but has been poorly investigated as a breast cancer-
predisposing gene [48].

Tumor suppressor-like analysis

The large majority of CPGs exerts their function via
recessive loss-of-function variants [5]. We selected from
our dataset all the truncating variants occurring below 1%
in the control population: in total 2372 different truncat-
ing events on 1865 different genes. On this reduced data-
set, we looked for any imbalance between control and
case frequency in any of the truncating spots with a gene-
wise testing procedure (see section Additional file 1:
Tumor suppressor-like analysis). After testing and correct-
ing for false discovery rate (FDR) [49], we looked for
potential tumor suppressor-like genes in our list of 758
target genes. Only 90 genes had at least one truncating
variant with a frequency in the control cohort below 0.01;
of these, 38 passed the p value threshold (Additional file 3:
Table S8). As a proof of concept, known breast cancer-
predisposing genes like BRCA1, BRCA2, and CHEK2 were
selected by our procedure. Other known breast cancer-
predisposing genes, such as TP53 or PALB2, were instead
not found truncated in our dataset because they are too
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rare for our detection power in a non-familiar selected
dataset (Table 1) [50]. Nevertheless, TP53 has one
missense variant included in the list of the 183 variants
overlapping with somatic mutations, and this particular
variant was never reported as pathogenic before
(rs138729528). Among the 41 significant LOF candi-
dates, FGFR3, PIK3CB, HNFI1A, and KMTC2 were also
highlighted as somatically mutated by the previous ana-
lysis, but, in this case, we were able to add a possible
loss-of-function role. Interestingly, the genetic ablation
of the protein encoded by PIK3CB was described to
increase ductal branching and tumorigenesis and could
lead to mammary gland hyperplasia in transgenic
models of breast cancer [51]. In addition, the landscape
of the somatic mutations of PIK3CB and FGFR3 could
be an indication that their inactivation might promote
cancer progression. In fact, PIK3CB and FGFR3 had a
higher presence of somatic truncating events (26.1%
and 15.7% respectively, as reported by cBioPortal),
compared with the number of truncations that are
present in a typical gain-of-function oncogene like
KRAS or PIK3CA (approximately 1%). The majority of
the genes in the tumor suppressor-like list harbors one
to two different truncation points. CRIPAK, however,
appears to be an exception with 27 different truncations
in various points of the gene body. The abundance of
frameshifts and nonsense alterations at various points
of the protein can be partially explained by the fact that
CRIPAK is an intronless gene containing multiple repe-
titions of a 31 bp sequence and, like other genes with
this feature (e.g., CDRI1 or AD7C-NTP), tends to accu-
mulate these variations for evolutionary reasons [52]. In
fact, a recent publication on the impact of loss-of-
function mutations on coding genes scored CRIPAK
among the most tolerant genes (0.99 on a scale between
0, low tolerance, and 1, high tolerance) [53]. In
addition, due to the repetitive nature of its coding
sequence, it is easier to make alignment mistakes [54].
We think it is most likely a false positive result.

Age-dependent polygenic model

In the last part of our work, we moved from a pure
case-control study to a more association-like study.
Using the algorithm described in the Additional file 1:
Age-dependent polygenic model, we determined the
main characteristics of pathogenic and non-pathogenic
variants, as shown in Fig. 4a, and we used these char-
acteristics to classify the test set of unknown variants
(all the remaining non-synonymous variants). The overall
model on the training set reported a very low error in the
classification process (out-of-bag error equal to 3.5%),
with an area under the receiver operating characteristic
(ROC) curve of 0.84 (see Fig. 4b). For example, as shown
in Fig. 4c, the random forest model has the tendency of
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assigning high RF scores to the most deleterious variants,
as a clear linear trend is visible between the DSs and the
RF scores (see in Fig. 4c). The majority of the known
pathogenic variants (the red dots) fall into the top two DS
categories, compared to the non-pathogenic variations
(the blue dots), which appear to fall in every category

without a specific pattern. However, the DS is not suffi-
cient to classify the training set properly, and only the
integration of the other features results in a very low
classification error (Fig. 4a, b).

After the first dimensionality reduction step, we retained
4045 variants entering the second step, and therefore
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reducing the risk of an inflated dimensionality (Additional
file 1: Age-dependent polygenic model). We regressed the
age at the initial pathological diagnosis to the genotype of
our subjects in order to obtain a list of variants negatively
associated with age at onset. The controls in this procedure
are therefore not included. The final output in Table 3
shows 19 variants, ordered by the number of times a fea-
ture is retained with a negative beta in a model in at least
10% of the 100 models; 15 variants had a negative beta in
more than 50% of the 100 models (see Additional file 1:
Age-dependent polygenic model).

We noticed several desirable features of the final set of
variants. First, without imposing a filter on the control
MAEF, we selected for rare variants in the population, so
that all our 19 variants have, in the control set, a MAF
way below the 1% threshold and, in the case set, a MAF
for the corresponding variants higher than in the controls.
Furthermore, more than a half of these variants were not

Table 3 Results from the polygenic age-dependent model
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present in the ExAC dataset. Second, 13 of the 19 variants
are classified as truncation events and all the other six
missense events have a deleteriousness score higher than
0.8, thus judged as almost certainly damaging. Third, we
noticed a double enrichment in variants also found as
somatic variants, confirming the importance of evaluating
somatic events overlapping with germline mutations.

Among the initial dataset of 73,354 variants, only
approximately 13% of them were found as somatic
events in COSMIC or cBioPortal. After the random
forest procedure, this frequency had increased up to
approximately 17% among the 4045 retained variants
(p value of binomial test: 8.78e-11), and after the elastic
net selection up to approximately 26% (five out of 19
variants were also found as somatic, although this is not
significant due to the low number of variants).

None of the genes found using this procedure belongs
to the list of target genes, none are found within low

Variant Approved name Control MAF  Case MAF  Protein change  Mean beta  Negative beta
elastic net  percentage

MRPL24 - 1,156708335,C,T Mitochondrial ribosomal Novel 0.074% W54 -2.78 1.00
protein L24

CST4 - 20,23667825,-,C Cystatin S 0.0129% 0.300% V81fs -5.09 1.00

PARD6A - 16,67696278,C,T Par-6 family cell polarity 0.0018% 0.078% R256* -1.86 1.00
regulator alpha

TRIOBP - 22,38121788,-,C TRIO and F-actin binding protein 0.0059% 0471% S1075fs -364 1.00

ZNF85 - 1921132125,CT Zinc finger protein 85 Novel 0.085% R205* -4.36 1.00

FOXP4 - 6,41553185A,G Forkhead box P4 0.0018% 0.091% K147R -804 1.00

PKHD1 - 6,51890490,A,C Polycystic kidney and hepatic Novel 0.075% M1373R -533 1.00
disease 1 (autosomal recessive)

SURF1 - 9,136218808,AT Surfeit 1 Novel 0.081% L179Q —6.49 1.00

HIST2H2AB - 1,149859084,TT...GT-  Histone cluster 2, H2ab Novel 0.074% T121fs -3.59 0.97

STIM?2 - 4,27004586,G,A Stromal interaction molecule 2 Novel 0.081% V281l —1.65 097

CPA3 - 3,148597632,CT Carboxypeptidase A3 (mast cell) Novel 0.074% R178" -547 094

TMCO3 - 13,114188422-,G Transmembrane and coiled-coil 0.0326% 0.742% A469fs -193 093
domains 3

SERPINF2 - 17,1649022,CCIG,- Serpin peptidase inhibitor, clade F Novel 0.080% A62fs -1.74 0.84

PYGL - 14,51383751,G,A Phosphorylase, glycogen, liver 0.0037% 0.149% R276C -0.08 0.71

FNIP2 - 4,159790466,CA Folliculin interacting protein 2 0.0016% 0.101% 5893° -0.86 0.58

CPPED1T - 16,12758817,G,A Calcineurin-like phosphoesterase Novel 0.074% R149" -0.14 044
domain containing 1

OR52B4 - 11,4388943,G,A Olfactory receptor, family 52, 0.0018% 0.076% R195 4.81 0.09
subfamily B, member 4
(gene/pseudogene)

SCNT10A - 3,38755496,G,A Sodium channel, voltage gated, 0.0037% 0.074% R1155C 162 0.08
type X alpha subunit

ZNF683 - 1,26694960,G,A Zinc finger protein 683 Novel 0.089% R35* 1.18 0.03

A double-step machine learning algorithm selects variant based on a series of pathogenic prototypes and then further selects them using a permutation-based
multi-model regression over age at onset. Variants in this set are negatively associated with age, and are divided in three layers: at the top, variants negatively
associated in at least 80% of the models and with an average beta less than —1.5; in the middle, variants retained in at least 40% of the models with poor average

beta; at the bottom, variants found negatively associated only in a few models
*translation termination (stop) codon
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recombination regions of breast cancer-associated SNPs,
and there are very few literature reports of a known
involvement in cancer, thus making their selection a
completely novel finding (Table 3). Excluding variants
on TMCO3, TRIOBP, PYGL, and CST4, all the remaining
15 variants involved one single sample from our dataset;
since they are so rare, a simple statistical approach
would probably not detect them. As briefly mentioned
before, this set of variants and genes are mostly not
known to be in cancer, except for PKHDI, a gene
involved in polycystic kidney disease and associated with
a higher risk of renal cancer [55]. Another known patho-
genic variant in PKHDI has also been mentioned in the
first section of the results. Other genes with some evi-
dence of cancer involvement among those reported in
Table 3 include STIM?2, which was associated to allelic
loss in 4p in several tumor types, including breast [56],
and FOXP4, an important member of the forkhead box
transcription factors, which are involved in tumorigenesis
and cell growth [57]. Although not directly implicated in
tumorigenesis, other genes that are part of families
involved in cancer appear to be promising candidates.
These include SERPINF2, a member of the serpin family
with a clear role in cancer cell survival [58], PARD6A, a
member of the PAR family involved in cell cycle gatekeep-
ing and interacting with major cancer pathways like
MAPK and PI3K [59], and HIST2H2AB, part of the cluster
2 of histones whose parallel family in cluster 1 is highly
mutated in many cancer types [60, 61].

Gene-wise interactions

We aggregated all the identified variants to check for
possible interactions between germline and somatic
mutations. We collected 27 variants from known CPGs,
183 variants overlapping with somatic mutations, 41
truncating variants from 38 TSG-like genes and 19 vari-
ants from our polygenic model for a total of 254 unique
variants in 169 genes. We first checked for a sustainability
of the signal of our variants by examining whether a germ-
line variant carrier was more or less prone to have a som-
atic hit on the same gene (Additional file 1 Gene-wise
interactions). Three genes demonstrated a certain propen-
sity to have both somatic and germline hits: HNFIB,
MSH6, POLRIA (Additional file 3: Table S9). HNFIB has
been shown to harbor biallelic inactivation from germline
and somatic hits in renal carcinoma [62]. On the 36
MSH6 carriers of at least one of the three variants we
identified, two of them were found carrying also a second-
ary somatic mutation on the same gene, one of them was
a stop-gain truncating mutation. A two-hit hypothesis on
MSH6 has been proposed in [63, 64]. Furthermore,
although not significant because of the small sample
size, the somatic mutational burden of the patients
carrying a MSH6 variant was slightly higher compared
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to non-carriers (median for carriers: 33 mutations,
median for non-carriers 30 mutations). This is
expected from a gene belonging to the mismatch
repair pathway. POLRIA, which is a core subunit of
RNA polymerase 1, has never been shown to necessi-
tate a biallelic inactivation.

Subtype-specific variants

Considering the clinical data of our cohort and extract-
ing the estrogen receptor status (ER), the human epider-
mal growth factor receptor 2 status (HER2), and the
progesterone receptor status (PR) for each patient, we
tested the possible association between variant carriers
and a particular molecular subtype. As a proof of con-
cept, we initially checked if BRCAI carriers were associ-
ated with ER-negative tumors as previously described
[65]. The frequency of ER-negative tumors in non-
altered BRCAI patients was approximately 20%. Among
the BRCAI carriers of a pathogenic, highly deleterious
or truncating variant (five samples), we found three ER-
negative, one positive and one unknown status (3/4 =
75%). By running Fisher’s exact test between BRCAI car-
riers and BRCAI non-carriers distributions, we found a
significant enrichment of ER-negative tumors (p value =
0.025). We expanded this analysis by including the fol-
lowing subtype categories determined by ER, HER2 and
PR status: Luminal tumors (ER+/HER2-), HER2+ tumors
and triple-negative tumors (ER-, HER2-, PR-). Among
the 169 genes taken into consideration in the section
above, only two showed a significant imbalance of the
distribution of molecular subtypes between carriers and
non-carriers (SMOX, a spermine oxidase, g-value = 0.02
and CNOT3, one of the subunits of CCR4-NOT tran-
scription complex, p value = 0.047 - Table S10). For both
genes, carriers had more frequently HER2+ tumors com-
pared to non-carriers, (from 2.5% to 25% for SMOX and
from 2.4% to 9% for CNOT3). We did not find any
particular connection between these two genes and
HER2-positive tumors in the literature, thus we think
that our result requires further investigation.

Discussion
Our study represents one of the first attempts to
prioritize germline variants that may predispose to
breast cancer using publicly available sequencing data.
We developed a computational framework based on
the characteristics of somatic mutations to identify puta-
tive cancer-predisposing variants. In particular, we pro-
vided an analysis of rare variants, observing that variants
in known CPGs are frequent in sporadic TCGA cases. In
addition, we detected 183 variants that overlap with
somatic mutations in cancer. Furthermore, we carried
out an analysis of truncating mutations on suspected
tumor suppressors, uncovering both known and novel
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loss-of-function candidates. We detected 41 variants
associated with possible loss-of-function in 38 genes,
including PIK3CB and KMT2C. Lastly, we built a robust
age-dependent polygenic model that involves a mixture
of supervised and regression-based algorithms to uncover
variants at any frequency level. With this model, we iden-
tified a set of 19 variants potentially pathogenic and nega-
tively associated with age at onset, and belonging to genes
that have never been associated to breast cancer. Finally,
we checked if any of the identified candidate variants fell
into GWAS known breast cancer susceptibility regions.

We detected several expected variants on known breast
cancer-predisposing genes like BRCAI and BRCA2, which
are a confirmation of the validity of this study. We also
identified 11 variants on genes known to predispose to
other cancer types or cancer syndromes, like RET and
AKT1I, which have never been previously associated with
breast cancer predisposition.

To our knowledge, there are few examples in the
literature that attempt an analysis of predisposing gen-
etic makeups in cancer by exploiting sequencing data
[66, 67]. While these works provide an in-depth analysis
of known predisposing genes, they lack of a sufficiently
extended control dataset; for instance, in the two refer-
enced studies, the authors used, respectively approxi-
mately 400 normal controls, against a dataset of ovarian
cancer cases of approximately the same size [66], and
approximately 1000 samples, against approximately 4000
cases of various cancer types [67]. The use of the ExAC
database, which comprises over 27,000 control samples,
allowed higher resolution, which we emphasized at the
level of the single variants within a candidate predispos-
ing gene, separating variants of scarce significance from
true candidate pathogenic variations. Furthermore, in
our knowledge-based approach, we introduced more
variables, also including over 20 years of breast cancer
GWAS data and patients’ characteristics like age at
onset. In particular, the latter information was used not
only to confirm the association between early onset of
disease and known predisposing genes but as a new
explanatory variable to further enlarge our set of candi-
dates beyond the limits of already known cancer-related
genes.

With our analysis we provided a detailed study of
missense variants per se and we offered a way to
prioritize cancer-predisposing variants, while previous
analysis were more descriptive and mainly focused on
truncation events and on loss of heterozygosity. In par-
ticular, for breast cancer, previous analysis [67] listed all
the rare germline truncation variants present in 624
cancer-associated genes and performed burden test to
identify genes with significant enrichment of rare trun-
cations. While they were able to detect BRCAI and
BRCA2 as significant in Caucasians, they focused their
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attention on further characterizing these mutations and
on evaluating co-occurrence and mutual exclusivity of
BRCA1/BRCA2 germline and somatic variants but there
is no attempt at a prioritization of new candidates, espe-
cially at the missense variant level.

We are aware that our analysis has several limitations.
First, to improve our understanding of the association of
rare variants with breast cancer hereditability, we should
sequence a larger number of individuals and possibly
extend our analysis to other ethnicities. For example, we
should use an independent longitudinal cohort to clarify
the prevalence of the identified variants, or a smaller
cohort of suspected familial cases. Second, genomic data
could be associated to patients’ family history, since this
information is missing in the TCGA clinical data.

Nevertheless, we have provided a valuable resource of
potential new cancer-related variants that can be charac-
terized from a functional point of view.

Conclusions

In this study, we have developed a genomic-driven approach
able to prioritize cancer-predisposing variants using a case-
control genetic scheme. We demonstrate the benefits of
using publicly available sequencing data to characterize
known susceptibility genes, and to identify novel cancer-
predisposing variants. The opportunity to classify individuals
according to their risk of developing hereditary-based cancer
will improve clinical management of breast cancer patients
in terms of genome-tailored prevention strategies, programs
for early diagnosis, and possible treatments.
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