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Mesenchymal stem cells (MSCs) have differentiation and immunomodulatory properties
that make them interesting tools for the treatment of degenerative disorders, allograft
rejection, or inflammatory and autoimmune diseases. Biological properties of MSCs can be
modulated by the inflammatory microenvironment they face at the sites of injury or inflam-
mation. Indeed, MSCs do not constitutively exert their immunomodulating properties but
have to be primed by inflammatory mediators released from immune cells and inflamed
tissue. A polarization process, mediated byToll-like receptors (TLRs), toward either an anti-
inflammatory or a pro-inflammatory phenotype has been described for MSCs. TLRs have
been linked to allograft rejection and the perpetuation of chronic inflammatory diseases
(e.g., Crohn’s disease, rheumatoid arthritis) through the recognition of conserved pathogen-
derived components or endogenous ligands (danger signals) produced upon injury. Interest
in understanding the effects of TLR activation on MSCs has greatly increased in the last
few years since MSCs will likely encounter TLR ligands at sites of injury, and it has been
proven that the activation of TLRs in MSCs can modulate their function and therapeutic
effect.
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ADULT MESENCHYMAL STEM CELLS
Mesenchymal stem cells (MSCs) have emerged in recent years as
therapeutic tools based on three important features: (i) differ-
entiation potential, (ii) capacity to modulate immune responses,
and (iii) low immunogenicity, which would may allow allogeneic
treatments.

Mesenchymal stem cells have been isolated from multiple tis-
sues of mesodermal origin, such as bone marrow (Friedenstein
et al., 1976), adipose tissue (Zuk et al., 2002), umbilical cord
blood (Romanov et al., 2003), placenta (Fukuchi et al., 2004),
synovium (De Bari et al., 2001), or dental pulp (Gronthos et al.,
2000), among others. Despite significant efforts, no exclusive sur-
face markers have been identified for MSCs. To date, MSCs are
defined according to the three criteria of the International Soci-
ety for Cellular Therapy (Dominici et al., 2006): (a) Adhesion to
plastic : MSCs can be isolated by adhesion to plastic and expanded
in vitro in serum containing media with no additional require-
ments for growth factors or cytokines; (b) Expression of a specific
combination of surface markers: MSCs are negative for CD45,
CD34, CD14, or CD11b, CD79α, or CD19 and HLA-DR, and
positive for a variety of other markers, including CD73, CD90,
and CD105; (c) Differentiation potential : MSCs can be identified
in vitro by their ability to differentiate into mesenchymal-type
cells (trilineage differentiation into adipocytes, osteoblasts, and
chondrocytes; Pittenger et al., 1999). Although sharing these main
characteristics, differences between MSCs from different sources
can be found. The secretome differs between cell types, and
bone marrow-derived MSCs (BM-MSCs) and adipose-derived
MSCs (AD-MSCs), for instance, show specific RNA and protein

expression profiles (De Ugarte et al., 2003; Noël et al., 2008;
Skalnikova et al., 2011).

In homeostatic conditions, allogeneic cells are rejected by
the immune system upon recognition of their foreign human
leukocyte antigen (HLA). Allogeneic cells can also activate T
cells through an indirect pathway where their HLA antigens are
presented by professional antigen-presenting cells (APC). MSCs
express low levels of cell surface HLA class I molecules whereas
HLA class II, CD40, CD80, and CD86 are not detectable on the cell
surface which theoretically opens the possibility of allogeneic treat-
ments without the requirement of suppression of host immunity.
Stimulation with interferon (IFN)γ has been shown to increase
both class I and class II molecules. However, MSCs do not express
classic co-stimulatory molecules such as CD40, CD80, CD86, even
after stimulation in an inflammatory milieu. These features may
allow MSCs to avoid or delay immune recognition (Le Blanc et al.,
2003a,b; Majumdar et al., 2003; Rasmusson et al., 2003; McIntosh
et al., 2006; Chamberlain et al., 2007), although this is a question
that needs to be further investigated in both experimental animal
models and clinical trials (Griffin et al., 2010).

Mesenchymal stem cells have immunomodulating properties
and inhibit function of immune cells (Bartholomew et al., 2002;
Krampera et al., 2003; Zhang et al., 2004; Beyth et al., 2005; Glen-
nie et al., 2005; Puissant et al., 2005; Nauta et al., 2006; Yañez
et al., 2006; Cui et al., 2007; Chiesa et al., 2011; DelaRosa et al.,
2012). The specific molecular and cellular mechanisms involved
in the immunoregulatory activity of MSCs are still under inves-
tigation and remain poorly understood. There is evidence that
the capability to modulate immune responses rely on both cell
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contact-dependent mechanisms (i.e., through Jagged1–Notch1
interactions; Liotta et al., 2008) and paracrine effects through
the release of soluble factors (reviewed by Doorn et al., 2012). A
broad panel of soluble factors have been involved including hepa-
tocyte growth factor (HGF), prostanglandin-E2 (PGE2), trans-
forming growth factor (TGF)-β1, indoleamine 2,3-dioxygenase
(IDO), nitric oxide (NO), interleukin (IL)-10, heme oxygenase-1
(HO-1), and HLA-G5 (Krampera et al., 2003; Beyth et al., 2005;
Puissant et al., 2005; Yañez et al., 2006; Chabannes et al., 2007;
Cui et al., 2007; Oh et al., 2007; Selmani et al., 2008; DelaRosa
et al., 2009). Differences in the mechanisms of immunomodula-
tion employed by MSCs from different species have been reported.
Whereas IDO activity appears to be a key player in human MSC-
mediated immunomodulation, mouse MSCs do not express IDO
and seem to use NO as the main mediator (DelaRosa et al., 2009;
Ren et al., 2009; Meisel et al., 2011). Interestingly, MSCs may also
modulate immune responses through the generation of regulatory
T cells (Tregs; Krampera et al., 2003; Zhang et al., 2004; Maccario
et al., 2005; Nauta et al., 2006; Gonzalez-Rey et al., 2010). Whether
this MSC-mediated Treg induction is due to an expansion of pre-
existing Tregs, to a de novo induction or to a combination of both
needs to be further explored.

Importantly, MSCs do not constitutively exert their
immunomodulating properties but have to be“primed”by inflam-
matory mediators released from activated immune cells, such as
IFNγ, IL1β, and TNFα (Krampera et al., 2006; Prasanna et al.,
2010). Also, the functionality of MSCs can be modulated by other
inflammatory mediators such as APRIL and BAFF (Zonca et al.,
2012). The thinking that MSCs are only anti-proliferative and
immune-inhibitory on immune cells has been recently challenged
by Waterman et al. (2010) who reported a “licensing” process of
MSCs toward either anti-inflammatory or pro-inflammatory phe-
notypes, depending on the toll-like receptor (TLR) ligand used for
activation. For extensive review on the concept of MSC “licensing”
see the excellent review by Krampera (2011).

The biological characteristics mentioned above make MSCs
an interesting tool for cellular therapy. This is supported by
a number of studies in experimental models of inflammatory
diseases demonstrating an efficient protection against allograft
rejection, graft-versus-host disease, experimental autoimmune
encephalomyelitis, collagen-induced arthritis, sepsis, and autoim-
mune myocarditis (Le Blanc et al., 2004; Zappia et al., 2005;
Ohnishi et al., 2007; González et al., 2009a,b; Gonzalez-Rey et al.,
2009; Németh et al., 2009). As indicated previously, TLRs have
been implicated in the pathology of graft transplantation and
inflammatory diseases (Ishihara et al., 2006; Yamamoto-Furusho
and Podolsky, 2007) and therefore may modulate MSC function
in vivo (DelaRosa and Lombardo, 2010; Krampera, 2011).

TOLL-LIKE RECEPTORS
Innate immunity relies on the existence of a mechanism of
recognition that identifies conserved molecular structures, known
as pathogen associated molecular patterns (PAMPs), broadly
expressed by different groups of microorganisms. These PAMPs
include lipids, lipoproteins, carbohydrates, and nucleic acids
(Akira et al., 2006). The recognition of these PAMPs is medi-
ated by a set of germ line-encoded receptors known as pattern

recognition receptors (PRRs). This recognition enables eukary-
otic hosts to reliably detect a microbial infection, activating a
number of signaling pathways that culminate in the induction
of pro-inflammatory cytokines, chemokines, and inflammatory
mediators. PRRs include TLRs, Retinoic acid-inducible gene I
(RIG-I)-like receptors (RLRs) and NOD-like receptors (NLRs).
PRRs, through their modulation of innate and adaptive immune
responses, are essential players in the battle for tolerance or rejec-
tion of transplanted organs (Methe et al., 2004; Penack et al.,
2010). The molecular and cellular mechanisms involved remain
poorly understood and represent an emerging field of research
with potential therapeutic implications.

Toll-like receptors are type I membrane proteins expressed by
immune and non-immune cells (i.e., monocytes, macrophages,
endothelial cells) either in the plasma membrane or intracellularly
(endosomes). To date, 11 human and 13 mouse TLRs have been
identified that recognize distinct microbial products from bacte-
ria, viruses, protozoa, and fungi (Moresco et al., 2011). In addition,
the recognition of endogenous ligands by TLRs is thought to
have an important role in the regulation of inflammation, both
in infectious and non-infectious diseases. A number of endoge-
nous ligands have been identified, including heat shock protein
(HSP) 60, HSP 70 (Asea et al., 2000; Oashi et al., 2000), heparan
sulfate (Johnson et al., 2002), hyaluronan (Termeer et al., 2002),
fibronectin extra domain A (Okamura et al., 2001), uric acid
(Liu-Bryan et al., 2005), oxidized LDL (Miller et al., 2003), intra-
cellular components of fragmented cells (Boule et al., 2004; Barrat
et al., 2005), myeloid-related proteins-8 and 14 (Vogl et al., 2007),
eosinophil-derived neurotoxin (Yang et al., 2008), and human
defensin-3 (Funderburg et al., 2007). As these ligands are accessi-
ble to TLRs in the setting of injury or non-infectious threat, they
have been called “danger signals.”

Toll-like receptor activation triggers intracellular signaling
pathways that lead to the induction of inflammatory cytokines,
type I IFNs, and upregulation of co-stimulatory molecules lead-
ing to the activation of the adaptive immune response. Ligand
recognition results in the recruitment of intracellular adaptor pro-
teins, including myeloid-differentiation primary-response protein
88 (MyD88), shared by all TLRs except TLR3, and Toll/IL-1R
domain-containing adaptor-inducing IFNβ (Trif), employed by
TLR3 and TLR4 (O’Neill and Bowie, 2007). Recruitment of
MyD88 leads to the activation of the mitogen-activated pro-
tein (MAP)-kinases (MAPKs) and nuclear translocation of the
transcription factor nuclear factor-κB (NF-κB; MyD88-dependent
pathway ; Hoebe et al., 2006; Meylan et al., 2006). The activation
of these signaling pathways is absent in MyD88-deficient mice in
response to all TLRs, except TLR4 and TLR3. This is due to the
activation of an alternative pathway triggered by Trif (MyD88-
independent pathway) that culminates in the activation of NF-κB,
MAPKs, and the transcription factors interferon-responsive fac-
tors (IRFs), whose are responsible for induction of type I IFNs,
in particular IFNβ (Honda et al., 2006; Stetson and Medzhitov,
2006). Besides MyD88 and Trif, two other adaptor proteins have
been described: TIR-domain-containing adaptor protein (TIRAP,
required for MyD88-dependent signaling by TLR2 and TLR4),
and Trif-related adaptor molecule (TRAM, required for Trif-
dependent signaling through TLR4, but not TLR3; Takeda and
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Akira, 2005; O’Neill and Bowie, 2007). Specific adaptors used by
different TLRs combined with cell type-specific signaling path-
ways determine differential responses: inflammatory response, cell
differentiation, proliferation, or apoptosis.

MODULATION OF MSCs THROUGH TLRs
Expression of TLR 1, 2, 3, 4, 5, and 6 has been reported in human
and mice AD-MSCs and BM-MSCs, human umbilical cord blood
MSCs (UCB-MSCs), human Wharton jelly’s MSCs (WJ-MSCs),
human dental pulp (DP), and dental follicle (DF)-MSCs (van den
Berk et al., 2009; DelaRosa and Lombardo, 2010; Kim et al., 2010;
Raicevic et al., 2011; Tomic et al., 2011). Expression and function
of TLRs can be modulated in different ways in MSCs. Hypoxia
significantly increased mRNA of TLR1, 2, 5, 9, and 10 (Hwa Cho
et al., 2010). Infection of MSCs with baculoviral vectors upregu-
lated expression of TLR3 and activated TLR3 signaling pathway
(Chen et al., 2009). Interestingly, the inflammatory environment
may also modulate the pattern and function of TLRs expressed
by MSCs. When cultured in the presence of an “inflammatory
cocktail” (made with IFNα, IFNγ, TNFα, and IL1β) expression
of TLR2, 3, and 4 was increased, while TLR6 was downregulated
(Raicevic et al., 2010). This modulatory effect seems to depend on
the origin of MSCs as differences between BM, AD, and WJ-MSCs
was found recently (Raicevic et al., 2011). Fatty acids may also
modulate TLR signaling in ob/ob mouse AD-MSCs. Stearidonic
and eicosapentainoic acids inhibited LPS-mediated upregulation
of TLR2 through a mechanism that involves NF-κB but not ERK
signaling pathway (Hsueh et al., 2011).

EFFECT OF TLRs ON DIFFERENTIATION OF MSCs
Adipogenic differentiation of human MSCs does not seem to
be affected by TLRs (Hwa Cho et al., 2006; Liotta et al., 2008;
Lombardo et al., 2009; Kim et al., 2010; Raicevic et al., 2010).
Chondrogenic differentiation of human BM-MSCs has not been
reported to be altered by activation through LPS, PolyIC, or R848
(Liotta et al., 2008), but was increased by TLR2 activation on
human UCB-MSCs (Kim et al., 2010). The osteogenic differen-
tiation seems to be enhanced in human BM-MSCs, AD-MSCs,
and UCB-MSCs after LPS, PGN, or Poly IC activation (Hwa Cho
et al., 2006; Mo et al., 2008; Lombardo et al., 2009; Kim et al.,
2010), while CpG oligodeoxynucleotides (CpG ODN), have been
reported to inhibit it on human AD-MSCs and BM-MSCs (Hwa
Cho et al., 2006; Pevsner-Fischer et al., 2007; Liotta et al., 2008;
Lombardo et al., 2009; Nørgaard et al., 2010). It has been reported
recently that TNFα and TLRs activate osteogenic differentiation
of AD-MSC via upregulation of transcriptional coactivator with
PDZ-binding motif (TAZ; Hwa Cho et al., 2010).

On the other hand in mouse BM-MSCs, TLR2 was found
to reduce differentiation into the three mesodermal lineages
(Pevsner-Fischer et al., 2007). Interestingly, some reports link
TLR signaling pathways with MSC multipotency. MyD88-deficient
mouse BM-MSCs, when cultured in the appropriate differenti-
ation media without additional stimulation with TLR ligands,
effectively differentiated into adipocytes but failed to differentiate
into osteocytes and chondrocytes (Pevsner-Fischer et al., 2007).
However, TLR4-deficient mouse BM-MSCs showed higher dif-
ferentiation rates compared to wild-type BM-MSCs (Wang et al.,

2010). Nevertheless, TLR2-deficient mouse BM-MSCs failed to
accumulate vacuoles in differentiated adipocytes, suggesting some
impairment in the terminal differentiation process (Abarbanell
et al., 2010). Therefore, the role of TLR signaling pathways in
MSC multipotency needs to be further clarified.

EFFECT OF TLRs ON PROLIFERATION AND MIGRATION OF MSCs
So far, most of the studies have not found effects of TLR activa-
tion on human MSC proliferation. Only Hwa Cho et al. (2006)
reported that TLR9 activation of AD-MSCs inhibited their prolif-
eration. Interestingly, the use of TLR-deficient mouse BM-MSCs
provided some insight on the role of TLRs on proliferation as
TLR4-deficient BM-MSCs showed higher proliferation rates and
TLR2-deficient showed reduced proliferation compared to wild-
type MSCs (Abarbanell et al., 2010; Wang et al., 2010). In addi-
tion, TLR2 and TLR4 activation promoted proliferation of mouse
BM-MSCs (Pevsner-Fischer et al., 2007; Wang et al., 2009).

Migration to the appropriate site of injury is believed to play
a key role in the therapeutic efficacy of MSCs. Tomchuck et al.
(2008) demonstrated that TLR3 activation drives the migration
of human BM-MSCs in vitro. However, other reports found that
TLR activation either impaired or had no effect on mouse BM-
MSC migration (Pevsner-Fischer et al., 2007; Lei et al., 2011).
In addition, TLR9 activation enhanced human BM-MSC inva-
sion through a mechanism mediated, at least in part, by increased
expression of MMP-13 (Nurmenniemi et al., 2010).

EFFECT OF TLRs ON INTERACTION OF MSCs WITH IMMUNE CELLS
Mesenchymal stem cells have been shown to possess the capacity
to inhibit proliferation of immune cells upon mitogenic or allo-
geneic activation. In recent years, inconsistent results have been
reported regarding the role of TLR ligands on MSCs capacity
to modulate immune responses. We and others found no sig-
nificant effect of TLR activation on human AD-MSC or mouse
BM-MSC-mediated immunosuppression (Pevsner-Fischer et al.,
2007; Lombardo et al., 2009). However, other groups have reported
that TLR activation may modulate the immunosuppressive prop-
erties of human BM-MSCs, although in very different ways. Liotta
et al. (2008) found that TLR3 and TLR4 activation reduce the
inhibitory activity of human BM-MSCs on T cell proliferation
without influencing IDO activity or PGE2 levels, but downregu-
lated expression of Jagged1, suggesting that the Notch signaling
pathway mediates cell contact-mediated immunosuppression by
MSCs. In contrast, Opitz et al. (2009) reported that TLR3 and
TLR4 engagement enhances the immunosuppressive properties
of human BM-MSCs through the indirect induction of IDO1.
Induction of IDO1 involved an autocrine IFNβ signaling loop,
which was dependent on protein kinase R (PKR) and independent
of IFNγ. The role of IDO seems to be species dependent as Lanz
et al. (2010) reported recently that IDO activity is not required for
mouse BM-MSC immunosuppressive capacity both in vitro and
in vivo, using IDO-deficient MSCs. Interestingly, TLR2 activation
has been reported to impair the capacity of mouse BM-MSCs to
induce the generation of regulatory T cells (Lei et al., 2011). Adding
more uncertainty, Raicevic et al. (2010) reported that preactiva-
tion of human BM-MSCs with TLR3 or TLR4 ligands reduced
production of HGF and PGE2 which impaired their capacity to
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inhibit lymphocyte proliferation. However, these authors found in
a later report, that triggering of TLR3 or TLR4 on human MSCs
from BM, AD, and Wharton jelly´s did not affect their immuno-
suppressive capacity (Raicevic et al., 2011). Dental pulp (DP) and
Dental follicle (DF)-MSCs can also modulate lymphocyte prolif-
eration in vitro, which is potentiated by TLR3 activation in both
cell types, whereas TLR4 activation increased the suppressive role
of DF-MSCs and reduced it in DP-MSCs (Tomic et al., 2011).
Immunomodulating properties of human umbilical cord blood
(UCB-MSCs) were not affected by prestimulation with TLR4 or
TLR5 ligands (van den Berk et al., 2009).

Toll-like receptors may polarize MSCs toward pro-
inflammatory and antigen-presenting-like phenotypes leading to
release of pro-inflammatory cytokines and chemokines capable of
enhancing recruitment of inflammatory immune cells (Romieu-
Mourez et al., 2009). In line with this, a“licensing”process of MSCs
toward either pro-inflammatory (MSC1) or anti-inflammatory
(MSC2) phenotypes, which depends on the ligand concentration,
timing, and kinetics of activation, has been proposed (Waterman
et al., 2010). TLR4 priming results in upregulation of mostly pro-
inflammatory cytokines such as IL6 or IL8 (MSC1 phenotype),
while TLR3 priming results in production of anti-inflammatory
molecules such as IL4, IDO, or PGE2 (MSC2 phenotype). TLR3-
activated MSCs maintained the capacity to inhibit lymphocyte
proliferation in vitro, while TLR4-primed MSCs activated T lym-
phocytes. As suggested by the authors, the polarizing effects of
TLR priming may also explain the contradictory results obtained
so far on the effects of TLRs on immunomodulation by MSCs.

There are other immune functions mediated by MSCs which
have been found to be modulated by TLRs. BM-MSCs and parotid-
derived MSCs have been shown to support neutrophil survival
and chemotaxis in a ratio dependent manner through the release
of soluble factors (Raffaghello et al., 2008; Brandau et al., 2010).
Recently, Cassatella and colleagues found that TLR3 and TLR4
ligands enhanced the capacity of MSCs to delay neutrophil apop-
tosis through the induction of IL6, IFNγ, and GM-CSF. Moreover,
TLR activation of BM-MSCs strongly increased respiratory burst
of neutrophils. This supportive role on neutrophil function was
confirmed using MSCs from thymus, spleen, or adipose tissue
(Cassatella et al., 2011).

TLR2 and TLR4 mediate the capacity of human BM-MSCs
to support short-term expansion of umbilical cord CD34+

cells, promoting myeloid-differentiation through the induction of
hematopoietic growth factors (Wang et al., 2012). Moreover, it has
been recently reported that resident mouse BM-MSCs, by produc-
ing MCP-1 in response to LPS, induce monocyte emigration from
bone marrow into circulation to confront potential infections (Shi
et al., 2011). These findings suggest an important role for TLRs in
the modulation of the immune system by resident MSCs since
BM-MSCs could function as sensors of circulating TLR ligands
and determine, by expressing MCP-1, the frequency of circulating
inflammatory Ly6Chigh, CCR2+ monocytes.

EFFECT OF TLRs ON THERAPEUTIC EFFECTS OF MSCs IN VIVO
Several studies have reported beneficial effects of MSC treatment
in animal models of sepsis or LPS-induced lung injury (in which
MSCs were administered within 1 h following LPS challenge; Mei

et al., 2007, 2010; Xu et al., 2007; Gonzalez-Rey et al., 2009; Németh
et al., 2009, 2010). Based on the therapeutic benefit observed in
these experimental models, it can be interpreted that high concen-
trations of LPS did not polarize MSCs toward a pro-inflammatory
phenotype, in apparent contradiction to the reported polarizing
process observed in vitro (Waterman et al., 2010). However, Water-
man et al. (2010) reported that MSC1 and MSC2 cells were used
in mouse models of lung injury and MSC1 aggravated the inflam-
matory injury, whereas MSC2 improved it, when compared to
unstimulated BM-MSCs.

Conflicting results have been reported regarding the modula-
tion of MSC-mediated cardiac protection by TLRs. LPS precon-
ditioning of mouse BM-MSCs can, when compared to uncon-
ditioned MSCs, improve their survival and engraftment and
increases the release of vascular endothelial growth factor (VEGF)
in a model of rat acute myocardial infarction leading to enhanced
therapeutic effects (Yao et al., 2009). These effects can be medi-
ated through a TLR4-mediated protection of MSCs from apop-
tosis induced by oxidative stress (Wang et al., 2009). In contrast,
TLR4-deficient mouse BM-MSCs had increased cardiac protec-
tion which was mediated by activated STAT3 signaling, lead-
ing to expression of higher levels of angiogenic factors such as
VEGF and HGF (Wang et al., 2010). TLR2 activity also seems
to be involved in cardioprotective effects by mouse BM-MSCs
after ischemia/reperfusion injury. TLR2-deficient mouse BM-
MSC showed impaired capacity to recover heart function, which
correlates with reduced production of VEGF in hearts treated with
TLR2-deficient MSCs compared to wild-type controls (Abarbanell
et al., 2010). Therefore, further investigation in experimental ani-
mal models is required to clarify the role of TLRs in the licensing
process as well as in the therapeutic potential of MSCs in vivo.

CONCLUDING REMARKS
Despite discrepancies and inconsistencies reported by authors,
some general conclusions can be made: (a) TLR expression: MSCs
from different sources express TLRs at the mRNA level, although
expression at a protein level seems to be low (i.e., compared to
monocytes), and often makes difficult detection by flow cytometry,
(b) MSC differentiation: in human MSCs, adipogenic differen-
tiation does not seem to be affected by TLRs but osteogenic
differentiation seems to be enhanced by TLR2, TLR3, or TLR4,
while inhibited by TLR9. In mouse MSCs, TLR signaling might be
linked to multipotency of MSCs as MyD88-deficient BM-MSCs
failed to efficiently differentiate into chodrogenic and osteogenic
lineage, (c) MSC proliferation: in human MSCs, only TLR9 acti-
vation has been reported to affect AD-MSC proliferation, (d)
immunomodulatory capacity of MSCs: contradictory results have
been reported that can be explained, at least in part, by the
experimental conditions and the source of MSCs. The fact that
differences in the experimental settings may lead MSCs to behave
differently, suggests that MSCs can adjust their response in a
dynamic way to the specific environmental conditions they face. In
this regard,Waterman et al. (2010) challenged the concept of MSCs
being always immunosuppressive and suggested that a polarizing
process toward a pro-inflammatory or anti-inflammatory phe-
notype may occur depending on the TLR activated. However,
the anti-inflammatory and therapeutic effects reported in mouse
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models of sepsis and lung injury, where MSCs were exposed to
high levels of LPS, seems to be in apparent contradiction to the
polarizing process described in vitro. Therefore, the in vivo mod-
ulation of MSC biology by TLR ligands deserves to be further
investigated and clarified.

The inflammatory conditions MSCs face when adminis-
tered in vivo is now believed to play a fundamental role in
their successful therapeutic use. Research on modulation of
MSCs by TLRs can strongly contribute to better understand
the immunomodulating properties of MSCs under different
inflammatory environments and to characterize the features an

inflammatory milieu should have for MSCs to best modulate
immune reactions (i.e., composition, ratio or activity of immune
cells, cytokines or other inflammatory mediators such as TLR
ligands).
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