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Abstract

Metabolomics is becoming feasible for population-scale studies of human disease. In this

review, we survey epidemiological studies that leverage metabolomics and multi-omics

to gain insight into disease mechanisms. We outline key practical, technological and ana-

lytical limitations while also highlighting recent successes in integrating these data. The

use of multi-omics to infer reaction rates is discussed as a potential future direction for

metabolomics research, as a means of identifying biomarkers as well as inferring causal-

ity. Furthermore, we highlight established analysis approaches as well as simulation-

based methods currently used in single- and multi-cell levels in systems biology.
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Introduction

Biological research has traditionally been investigated

through reductionist approaches, in part due to limitations

in both experimental measurement and analytical sophisti-

cation.1 The recent development of high-throughput sys-

tems-wide technologies has led to a dramatic increase in the

number of quantifiable properties at the organismal, cellular

and molecular levels.2 Whereas reductionist approaches can

be applied to the data generated from these technological in-

novations, doing so either ignores potentially important pat-

terns in the data or incurs inefficiency in the application of

such technologies.3,4 Research questions answered using

high-throughput technologies have required a parallel con-

ceptual shift in data analysis. This transition from the
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common manual analysis of single measurements and sim-

ple mixtures to the probing of systems-level behaviour using

more sophisticated computational and statistical methods

characterizes modern biology.

There is thus a complex interaction at play between

modern systems-level technologies, epidemiology and ana-

lytical methods. Many biological systems contain large

numbers of relevant variables (typically hundreds to mil-

lions) and harbour no small amount of sampling and non-

biological variation. Therefore, to gather enough observa-

tions per variable and attain adequate study power, there

is a need for the population-scale study of these systems,

and epidemiological approaches have a substantial role to

play. However, rigorous epidemiological application pla-

ces extraordinary demands on systems-level technologies,

primarily in terms of maximal throughput, accuracy and

cost-effectiveness.

Sixty years after A.T. James and A.J.P. Martin pioneered

the use of gas chromatography and mass spectrometry to

separate and detect individual volatile fatty acids,5 and 40

years after Hoult et al.’s measurements of tissue metabolites

using 31P nuclear magnetic resonance spectroscopy,6 the

many current forms of mass spectrometry (MS) and nuclear

magnetic resonance (NMR) spectroscopy are routinely and

widely used to measure far greater numbers of identifiable

metabolites across much longer time periods and at far less

cost.7,8 MS techniques based on flow injection are now cap-

able of measuring thousands of samples per day while meas-

uring a broad swathe of metabolites.9–11 In general, MS-

based analyses are subject to a number of limitations.

Certain metabolites cannot be captured because of to the

physical processes involved, and identification of spectra

utilizes libraries of spectral standards, which can be particu-

larly problematic to do in a rapid, automated and accurate

way if spectra contain noise. Most MS methods are also de-

structive in nature, given the requirement for separation,

ionization, fragmentation and acceleration of the sample’s

components through a magnetic field. NMR spectrometry is

a complementary approach which compensates for some of

MS’s limitations. Modern NMR metabolomics platforms

can perform high throughput, accurate measurement of

standard biomarkers at less cost than MS;12 however cover-

age of metabolites is not as complete, since convoluted

NMR signals and spectra make quantification of some indi-

vidual metabolites difficult.

For the application of metabolomics to epidemiology,

accurate quantitation, speed of processing and cost are key

barriers. These technical challenges are being rapidly ad-

dressed for both NMR- and MS-based approaches; how-

ever, epidemiological studies of the metabolome have

largely been restricted to easily and ethically accessible tis-

sues. These primarily include blood serum/plasma, urine,

faecal material and saliva. However, a large portion of me-

tabolism occurs in difficult-to-assay tissues, such as the

liver, gut and kidneys, which are central to pathology, en-

ergy generation and drug metabolism. Therefore, a key

technical frontier for metabolomics will be either direct

metabolite quantification or inference in these tissues.

Other systems-level technologies have experienced dra-

matic advances in recent years. In genomics, first-gener-

ation sequencing methods enabled the sequencing of the

human genome13 and, two decades later, next-generation

methods are routinely capable of the sequencing a human

genome in hours at a cost of roughly $1,000. Measurement

of other features including the epigenome,14 transcrip-

tome,15 proteome16,17 and other ‘omics’18,19 have under-

gone similar trajectories in this time frame, allowing

researchers to begin defining disease using characteristics

at the molecular rather than physiological level (e.g. in

breast cancer20,21 and familial hypercholesterolaemia22).

Consequently, computational and statistical approaches

to omics data which treat cells, tissues and organs as

whole, integrated systems rather than isolated individual

processes are required, both in the study of individual or-

ganisms and in the study of populations. Here, we review

and discuss two areas of intense research in the application

of quantitative metabolomics to epidemiology, broadly

divided into advances in statistical approaches which inte-

grate multi-omics data (Figure 1) and techniques that ex-

tract and leverage reaction rate information.

Integrating metabolomics and genomics

Quantitative MS and NMR metabolomics approaches cur-

rently provide data for a range of statistical analyses,

including standard association-based testing, multivariate

analyses and metabolite set enrichment techniques to

emerging techniques of pathway and whole-systems level

analysis.

Metabolomic association studies, which aim to estab-

lish an association between a metabolite(s) and a particular

condition or quantitative trait, have proved a valuable ap-

proach for biomarker identification and the metabolic

underpinnings of disease,23–25 but can be limited by statis-

tical power issues related to sample sizes and coverage of

metabolites.26 Gaussian Graphical Models (GGMs), which

evaluate conditional dependencies in multivariate

Gaussian distributions, are one method for analysing quan-

titative metabolic data. Since many metabolites are well

characterized in terms of their role in reactions, GGMs can

be used to predict previously unknown or unannotated re-

actions from single-time-point metabolic data.27,28 This

allows reconstruction of metabolic pathways with or with-

out prior knowledge—a potentially useful technique for
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identifying candidate determinants of abnormal metabol-

ism and its downstream consequences. Another technique,

metabolite set enrichment,29 is based on the widely-used

gene set enrichment technique (GSEA).30 Both metabolite

and gene set enrichment use prior knowledge about genes

involved in cellular processes. These sets of genes are either

manually annotated, as in the Gene Ontology,31 or derived

from pathway databases such as the Kyoto Encyclopedia

of Genomes and Genes (KEGG).32 Sets of metabolites are

used to generate scores which can be compared between

conditions to determine differentially enriched processes.33

Overall, set enrichment methods are useful in assessing and

interpreting change due to cumulative effects where pheno-

type is altered by low-magnitude changes across

metabolites.

Rapid advances in human genomics have led to the wide-

spread use of genome-wide association studies (GWAS) to

identify genetic variants which affect downstream pheno-

type.34 A metabolomic GWAS, where each sample has paired

genome-wide genotype and metabolomic data, aims to detect

genetic loci associated with variation in metabolic pheno-

type.35–40 In metabolomic GWAS, metabolite concentrations

are tested for association with individual genetic variants

using standard statistical approaches, such as linear regres-

sion, together with stringent significance levels which correct

for substantial multiple testing burdens. Metabolomic GWAS

have been immensely successful in population-based cohorts

to gain insight into the genomics of serum lipid and small or-

ganic metabolites.41,42 An exemplar is the KORA F4 study43

which used fasting serum metabolomics for various genome-

wide association studies of metabolic traits.44–46 Many meta-

bolic trait loci were located in or near genes encoding

enzymes mediating rate-limiting steps in a number of meta-

bolic reactions.44 Importantly, estimated effect sizes for asso-

ciated genetic variants were relatively high, likely due to the

testing of specific metabolites which have well defined roles

in metabolic pathways, rather than agglomerated ‘total’ me-

tabolites.45 Furthermore, many metabolite loci have been re-

ported as associated with drug toxicity45 or complex diseases,

such as that of SLC22A4 with Crohn’s disease.47–49

Extending these genetic approaches to capture causal

relationships between metabolites and (molecular) traits or

diseases is possible through techniques exploiting mende-

lian randomization (MR). MR uses genetic variants as

Figure. 1. A schematic of integrating metabolomics data with other multi-omics data as part of known reaction networks. Metabolomics together with

other multi-omics data can be integrated into the analysis of metabolism at different points in various systems. Genomic, epigenomic, transcriptomic

and proteomic variation all have various direct and indirect effects on the function and cross-talk of various metabolic and signalling networks.
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instrumental variables for testing for casual relationships.

The distributions of these variables are relatively free of en-

vironmental confounding factors, as they are assigned ran-

domly from parental genotypes during the formation of

gametes.50 Classic MR techniques assume that these instru-

mental variables are free of the influence of factors that

confound the association of the metabolite of interest and

the putative outcome, and that the variable chosen must be

associated with the exposure. These assumptions are stron-

ger for assessing the causal effects of epigenetic variation,51

but two-step MR techniques can address this shortcoming

by treating epigenetic variation itself as an intermediate

phenotype. This approach and its extensions can be readily

applied to metabolic variation52 and, potentially, where

metabolic outcomes in turn modify epigenetic state.53,54

For epidemiological studies of human disease, MR has

been used to investigate the roles of total high-density lipo-

protein (HDL) and low-density lipoprotein (LDL) choles-

terol in heart disease,55–57 the causal effects of exposures

on metabolites58 and in testing whether changes to metab-

olites affect disease risk.59 MR can also be exploited to de-

termine causal relationships at the reaction or pathway

level60 as well as to study more complex combinations of

multiple phenotypes.61

Metabolomics has had a significant impact on next-

generation sequencing studies of human microbiota. The

existence of host-microbiota interactions is well estab-

lished,62,63 and the composition of the microbiome plays a

role in many diseases including obesity,64 asthma65 and dia-

betes.66 A potentially important point-of-effect lies at the

interface of microbial and host metabolomes, which is

known to be an important conduit for molecular exchange,67

and advances in quantitative metabolomics have allowed re-

searchers to trace metabolic activity from substrate input

(e.g. in the host diet) through the host-microbe metabolic

interface and on to associated changes in disease risk.68

The metabolome-transcriptome interface

Quantitative metabolomics data and the inferred function

of metabolic pathways largely depend on the level and func-

tion of specific enzymes, which are in turn controlled by

transcription of specific genes. Gene transcription is a com-

plex yet tightly regulated process. Reconstruction of tran-

scriptional networks has long been an area of intense

research,69–74 but the relationship between the transcrip-

tome and metabolome remains a largely unexplored area.

Epidemiological cohorts and the omics profiling of their

corresponding biospecimens have played a key role in eluci-

dating this interface.75 Studies of gene co-expression net-

works and their associations with serum metabolomic

profiles have revealed the existence of a gene module, the

lipid leukocyte (LL) module, which appears to be associated

with and responsive to diverse metabolite concentrations

(Figure 2).76,77 The genes contained within the module en-

code enzymes and proteins with functions indicative of

basophil- and mast cell-mediated immune response.77

Whereas it has been shown to potentially play a wide role in

metabolism,77 the LL module was originally identified

through associations with APOB, total HDL and triglycer-

ide levels.76 In addition, individual gene transcript analysis

identified carnitine palmitoyl transferase A1 (CPTA1) and

carnitine/acylcarnitine translocase (SLC25A20) associations

with circulating free fatty acids.76 Carnitine transferase also

featured in a recent landmark investigation of the metabo-

lome-transcriptome interface in the KORA F4 study.78 This

study generated a pathway-level interaction network of

gene ontologies and metabolic pathways, together with

transcription factor binding enrichment analysis, to identify

diverse regulatory interactions, network motifs and signa-

tures associated with HDL cholesterol and triglyceride lev-

els.78 The same study also replicated the co-expression and

diverse metabolic relationships of the core LL module.

Systems-level association studies of this kind represent a

Figure. 2. The lipid-leukocyte (LL) module and its known metabolite associations. A number of classes of metabolites (left, via NMR77 and MS78) are

associated with the LL co-expression module. Starred metabolites (leucine and isoleucine) are directly quantified on both MS and NMR platforms.

This module is expressed in basophils and mast cells, which play significant roles in both disease and the development of the innate immune system.

The specific role of the LL module in these processes remains unknown.
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minimally biased approach toward the discovery of key

interaction points between metabolism and gene transcrip-

tion; however, an important area of future investigation is

the reduction of these systems-level associations into mech-

anistic studies of single genes and single metabolites in rele-

vant in vivo and in vitro contexts. At the same time,

epidemiological cohorts can be further leveraged to charac-

terize the extensive cross-talk and condition-specific inter-

actions of these systems, thus further guiding mechanistic

studies.

Reaction rates as biomarkers

The epidemiological study of disease has increasingly come

to focus on the use of metabolite concentrations as bio-

markers79 which are themselves commonly used as proxies

for metabolic reaction rates.44,80 However, assessment of

rates of individual reactions may provide stronger markers

of trait or disease.

Direct measurement of metabolic reaction rates in situ

is currently impractical in large population studies but has

been achieved on smaller scales, most notably through the

use of non-invasive NMR spectroscopy.81 Although such

studies are also expensive, technically challenging and re-

quire significant infrastructure, they suggest that reaction

rates (or metabolic flux) can serve as stronger biomarkers

than metabolite concentrations. Metabolic flux imaging

techniques using hyperpolarized metabolites have shown

promise in the diagnosis and localization of tumours in

prostate cancer patients,82 and a number of studies have

investigated reaction fluxes in the cardiovascular systems

of model organisms.83,84 An epidemiological study of par-

ticular note is a prospective study in a set of 58 heart fail-

ure patients where the investigators measured the rate of

ATP synthesis through cardiac creatine kinase flux in situ

using 31P magnetic resonance spectroscopy.85 ATP and cre-

atine phosphate concentrations as well as common clinical

scores were used as predictors of heart failure over an 8.2

year follow-up period. Abnormal creatine kinase flux sig-

nificantly outperformed patient age, gender and metabolite

concentrations in predicting heart failure events and death,

including hospitalization for heart failure, cardiac mortal-

ity, cardiac transplantation and ventricular-assist device

placement, as well as all-cause mortality.85,86 These results

are in a relatively small patient cohort with a limited num-

ber of events, but they add weight to the argument for the

development of reaction rate-based biomarkers in the

study of disease.

Conceptually, metabolism behaves like a system in which

molecules ‘flow’ through reactions. As the flow of metabol-

ites is blocked and re-routed, metabolites accumulate at

various points or are depleted, with resulting changes in

their concentration. Metabolite concentrations capture the

effects of combined changes to reaction rates, but do not

provide direct insight into the processes themselves, for ex-

ample the pathogenic variation affecting enzymes, genes

and other molecular products derived from the organism’s

genome (Figure 3a). As noted above, direct measurement of

enzyme function and other key mediators of reaction rates

is immensely challenging in situ due to expense and tech-

nical difficulty. In vitro assays face additional challenges

including sometimes prohibitive requirements for the quan-

tity and type of tissue required, and technical bias intro-

duced by adaptation of cells to the culture environment.

Systematic assessment of reaction rates at scales

required for epidemiology might occur through the integra-

tion of metabolomic data with genomic, transcriptomic

and/or proteomic information to infer enzymatic function,

with subsequent comparison across conditions to deter-

mine where bottlenecks occur (Figure 3b). An initial step

toward large-scale characterization of enzymatic function

might leverage public reference panels for loss-of-function

(LoF) variants.87 An individual with a gene encoding an

enzyme with an LoF variant, such as a premature stop

codon, will be at reduced or nil capacity to perform a spe-

cific biochemical reaction or set of reactions. This informa-

tion can be used to build predictive models of the reaction

system that have ramifications for metabolism (Figure 3b).

For example, phenylketonuria (PKU) is a metabolic disease

characterized by intellectual disability, microcephaly and

seizures, and whose cause is genetic (Figure 3). Individuals

with PKU inherit genetic variants that prevent the conver-

sion of phenylalanine to tyrosine either through loss-of-

function of phenylalanine hydroxylase (PAH) or an enzym-

atic cofactor, biopterin (BH4). The latter occurs through

mutations to any of four genes (PTS, GCH1, QDPR,

PCDB1) encoding subunits of enzymes catalyzing bio-

pterin recycling. These mutations cause the build-up of

phenylalanine which overwhelms transporters that carry

amino acids across the blood–brain barrier, thus increasing

phenylalanine concentration and reducing concentration

of other amino acids in the brain during critical stages of

development (Figure 4).88 Whereas metabolomic screening

may be useful in identification of PKU, the integration of

genomic data in particular offers a clear advantage to-

wards characterization of reaction rates and timely identi-

fication of causal effects thereof. For complex diseases,

such as cardiovascular disease, systems-level perturbations

in metabolomic and genomic variation, as well as their in-

tegration with further omics information, will likely be

required to build useful models of reaction rate variation

and their pathogenesis.
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Inference of reaction rate at scale

The overwhelming majority of metabolite concentration

data available are single-time-point tissue samples from

large cohorts or high-resolution time courses for small

groups of individuals. Extracting information on reaction

networks can be challenging; however, two techniques

which show promise are statistical analyses incorporating

metabolite ratios and simulation of genome-scale meta-

bolic flux models. Pathway-based analyses are often pro-

posed as an alternative technique, but they contain

inherent bias because: (i) pathways vary widely between

databases and the expertise used to construct them; and (ii)

databases and corresponding analyses typically treat path-

ways as separate entities, thus largely ignoring the inherent

cross-talk between pathways33 which is a common feature

of metabolism and implicated in many diseases.89–91

One way to try to extract information about the proc-

esses using metabolite concentrations is to use metabolite

ratios (e.g. the ratio of the concentration of phenylalanine

to that of tyrosine in PKU patients). This technique is rela-

tively commonplace in the study of drug metabolism.

Historically, ratios have been used to discriminate between

multiple reactions acting on the same substrate or as a

measure of drug clearance.92,93 They can act as an accurate

Figure. 4. An overview of the molecular and genetic basis of phenylketonuria (PKU). PKU is an inborn error of metabolism where symptoms occur

due to accumulation of phenylalanine (Phe) in the blood (hyperphenylalanaemia), which overwhelms transporters that carry amino acids over the

blood-brain barrier.

(a) (b)

Figure. 3. Steady-state metabolic measurements vs integrative multi-system measurement and modelling. a) Single-time, steady-state metabolic

measurement directly measures the concentration of metabolites within the metabolism, but does not provide direct insight into the known inter-

actions between these molecules. b) Integrative, multi-system measurement and modelling provide this missing insight into the interactions within

the system; not only are metabolites measured, but also information about the rates of reactions that convert metabolites into other metabolites are

inferred, modelled or predicted, providing more insight into the behaviour of the system as a whole.
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proxy for the direct measurement of reaction rates within a

region of the broader metabolic network, given certain as-

sumptions about the metabolic state.46,80 A key hurdle for

the analysis of metabolite ratios lies in their selection from

the immense number of variables for assessment. The

RECON2 model of human metabolism describes 2626

unique metabolites and thus 3 446 625 possible pair-wise

combinations in metabolite ratios.94 Unfortunately, the

majority of these ratios are biologically uninformative. The

P-gain statistic, which calculates the increase in informa-

tion contained within a metabolite ratio relative to the in-

dividual concentrations, has been widely used as a method

for reducing this to a manageable number.95 Despite these

limitations, initial work has been performed using metab-

olite ratios as traits in genome-wide scans for genetic loci

involved in metabolism, with some success.45,96

Integration of metabolomics with genomic, transcrip-

tomic and proteomic data from large cohorts and case-

control studies offers systems-level characterization of the

key factors in biochemical reactions. These ’genome-scale’

models of metabolism are widely used in the bioengineering

and systems biology communities as a tool for computa-

tional hypothesis generation and testing.97 They are derived

from community-generated sets of known reactions (such as

KEGG32 or Reactome98), which are then parameterized and

fitted to experimental measurements for simulation and

analysis. This parameterization and fitting process routinely

incorporates genomic and transcriptomic information. In

humans, the RECON294 model is one such comprehensive

set of metabolic data and parameters. The resulting models

can then be analysed using various techniques, including

constraint-based reconstruction and analysis (COBRA),97,99

optimization-based approaches and a host of other simula-

tion methods.100–102 Comparing individualized instances of

these metabolic models for each patient in a large cohort

could yield valuable information about the downstream ef-

fects of genomic variation and subsequent processing of me-

tabolites. However, many challenges remain. Such in silico

experiments are extremely computationally expensive, par-

ticularly when they span multiple cellular processes. Even if

a computational model is available, a key conceptual prob-

lem lies in determining and testing the relevant environmen-

tal conditions and stimuli required in order to generate the

disease’s symptoms—for example, PKU symptoms do not

appear unless the individual consumes excess phenylalanine

(and a phenylalanine-free diet is indeed the current treat-

ment strategy for individuals with these genetic variants).

Developing strategies to overcome this problem represents

one of the main conceptual hurdles to such analyses, and

population-based studies will be important in adequate sam-

pling and molecular characterization of conditions and sub-

groups relevant to pathogenesis.

Table 1. Summary of measurement technologies and analysis techniques discussed in this review with selected example

references

Measurement technologies Description

Mass spectrometry Rapid detection of low-concentration metabolites103

GC-MS Separation of volatile metabolites104

LC-MS Separation of non-volatile metabolites, broad scope104

Direct infusion Fast broad coverage of metabolites105

High-throughput NMR Complementary measurement technology; precise concentration measurement106

Metabolic flux imaging In situ measurement of reaction rates in patients; non-invasive and non-destructive81

Analysis techniques Description

Metabolic association studies Direct analogue of GWAS studies; testing of metabolites for association with phenotype24

Gaussian graphical modelling Inference and reconstruction of metabolic pathways where reactions are unknown27

Pathway analysis Test for enrichment of sets of functionally related entities associated with phenotype33

Gene set enrichment analysis Gene sets sourced from databases and ontologies (e.g. Gene Ontology)30

Metabolic set enrichment analysis Metabolite sets sourced from databases (e.g. KEGG database)29

Metabolomic GWAS Finding single nucleotide polymorphism s (SNPs) correlated with metabolic markers; GWAS with

metabolite as trait42

Classic mendelian randomization Determination of causal relationships between an exposure and outcome of interest using SNP as

instrument55

Two-step MR As for classic MR, but enables the testing of intermediate phenotypes that may confound the

instrument107

Metabolite association with

co-expression networks

Association of metabolite measurements with systems of genes that have similar expression

behaviour76

Metabolite ratios Association of ratios of metabolites, used as proxies for reaction rates, with a phenotype45

Genome-scale model simulation Simulation of known reactions incorporating genetic variation97
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Conclusions

A key challenge for integrative metabolomics analysis at

the population level lies in the development and standar-

dization of analytical techniques which are routinely

applied to large-scale datasets. Complete metabolic models

will require a conceptual shift from metabolite concentra-

tions towards experiments and graph-theoretical analyses

based on the reactions themselves. At present, such

approaches are largely applied in laboratory-based experi-

ments of cell lines, but observational studies in patient-

and population-level cohorts are becoming more common,

thus enabling the identification of sub-groups of individ-

uals enriched for variation in relevant sub-regions of the re-

action network. Extraction and exploitation of reaction

rates from quantitative metabolomics together with inte-

gration with other biomolecular systems data remains a

key challenge but a promising future direction for molecu-

lar epidemiology.
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