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Am‘c{e history: Introduction: Human induced pluripotent stem cells (hiPSCs) are useful tools for reproducing neural
Received 29 September 2022 development in vitro. However, each hiPSC line has a different ability to differentiate into specific line-
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ages, known as differentiation propensity, resulting in reduced reproducibility and increased time and
funding requirements for research. To overcome this issue, we searched for predictive signatures of
neural differentiation propensity of hiPSCs focusing on DNA methylation, which is the main modulator of
cellular properties.

Methods: We obtained 32 hiPSC lines and their comprehensive DNA methylation data using the Infinium
MethylationEPIC BeadChip. To assess the neural differentiation efficiency of these hiPSCs, we measured
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DNA methylation the percentage of neural stem cells on day 7 of induction. Using the DNA methylation data of undif-
Differentiation propensity ferentiated hiPSCs and their measured differentiation efficiency into neural stem cells as the set of data,
Machine learning and HSIC Lasso, a machine learning-based nonlinear feature selection method, we attempted to identify

neural differentiation-associated differentially methylated sites.
Results: Epigenome-wide unsupervised clustering cannot distinguish hiPSCs with varying differentiation
efficiencies. In contrast, HSIC Lasso identified 62 CpG sites that could explain the neural differentiation
efficiency of hiPSCs. Features selected by HSIC Lasso were particularly enriched within 3 Mbp of chro-
mosome 5, harboring IRX1, IRX2, and C50rf38 genes. Within this region, DNA methylation rates were
correlated with neural differentiation efficiency and were negatively correlated with gene expression of
the IRX1/2 genes, particularly in female hiPSCs. In addition, forced expression of the IRX1/2 impaired the
neural differentiation ability of hiPSCs in both sexes.
Conclusion: We for the first time showed that the DNA methylation state of the IRX1/2 genes of hiPSCs is
a predictive biomarker of their potential for neural differentiation. The predictive markers for neural
differentiation efficiency identified in this study may be useful for the selection of suitable undifferen-
tiated hiPSCs prior to differentiation induction.
© 2022, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0)).
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1. Introduction

The ability of human induced pluripotent stem cells (hiPSCs) to
self-renew and differentiate into a variety of tissues in vitro [1]
makes them a very useful tool for regenerative medicine and drug
screening [2,3]. However, the differentiation propensity of human
PSCs differs with cell lines [4—6], leading to reduced reproducibility
and increased time and cost burdens for research.

Recently, there has been growing evidence of DNA methylation
variations among iPSC lines, such as residual patterns in the origin
cells [7], random aberrations accompanying epigenome-wide
rewriting [8,9], and fluctuations associated with continuous PSC
culturing [10,11]. Since DNA methylation is a key component of
epigenetic mechanisms that regulate a wide variety of nuclear
events [12], fluctuations in DNA methylation in individual iPSC lines
are likely to be the cause of quality variation, notably variation in
differentiation propensity.

Most of the reported biomarkers that predict the ability of hu-
man PSCs to differentiate into specific tissues are based on their
transcriptome [13—18]. The transcriptome reflects the profile of the
cell at the time of observation. The epigenetic signature, on the
other hand, carries the memory of environments and events, and
regulates current and future gene expression patterns. Epigenetic
marks such as DNA methylation gives us insight into the potential
as well as the existing properties of the cell, suggests its usefulness
as a predictive biomarker.

Machine learning has been actively used for biomarker discov-
ery [19—21]. Supervised machine learning trains models are based
on a set of input data and the resulting response (output), thereby
eliminating the need for prior hypotheses and promising novel
discoveries beyond human cognition. Yamada et al. developed the
Hilbert-Schmidt Independence Criterion Lasso (HSIC Lasso) [21,22],
which is a supervised machine learning-based feature selection
method. HSIC Lasso has two advantages: it can consider
input—output nonlinear relationships and it is effective for high-
dimensional data. Therefore, HSIC Lasso is superior to existing
methods such as classical Lasso in machine learning-based feature
selection from omics data [24].

The objective of this study was to identify signatures in un-
differentiated hiPSCs that could predict neural differentiation ef-
ficiency. We wused HSIC Lasso and comprehensive DNA
methylation data from 32 undifferentiated hiPSCs and identified
loci harboring IRX1, IRX2, and C50rf38 genes. Our study provides a
clue for understanding the differentiation propensity of human
iPSCs.

2. Materials and methods

2.1. Preparations of mouse embryonic fibroblasts (MEFs) and MEF
feeder cells

MEFs were isolated from 13.5 dpc fetuses of pregnant CD1 (ICR)
mice (Charles River Japan, Inc., Yokohama, Japan) and cultured in
Dulbecco's modified Eagle's high-glucose medium (DMEM; Sigma-
Aldrich, St Louis, MO, USA) containing 10% fetal bovine serum
(Thermo Fisher Scientific, Inc., Waltham, MA, USA), 1% penicillin
and streptomycin (Thermo Fisher Scientific) and 0.1%
2-mercaptoethanol (Thermo Fisher Scientific). MEFs were irradi-
ated with 30 Gy of gamma radiation to generate MEF feeder cells.
All procedures were performed in accordance with the Guidelines
for Animal Care and Use of Laboratory Animals of the University of
Miyazaki, and the experimental protocols were approved by the
Animal Experiment Committee of the University of Miyazaki (no.
2012-017, 2017-009).
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2.2. Human cell culture

Human endometrial (UtE1104) and menstrual blood (Edom22)
cell lines were independently established [25]. Human fetal lung
fibroblast cells (MRC-5 and IMR-90) [26,27] were obtained from the
Japanese Collection of Research Bioresources (JCRB) Cell Bank, Japan.
Human dermal fibroblasts (DFM1, DFM2, DFMF1, and DFMF2) were
purchased from ZenBio, Inc (Research Triangle Park, NC, USA). These
human somatic cells were maintained in Dulbecco's modified Ea-
gle's medium-low glucose (DMEM-LG; Sigma-Aldrich, St. Louis, MO,
USA) supplemented with 10% fetal bovine serum, 1% GlutaMAX™
supplement (Thermo Fisher Scientific), 1% penicillin and strepto-
mycin (Thermo Fisher Scientific), and 0.1% 2-mercaptoethanol
(Thermo Fisher Scientific). Human Retro-iPSCs were generated us-
ing the retroviral vector pMXs, which contain cDNAs for human
0CT3/4, SOX2, c-MYC, and KLF4 [11,28]. Episomal-iPSCs were ob-
tained from the JCRB Cell Bank or established using episomal vectors
PCXLE-hOCT3/4-shp53, pCXLE-hSK, and pCXLE-hUL [29]. RNA-
iPSCs were established using the StemRNA 3rd Gen Reprogram-
ming Kit (REPROCELL, Inc., Kanagawa, Japan) according to the
manufacturer's recommendations. Human iPSCs were maintained
on irradiated MEF feeder cells in KnockOut™ Dulbecco's modified
Eagle medium (KO-DMEM; Thermo Fisher Scientific) containing
20% knockout serum replacement (Thermo Fisher Scientific), 1%
GlutaMAX™ (Thermo Fisher Scientific), 1% nonessential amino acids
(Thermo Fisher Scientific), 1% penicillin and streptomycin (Thermo
Fisher Scientific), 0.1% 2-mercaptoethanol (Thermo Fisher Scienti-
fic), and 10 ng/mL recombinant human basic fibroblast growth
factor (bFGF; FUJIFILM Wako Pure Chemical Corp., Ltd., Osaka,
Japan). All the human cell lines used in this study are summarized in
Supplemental Table 1. Ethical approval for the use of human cell
lines, in this study, was obtained from the Institutional Review
Board of the National Institute for Child Health and Development
and University of Miyazaki (no. 2016-1). All procedures performed
in this study that involved the handling of human cells were in
accordance with the ethical standards of the 1964 Helsinki decla-
ration and its later amendments or comparable ethical standards.

2.3. Genome-wide DNA methylation analysis

DNA methylation profiles were obtained for each sample using
the Infinium MethylationEPIC BeadChip (Illumina Inc., San Diego,
CA, USA). Genomic DNA was extracted from cells using DNeasy
Blood & Tissue Kit (Qiagen, Hilden, Germany). From each sample,
1 pg of genomic DNA was subjected to bisulfite conversion using EZ
DNA Methylation kit (Zymo Research, Orange, CA, USA) according
to the manufacturer's recommendations. Following bisulfite con-
version, genomic DNA was hybridized with the MethylationEPIC
BeadChip, and each BeadChip was scanned on an iScan (Illumina
Inc.) according to the manufacturer's instructions. GenomeStudio
(Illumina Inc.) was used for background subtraction and data
normalization. Methylated and unmethylated signals were used to
compute the B-value, a quantitative score of the DNA methylation
rate that ranges from “0.00” for a completely unmethylated state to
“1.00” for a completely methylated state. Detailed information on
the cell lines and GEO accession numbers used in this study are
provided in Supplemental Table 1. Probes harboring common SNPs
(minor allele frequency [MAF] > 1%) within 10 bases of the 3’ end,
based on the 1000 Genomes Project and the Japanese Multi Omics
Reference Panel [30,31], were eliminated from further analysis.
Probes with a detection p-value > 0.05 (computed from the back-
ground based on negative controls) or blank p-values in more than
10% of samples were also eliminated from further analysis. The
blank or non-significant -values were replaced with the median §-
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value of the common probe. A total of 806,442 CpG sites were
analyzed in 32 samples (Supplemental Fig. 1). Unsupervised hier-
archical clustering analysis (HCA) with Euclidean distance, Ward's
method, and uniform manifold approximation and projection
(UMAP)-based two-dimensional embedding of principal compo-
nents holding approximately 90% of the variance obtained using
principal component analysis (PCA) were used for analysis [32].
DNA methylation pluripotency markers of hiPSCs and fibroblasts
were assessed based on previous reports [28,33]. The Epi-Pluri-
Score was calculated as the difference in the DNA methylation
rate on ANKRD46 (B-value in ¢g23737055) and VRIN (B-value in
cg22247240) [34]. Pearson's rank correlation coefficient was used
for correlation analysis between DNA methylation rates and
differentiation efficiency and between DNA methylation rates for
individual probes.

2.4. Genome-wide gene expression analysis

Gene expression array data were obtained from each sample
using SurePrint G3 human GE microarrays 8 x 60 K (Agilent
Technologies, Santa Clara, CA). Total RNA was extracted from cells
using TRIzol (Thermo Fisher Scientific) and purified using RNeasy
columns (Qiagen). The total RNA quality was checked for integrity
using a high-sensitivity RNA ScreenTape (Agilent) on an Agilent
TapeStation 2200 instrument by following the manufacturer's
protocol. From each sample, 50 ng of total RNA was amplified and
labeled using an Agilent Low-Input QuickAmp labeling Kkit,
according to the manufacturer's instructions. Subsequently, Cy3-
labeled cRNA was fragmented and hybridized onto a SurePrint
G3 human GE microarrays 8 x 60 K slide. The slides were then
washed and scanned using an Agilent microarray scanner system.
The features of the scanned image files were extracted using
Agilent feature extraction. Background correction and quantile
normalization between arrays were performed using the limma
package in R. The expression levels shown by different probes for
the same transcript were summarized by median polishing. A
total of 48,588 transcripts were analyzed in 28 samples. Unsu-
pervised HCA with Euclidean distance, Ward's method, and
UMAP-based two-dimensional embedding of principal compo-
nents holding approximately 90% of the variance obtained using
PCA were used for analysis.

2.5. Neural stem cell differentiation

Neural stem cell induction was conducted using the dual-
SMAD inhibition protocol [35] with STEMdiff™ neural induction
medium (NIM; StemCell Technologies, Inc., Vancouver, Canada).
Human iPSCs were dissociated using the Gentle cell dissociation
reagent (StemCell Technologies), and cell suspension were passed
through a 40 um cell strainer. Cells were resuspended in NIM
supplemented with 10 pM SB431542 (FUJIFILM Wako Pure
Chemical Corp.), 100 nM LD193189 (FUJIFILM Wako Pure Chemical
Corp.), and 10 pM Rock inhibitor (Y27632) (FUJIFILM Wako Pure
Chemical Corp.) and plated at a density of 2 x 10° cells/cm? on
Matrigel-coated plates (BD Biosciences, Bedford, MA, USA). NIM
supplemented with 10 uM SB431542 and 100 nM LD193189 was
replaced every 24 h after plating. On day 7 of neural induction, the
differentiated cells were collected and used for flow cytometric
analysis.

2.6. Immunohistochemistry
Human iPSCs and induced neural stem cells were fixed at room

temperature in 4% paraformaldehyde for 10 min. The cells were
then permeabilized in 0.1% Triton X-100/PBS for 10 min and
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blocked with 1% BSA/PBS for 1 h. The cells were then incubated
with the diluted primary antibody in 1% BSA/PBS for 12 h at 4 °C
and subsequently incubated with the diluted secondary antibody in
1% BSA/PBS for 1 h at room temperature. The antibodies used in this
study are summarized in Supplemental Table 2.

2.7. Flow cytometry analysis

Differentiated cells were dissociated by treatment with StemPro
Accutase Cell Dissociation Reagent (Thermo Fisher Scientific) for
8—10 min. Collected cells were fixed, permeabilized, blocked, and
incubated with antibody as mentioned in section 2.6. The anti-
bodies used in this study are summarized in Supplemental Table 2.
The analysis was performed using SONY SA3800 spectral cell
analyzer (Sony Biotechnology, San Jose, CA, USA) (see also
Supplemental Fig. 2A).

2.8. Hilbert-Schmidt independence criterion (HSIC) Lasso based
feature selection

For supervised feature selection to find CpG sites related to
neural differentiation efficiency of hiPSCs, we used HSIC Lasso
[22,23]. HSIC Lasso is a kernel-based minimum redundancy
maximum relevance (mRMR) algorithm that uses HSIC to measure
the dependency between variables [36,37], which is useful for high-
dimensional and small-sample (n << p) datasets and enables the
assessment of the nonlinear dependency between the output var-
iable and a feature. For input data, CpG sites showing a standard
deviation of DNA methylation greater than 0.1 between the 32
hiPSC lines were extracted. The neural differentiation efficiency of
each hiPSC line was used for the output data. HSIC Lasso regression
was performed for selecting neural differentiation efficiency-
related CpG sites using Python 2/3 package pyHSICLasso (http://
github.com/riken-aip/pyHSICLasso). To determine where the fea-
tures (primary selected neural differentiation efficiency-related
CpG sites) and their neighbors selected by HSIC Lasso were
enriched in the genome, we performed a one-sided Fisher's exact
test for each region defined by the sliding-window method (1 Mbp
in each window, sliding at 100 kbp steps). Based on the computed
p-value, False Discovery Rate (FDR) was estimated using the q value
package in R and defined as q-value [38]. Genes located within the
window (g-value < 0.01) were analyzed for Gene Ontology (GO)
enrichment using the Database for Annotation, Visualization and
Integrated Discovery (DAVID; https://david.ncifcrf.gov/) [39].

2.9. Combined bisulfite restriction analysis (COBRA) and bisulfite
sequencing

Sodium bisulfite treatment of genomic DNA was performed using
the EZ DNA Methylation-Gold Kit (Zymo Research, Irvine, CA, USA).
PCR amplification was performed using BIOTAQ HS DNA Polymerase
(Bioline Ltd., London, UK) with specific primers. The primer se-
quences used in this study are summarized in Supplemental Table 3.
All PCR experiments were performed under the following thermo-
cycling conditions: 95 °C for 10 min; 35 cycles of 95 °C for 30 s, 60 °C
for 30 s,and 72 °C for 1 min; and a final extension at 72 °C for 10 min.
For COBRA [40], the PCR product was treated with HpyCH4IV (New
England Biolabs Inc., Ipswich, MA, USA) or Taq”l (New England Bio-
labs Inc.). The concentrations of the treated PCR products were
measured using MultiNA (SHIMADZU, Kyoto, Japan). To determine
the methylation states of individual CpG sites in the IRX1/2 genes, the
PCR product was gel-extracted, subcloned into the T-Vector pMD20
(Takara), and sequenced. Methylation sites were visualized and
quality control was performed using the QUMA web-based tool
(http://quma.cdb.riken.jp/) [41].
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2.10. Quantitative gene expression analysis

Total RNA was extracted from tissues and cells using ISOGEN Il
(FUJIFILM Wako Pure Chemical Corp.), following the manufac-
turer's instructions. For reverse transcription-polymerase chain
reaction (RT-PCR), first-strand cDNA was synthesized using total
RNA (1 pg) with random hexamers and ReverTra Ace reverse
transcriptase (TOYOBO Co., Ltd., Osaka, Japan). Quantitative real-
time PCR (qPCR) was performed using SYBR® Green PCR master
mix (Applied Biosystems, Woburn, MA, USA). Data were normal-
ized to GAPDH expression levels. The primer sequences used in this
study are summarized in Supplemental Table 3. Gene expression
levels are presented as fold-change in expression, which was
calculated using the Pfaffl method [42].

2.11. Generation of hiPSC lines with forced IRX1/2 gene expression

We generated an all-in-one PiggyBac transposon vector system
consisting of three units flanked by PiggyBac inverted terminal repeats
[43].First, the gene of interest and EGFP reporter gene were placed under
the control of the doxycycline-inducible bi-directional TRE3G promoter;
CAG promoter drove the expression of Tet-On 3G gene, and PGK pro-
moter drove that of puromycin resistance gene. The human IRX1, IRX2
and C5o0rf38 genes were amplified by PCR using Prime STAR HS DNA
polymerase (TaKaRa) and cloned into the vector. The constructed Pig-
gyBac vectors were co-transfected with pCMV-hyPBase vector. The
plasmid vector was transfected at a 5 pg: 1 ug transposon: transposase
ratio in two hiPSC lines. Approximately 1 x 10° cells were transfected
using the Neon® transfection system (Thermo Fisher Scientific) with
one pulse at 1200 V for 30 ms. Three days after electroporation, the
transfected hiPSCs were selected using puromycin (0.5—1 pg/mL) for 4
days and then were cultured with 1 pg/mL doxycycline. The selected
cells were confirmed to be more than 99% EGFP-positive by FCM. For
neural stem cell differentiation, doxycycline was added to the medium
three days before the start of induction until the end.

2.12. Statistical analysis

Differences between two independent samples were evaluated
using two-tailed Student's t-test. All error bars represent standard
error of the mean. Linear regression and Pearson's product—moment
correlation coefficients were used to analyze the correlations be-
tween the two variables.

2.13. Accession numbers

NCBI GEO: Infinium MethylationEPIC BeadChip data obtained in
this study have been submitted under the accession number
GSE214021. SurePrint G3 human GE microarrays 8 x 60 K data
obtained in this study have been submitted under the accession
number GSE214020.

3. Results
3.1. Assessment of neural differentiation potential of hiPSCs

We first obtained DNA methylation profiles of 32 hiPSC lines and
seven original somatic cell lines using the Illumina Infinium
MethylationEPIC array. For the preprocessing step of the DNA
methylation array data, probes containing SNPs with minor allele
frequency (MAF) > 1% within 10 bp of the methylation site were
deleted. Of the remaining data, those with low quality of detection
were treated as described in section 2.3. Consequently, 806,442
sites were used for the downstream analysis. Using DNA methyl-
ation data, we assessed the pluripotency of hiPSCs using previously
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identified epigenetic markers for pluripotent stem cells [11,28,33].
DNA methylation pattern on the promoters of 17 genes including
OCT4 in all hiPSCs used in this study showed to be pluripotency
(Supplemental Fig. 3A). The pluripotency of hiPSC lines was also
validated by the Epi-pluri-Score based on DNA methylation at two
CpG sites (Supplemental Fig. 3B) [34]. Furthermore, we obtained
gene expression profiles using the Agilent microarray and
confirmed hiPSC pluripotency by high expression levels of plurip-
otency genes and low expression levels of fibroblast genes
(Supplemental Figs. 3C and 3D).

Next, we assessed the neural stem cell differentiation efficiency
of each hiPSC line by measuring the number of PAX6-positive cells
that differentiated using the dual SMAD inhibition protocol (Fig. 1A
and B, and Supplemental Fig. 2). Among the 32 hiPSC lines, differ-
entiation efficiencies were uniformly distributed, ranging from
nearly 0% to 95% (Fig. 1C). The neural differentiation propensity was
observed among the hiPSC lines in this study. At first, we analyzed
the relationship between the neural differentiation ability and
reprogramming methods. The neural differentiation ability of each
hiPSC line was not related to reprogramming methods. In addition,
we also analyzed about gender, origin cell types or passage number.
However, these did not related to the differentiation efficiency
(Supplemental Figs. 2B—2E).

There was no difference in DNA methylation rates on epigenetic
pluripotency markers between hiPSCs with low and high abilities
to differentiate into neural stem cells (Supplemental Fig. 3A). In
addition, there was no correlation between the Epi-Pluri-Score and
neural differentiation efficiency (Supplemental Fig. 3B). The
expression levels of pluripotency marker genes also did not
correlate with neural differentiation efficiency (data not shown).
These results are consistent with previous reports that state the
expression levels of pluripotency markers, such as OCT4 and
NANOG, in undifferentiated hiPSCs were unrelated to their capacity
for subsequent neural differentiation [13,18].

We next performed HCA based on DNA methylation rates of
806,442 CpG sites. The hiPSC lines were divided into three groups
(Clusters 1, 2, and 3; Fig. 1C). We did not find relevance between
neural differentiation ability and these three groups (Fig. 1D). Two-
dimensional visualization of the whole genome DNA methylation
profiles by dimensionality reduction of 806,441 features using
UMAP also did not show a distribution of hiPSC lines dependent on
differentiation efficiency (Fig. 1E). The same analyses were
performed on transcriptome data. HCA using 48,588 transcripts
classified the cells into three cell groups, but no association be-
tween the group and neural differentiation efficiency was found
(Supplemental Figs. 4A and 4B). UAMP using gene expression
profiles also did not show a distribution of hiPSC lines dependent
on differentiation efficiency (Supplemental Fig. 4C).

3.2. Screening of neural differentiation efficiency-related
differentially methylated sites by HSIC Lasso

Recent high-throughput platforms for biological assays provide
a large number of features (p); thus, in most cases, the number of
observations (n) is much less than p (p>>n). Consequently, con-
ventional statistical hypothesis testing and machine learning
cannot adequately assess the similarities and differences between
samples, making it difficult to discover important features. To
address this problem, we used HSIC Lasso, which is a supervised
machine learning-based feature selection method.

Firstly, 60,728 CpG sites exhibiting standard deviations of DNA
methylation rates greater than 0.1 among 32 hiPSC lines were
extracted to obtain a dataset of DNA methylation sites that could
more robustly affect the phenotype (Fig. 2A and Supplemental
Fig. 5A). HCA and UMAP using 60,728 high standard deviation
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Fig. 1. Neural induction and comprehensive DNA methylation analysis (A) Schematic of the dual-SMAD inhibition protocol used for neural differentiation. (B) Representative images
of hiPSCs and induced neural stem cells (NSCs) after immunostaining for the OCT-4 and PAX6, and DAPI staining for DNA. Scale bars represent 200 um. (C) Neural differentiation
efficiency in 32 hiPSC lines and unsupervised hierarchical clustering analysis (HCA) using 806,442 CpG sites. The differentiation efficiency was calculated by the positive rate of
PAX6 cells after neural stem cell induction. (D) Comparisons of neural differentiation efficiency between the three groups separated based on HCA (C). (E) 2D representation of
Uniform Manifold Approximation and Projection (UMAP)-based dimensionality reduction of the top 18 principal components obtained from PCA analysis using 806,442 CpG sites.
The distance between hiPSC lines, indicated by the dots, shows the degree of similarity between the samples as represented by DNA methylation. Each hiPSC sample indicated as a
dot is colored by differentiation efficiency. There was no association between sample location and neural differentiation efficiency.

sites was not able to distinguish hiPSCs with different neural dif-
ferentiation efficiencies (Supplemental Figs. 5B—5D). These results
did not explain the differentiation efficiency of hiPSCs by unsu-
pervised methods. Therefore, we conducted subsequent analysis
using supervised machine learning. The DNA methylation rates of
the 60,728 sites as input features and the differentiation efficiency
as output values were used for HSIC Lasso feature selection. As a
result, 62 CpG sites were extracted (Fig. 2A and Supplemental
Table 4). UMAP with DNA methylation rates of 62 CpG sites
showed that 16 of the 17 hiPSC lines with neural differentiation
efficiencies >60% were located in the third and fourth quadrants,
whereas all other lines were located in the first and second quad-
rants (Fig. 2B), suggesting that distribution of hiPSC lines depended
on differentiation efficiency. In addition, there was a strong corre-
lation between the coordinates on each axis of UMAP and neural
differentiation efficiency (UMAP_1, Pearson's r = —0.84, p < 0.01;
UMAP_2,r = —0.62, p < 0.01), indicating that the 62 CpG sites could
explain the neural differentiation propensity of hiPSCs.

Because HSIC Lasso is designed specifically to select non-
redundant features, features that exhibit similar DNA methylation
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patterns tend to be eliminated except for one [22]. Although the 62
selected features were representative CpG sites describing the
neural differentiation ability of hiPSCs, other sites exhibiting similar
DNA methylation behavior among the hiPSC lines (hereinafter
called “neighboring features”) were not considered. The neigh-
boring features were only mechanically excluded in a
non-redundant feature selection step, but those might include
important features. Therefore, 100 neighboring features of each 62
selected features were extracted for further analysis. Consequently,
a total of 5393 CpG sites, excluding duplicates, were analyzed as
neural differentiation efficiency-related differentially methylated
sites (ND-DMSs) (Fig. 2A and Supplemental Table 4). We examined
whether ND-DMSs were enriched at specific coordinates in the
genome. To reduce the variability of the calculated results owing to
differences in bin ranges, a sliding window approach (1 Mb in each
window, sliding by a step of 100 kb) was used to evaluate the
enrichment of ND-DMSs within each window. Here, the signifi-
cance of the proportion of probes located within the window
among all ND-DMSs relative to that among all probes designed in
the methylation EPIC was calculated using Fisher's exact test.
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Windows with g-values (corrected p-values) less than 0.01 were
extracted, and a series of contiguous windows were defined as a
single peak, resulting in 141 peaks including 249 genes
(Supplemental Table 5). Gene ontology analysis suggested that
these 249 genes consisted of transcription factors associated with
neurogenesis and genes associated with cell—cell adhesion and
signaling (Supplemental Fig. 6).

The highest enrichment peaks were found within the p15.33 of
chromosome 5 (Fig. 2C). We also examined Pearson's correlation
coefficients of DNA methylation between high standard deviation
CpG sites on chromosome 5 in 32 hiPSC lines and detected a
strong correlation of DNA methylation between CpG sites across
a large region of approximately 3 Mbp (chromosome
5:1,891,789—4,851,084), where ND-DMSs were enriched
(Supplemental Fig. 7). The selected features in this region were
particularly frequent in two loci; one included IRX2 and C50rf38
genes and the other included IRX1 gene (Fig. 2D). Visualization of
the DNA methylation levels of each hiPSC line in these regions
showed that DNA methylation fluctuations were particularly
pronounced within the CpG islands around the three genes
(Fig. 2E). For further analyses, we focused on two loci: one was the
IRX2 locus (chr5: 2,737,000—2,760,000) including IRX2 and
C50rf38 genes and the other was the IRX1 locus (chr5:
3,589,000—3,604,000) including IRX1 gene.

3.3. Differentiation efficiency-related DNA methylation variations
on the IRX1/2 genes

Pearson's correlation test for each ND-DMS within the IRX1/2
loci showed a weak correlation between the DNA methylation rate
and neural differentiation efficiency. The CpG site (methylationEPIC
ProbelD; cg04992127), which was located on the promoter of IRX2
and C5o0rf38 genes, showed Pearson's r = 0.34 and p = 0.06 (Fig. 3A
and C). The CpG site (cg04980590), which was located 5 kb up-
stream of IRX1 gene showed Pearson's r = 0.42 and p = 0.02 (Fig. 3B
and C). Interestingly, when hiPSCs were separated by sex for
correlation analysis, female hiPSCs showed a strong positive cor-
relation (cg04992127, r = 0.65, p < 0.01; cg04980590, r = 0.80,
p < 0.01) between DNA methylation rate and differentiation effi-
ciency (Fig. 3D). On the other hand, male hiPSCs did not show
significant correlation (cg04992127, r = —0.33, p = 0.22; cg0498
0590, r = —0.24, p = 0.37). Pearson's correlation test for each probe
designed on CpG islands within the IRX1/2 loci showed a tendency
to correlate significantly only in female hiPSCs when cells were
gender-segregated (Fig. 3E).

We validated the DNA methylation rate at the IRX1/2 loci using
COBRA and sodium bisulfite sequencing analysis. DNA methylation
rates were confirmed to correlate with differentiation efficiency in
female hiPSCs, similar to the methylationEPIC assay (Fig. 3F).
Bisulfite sequencing of the region which contains CpG sites
analyzed by COBRA and methylationEPIC also showed that the
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regions were almost completely DNA methylated in highly differ-
entiated female hiPSCs, whereas, hypo-methylated alleles were
detected in poorly differentiated female hiPSCs (Fig. 3G). In
contrast, male hiPSCs were hypermethylated with both high and
low neural differentiation abilities (Fig. 3F and G).

3.4. Forced expression of IRX1, IRX2 and C50rf38 genes inhibits
neural stem cell differentiation

Next, we investigate whether the DNA methylation state of IRX1,
IRX2 and C5o0rf38 genes affects their expression. In Pearson's cor-
relation tests between the DNA methylation array and gene
expression array, DNA methylation rates were negatively correlated
with gene expression levels for IRX2 (r = —0.93, p < 0.01), C50rf38
(r = =057, p < 0.01), and IRX1 (r = —0.46, p = 0.01) genes
(Fig. 4A—C). Similarly, in a correlation analysis of DNA methylation,
quantified by COBRA, and gene expression, calculated by RT-qPCR
for nine hiPSC lines, gene expression levels were inversely corre-
lated with DNA methylation rates for three genes (Supplemental
Fig. 8). These results suggest that the expression of the three
genes induced by DNA hypomethylation reduces differentiation
efficiency.

To test this hypothesis, we performed experiments in which the
three genes were forced to be expressed in hiPSCs. The three genes
(IRX2, C501f38 or IRX1) and EGFP under the control of the tetracy-
cline operator were introduced into hiPSCs (Fig. 4D). After
neomycin selection and culture with doxycycline (1 pg/mL), we
confirmed that more than 99% of the cells were EGFP-positive by
flow cytometry (Fig. 4E and Supplemental Fig. 9). Non-transduced
hiPSCs did not show reduced differentiation efficiency. On the
other hand, doxycycline-inducible forced expression of the target
genes IRX2, C50rf38 or IRX1 reduced the differentiation efficiency by
16% and 48%, 63% and 83%, and 55% and 62% in female and male
hiPSCs, respectively (Fig. 4F). Interestingly, overexpression of the
three genes suppressed neural differentiation ability not only in
female hiPSCs but also in male hiPSCs. Some male hiPSC lines have
poor differentiation abilities, even when expression of the three
genes was suppressed by DNA hypermethylation. In male hiPSC
lines, a downstream cascade of the three genes may be involved in
the inhibition of neural differentiation. These findings indicate that
the induction of IRX1, IRX2 and C50rf38 genes by aberrant DNA
methylation in the corresponding region is one of the factors
influencing differentiation propensity in hiPSCs.

4. Discussion

In this study, we identified biomarkers that predict the effi-
ciency of hiPSC differentiation into neural stem cells prior to
induction by comparing the DNA methylation profiles of undiffer-
entiated hiPSC lines. We found that DNA methylation fluctuations
were dominant in a broad region of chromosome 5, where IRX1,

Fig. 3. Analysis of DNA methylation within IRX2, C501f38 and IRX1 loci. (A and B) Overview of IRX2, C50rf38 (A) and IRX1 (B) loci. Exon and intron structures of the genes are shown
as blue boxes and lines. CpG islands (CGI) are shown as green boxes and are numbered in correspondence to (E). Vertical lines indicate the position of the designed probes in
methylationEPIC, with ND-DMSs colored red and the others in gray. Circles represent position of CpG sites analyzed by bisulfite sequencing analysis shown in (G). Yellow circles
indicate CpG sites analyzed by COBRA shown in (F). Red circles indicate CpG sites shown in (C) and (D). (C) Scatter plot of DNA methylation levels in the CpG sites (cg04992127 and
cg04980590) associated with IRX2, C50rf38 and IRX1 genes and neural differentiation efficiency for hiPSC lines (n = 32). Dashed line indicates linear regression line. The results of
the Pearson's correlation test are shown in the panels. (D) Scatter plot of DNA methylation levels in the CpG sites (cg04992127 and cg04980590) and neural differentiation efficiency
for gender-segregated hiPSC lines (n = 16 for females and n = 16 for males). Dashed line indicates linear regression line. The results of the Pearson'’s correlation test are shown in the
panels. (E) Comparisons of the significance of Pearson's correlation between DNA methylation and neural differentiation efficiency for each ND-DMS for different groupings by
gender. (F) DNA methylation levels measured by COBRA for 7 female hiPSCs and 2 male hiPSCs. (left) Average DNA methylation rates of the two very close neighboring CpG sites that
are cleaved by Taql are shown in (A). (right) DNA methylation rates of the CpG sites that are cleaved by HpyCH4IV are shown in (B). The data shown represent the mean + standard
error (n = 3). (G) Bisulfite sequencing analysis of the genomic regions shown in (A) and (B). Open and closed circles indicate unmethylated and methylated sites, respectively. Each
hiPSC line used in this analysis is listed above the plot in the following order; gender (2: female, d: male), differentiation efficiency, and line name.
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IRX2 and C5orf38 were located, and their DNA methylation rates
were strongly correlated with the neural differentiation efficiency
in female hiPSCs. Human iPS cell-derived neural stem cells have
tremendous potential as a tool for in vitro modeling of nervous
system development and disease, and for the treatment of neuro-
degenerative diseases and nervous system injuries. In addition, the
selection of a suitable hiPSCs is important for reproducibility and
safety. Our findings suggest that DNA methylation levels in the
IRX1/2 loci can predict the ability of undifferentiated hiPSCs to
differentiate into neural stem cells. Furthermore, the reproduc-
ibility of the evaluation of DNA methylation levels in this region by
a simple quantitative method, such as COBRA, also supports its
usefulness as a biomarker. In the present study, we used the
monolayer dual-SMAD inhibition protocol to assess the ability of
each hiPSC line because it is the basic and by far the most popular
method for obtaining neural stem cells from PSCs [44]. However,
many methods of inducing neural differentiation are known. The
other induction methods that can improve low differentiation ef-
ficiency may correct abnormal hypomethylation of IRX1/2 gene
region.

The Iroquois homeobox (IRX) gene family contains homeobox
domains and plays multiple roles during patterning processes in
vertebrate embryos [45,46]. IRX1 is known as a tumor suppressor in
humans rather than a regulator of neurogenesis [47—49]. The
function of C50rf38 remains unclear. However, forced expression of
IRX1 and C5o0rf38 in undifferentiated hiPSCs strongly inhibited
neural differentiation in this study. This is the first report to show
that these genes affect the differentiation of hiPSCs.

IRX2 was shown to be upregulated in the later stages of neural
differentiation of human embryonic stem cells (hESCs) but not in
early stages of commitment [50]. In addition, knockdown experi-
ments using hESCs have shown that suppression of IRX2 impairs
differentiation into neural stem cells [51]. In the present study, we
showed that forced expression of IRX2 in undifferentiated hiPSCs
impaired their ability to differentiate into neural stem cells. This
evidence suggests that the IRX2 gene is required for neural stem cell
maturation, but its expression in the early stages suppresses neural
differentiation.

Forced expression of IRX1, IRX2 and C5o0rf38 genes in female
hiPSCs that showed high differentiation led to decreased neural
differentiation efficiency. These results indicated that DNA
methylation in the IRX1/2 loci is a major regulator, and aberrant
expression of IRX1, IRX2 and C5orf38 due to DNA methylation
variation in this region was found to be responsible for neural
differentiation propensity in female hiPSCs. On the other hand,
some male hiPSCs showed low differentiation, even though IRX1,
IRX2 and C5orf38 genes were repressed by DNA methylation. We
did not find a prominent biomarker, such as the IRX1/2 loci, in the
dataset of the 16 male hiPSC lines using HSIC Lasso. However,
forced expression of IRX1, IRX2 and C50rf38 genes in male hiPSCs, in
which the three genes were repressed by DNA methylation and that
showed high differentiation, led to decreased neural differentiation
efficiency. These facts suggested that there may be random per-
turbations downstream of the networks regulated by the three
genes. Another possibility is that there may be a fundamental
distinction in the regulation of neurogenesis between males and
females.

We identified other ND-DMSs besides the IRX1/2 loci by HSIC
Laaso. These CpG sites were enriched in genes involved in neuro-
genesis and cell communication, which may constitute a network
that underlies neural differentiation propensity. In future studies,
we will explore in detail the epigenetic and transcriptional net-
works associated with the inhibition of neural differentiation to
determine the cause of neural differentiation propensity for both
sex. It also remains to be explored whether the ND-DMSs can affect
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the subsequent induction of differentiation into neurons and glial
cells.

In conclusion, we identified the IRX1/2 loci as a DNA methylation
biomarker that predicts the differentiation of human iPSCs from an
undifferentiated state to neural stem cells, providing an epigenetic
basis for understanding neural differentiation propensity.
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