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Abstract

The use of DNA methylation signatures to predict chronological age and aging rate is of interest in many fields, including disease preven-
tion and treatment, forensics, and anti-aging medicine. Although a large number of methylation markers are significantly associated with
age, most age-prediction methods use a few markers selected based on either previously published studies or datasets containing methyl-
ation information. Here, we implemented reproducing kernel Hilbert spaces (RKHS) regression and a ridge regression model in a Bayesian
framework that utilized phenotypic and methylation profiles simultaneously to predict chronological age. We used over 450,000 CpG sites
from the whole blood of a large cohort of 4409 human individuals with a range of 10–101 years of age. Models were fitted using adjusted
and un-adjusted methylation measurements for cell heterogeneity. Un-adjusted methylation scores delivered a significantly higher predic-
tion accuracy than adjusted methylation data, with a correlation between age and predicted age of 0.98 and a root mean square error
(RMSE) of 3.54 years in un-adjusted data, and 0.90 (correlation) and 7.16 (RMSE) years in adjusted data. Reducing the number of predictors
(CpG sites) through subset selection improved predictive power with a correlation of 0.98 and an RMSE of 2.98 years in the RKHS model.
We found distinct global methylation patterns, with a significant increase in the proportion of methylated cytosines in CpG islands
and a decreased proportion in other CpG types, including CpG shore, shelf, and open sea (P<5e-06). Epigenetic drift seemed to be a
widespread phenomenon as more than 97% of the age-associated methylation sites had heteroscedasticity. Apparent methylomic aging
rate (AMAR) had a sex-specific pattern, with an increase in AMAR in females with age related to males.
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Introduction
Aging is a complex process with time-dependent changes in
many biological functions and subject to regulation by signaling
pathways and transcription factors. Reduced stability of epige-
netic patterns over a lifetime in adult somatic tissue is one of
the most important progressive deteriorating changes which
may increase significant pathologies, including cancer, metabolic
disruptions, cardiovascular malfunctions, and neurological
disorders, and result in more susceptibility to death in elders
(López-Otı́n et al. 2013). This instability is referred to as “aging epi-
genetics,” and associations between age and DNA modifications
other than sequence mutations have been investigated (Fraga
and Esteller 2007). Many biomarkers have been proposed for ag-
ing and age-related diseases (Baxter et al. 2004; Bocklandt et al.
2011), including telomere length shortened by cell division and
oxidative stress (Sanders and Newman 2013). Another biomarker
is DNA methylation, an epigenetic modification, with a robust

relationship between aging and methylation changes (Heyn et al.
2012; Hannum et al. 2013; Horvath 2013; Bormann et al. 2016;
Petkovich et al. 2017). DNA methylation changes can impact the
aging rate by altering the expression of age-related genes via
the silencing of DNA repair mechanisms or silencing anti-inflam-
matory genes.

Predicting quantitative traits with regression models for dense
molecular markers—such as high-throughput genotyping data,
sequencing information, and methylation profiling microar-
rays—is important in animal and plant breeding schemes (de los
Campos et al. 2013; Hu et al. 2015) and human genetics (de los
Campos et al. 2010a; Vazquez et al. 2016; Amiri Roudbar et al.
2020). When fitting high-density molecular markers in prediction
models, the number of predictors dramatically exceeds the
number of observations. Several variable selection methods
or shrinkage estimation procedures have been proposed for non-
parametric or parametric regression models (Gianola et al. 2006;
de los Campos et al. 2013). Most complex traits can be predicted
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with reasonable accuracy using the infinitesimal model, which
assumes a vast number of loci contributing to the trait, each with
an infinitesimal effect (Fisher 1919; Buckler et al. 2009; Yang et al.
2010). Many DNA methylation marks show significant associa-
tions with age (Heyn et al. 2012; Hannum et al. 2013), suggesting
that the infinitesimal models may also be useful for predicting
chronological age. Gianola et al. (2006) presented a semiparamet-
ric procedure, named reproducing kernel Hilbert spaces (RKHS)
regression, to predict quantitative traits that makes use of pheno-
typic and molecular information simultaneously. RKHS provides
a flexible framework for integrating high-dimensional multilayer
omic-data to predict survival after diagnosis of breast cancer
(Vazquez et al. 2016). Bayesian methods are powerful alternative
approaches for predicting complex traits using variable selection
and shrinkage of estimates. Various Bayesian parametric linear
regressions that differ in their priors have been proposed for ge-
nome-enabled prediction [see Gianola (2013) and de los Campos
et al. (2013) for discussions of Bayesian regressions]. Bayesian
ridge regression (BRR) performs a homogenous shrinkage across
markers. Statistically, BRR on markers is equivalent to genomic
best linear unbiased prediction (GBLUP), but with variance
parameters estimated Bayesianly (VanRaden 2008; Gianola 2013).

The use of DNA methylation signatures to predict the aging
rate and chronological age is of interest to many fields, including
disease prevention and treatment, forensics, and evaluation of
anti-aging drugs. In recent years, many methods have been pro-
posed to predict an individual’s chronological age (Bocklandt et al.
2011; Hannum et al. 2013; Bekaert et al. 2015; Naue et al. 2017;
Vidaki et al. 2017). However, most of these studies used a small
number of markers selected based on previously published studies
or used methylation information retrieved from 27 or 450 K micro-
arrays for marker selection. Selected markers, ranging from 3 to
513, have been implicated in age prediction using multivariate lin-
ear regression models (Hannum et al. 2013; Hong et al. 2017; Levine
et al. 2018) or nonparametric methods such as machine learning
algorithms (Xu et al. 2015; Vidaki et al. 2017).

Semiparametric and Bayesian approaches for age prediction
have not been evaluated so far. Here, we evaluated RKHS

and BRR models for whole methylome prediction of age in
humans using a large cohort of 4409 individuals composed of
four publicly available DNA methylation datasets representing
a range of 10–101 years of age. Furthermore, marker subset
selection was carried out using epigenome-wide association
study (EWAS) results to detect age-associated methylation
sites. Breusch-Pagan test (BPtest) results were used to retrieve
age-associated methylation sites without heteroscedasticity.
Finally, to better understand how the methylome changes with
age, we evaluated genome-wide methylomic profiling with
this large cohort of individuals, including the effect of sex of the
individual.

Materials and methods
The steps of the prediction analysis and detection of the dynamic
methylomic changes are presented in Figure 1.

Whole methylome prediction of age
Datasets
Methylation data were from four different datasets. All data are
available in Gene Expression Omnibus (GEO) with accession
numbers “GSE55763,” “GSE40279,” “GSE50660,” and “GSE56105”
(Supplementary File S1, Supplementary Table S1 and
Supplementary Figure S1). DNA extraction, preparation proce-
dures, and DNA methylation profiling were previously described
for each dataset separately (Hannum et al. 2013; McRae et al.
2014; Tsaprouni et al. 2014; Lehne et al. 2015). Briefly, to assess the
methylation levels of over 485,000 CpG sites per sample, DNA
extracted from whole blood was treated with bisulfite and then
hybridized to the Illumina Infinium 450 k Human Methylation
Beadchip. In each dataset, individual methylation values with
detection P-value >0.01 were set as missing values. Probes
unsuccessfully measured in 5% of samples, with SNPs at CpG or
single-base extension (SBE) sites and located on the X and Y
chromosomes were excluded from the analyses. Cross-reactive
probes were also removed. Missing values were imputed using

Figure 1 Flow chart for prediction analyses (left) and detection of dynamic changes on methylation level (right).
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the R “impute” package with 10 nearest neighbors averaging
(Troyanskaya et al. 2001). After data preprocessing, all datasets
were merged, and probes that were common in all datasets were
kept. In the end, 423,394 methylation sites from 4409 individuals
remained for training and validation of the models. For each CpG
site, the beta value was used to indicate the percentage of meth-
ylation. The values ranged from 0 to 1 for entirely unmethylated
and fully methylated, respectively. After merging the datasets,
we used the Z-score conversion to standardize the methylation
levels.

Estimating cell heterogeneity for each sample
The methylation profiles were measured in DNA extracted from
whole blood with heterogeneous cell proportions, which can act
as a potential confounder when investigating DNA methylation
differences over a wide age range (Jaffe and Irizarry 2014). We
used the Houseman et al. (2012) linear regression calibration to
estimate the relative proportion of pure cell types. For each sam-
ple, the proportions of white blood cell (WBC) types, including
granulocytes, monocytes, B cells, CD4þ T cells, CD8þ T cells, and
natural killer cells, were inferred using 473 CpGs which had pre-
viously shown cell-type-specific methylation patterns (Reinius
et al. 2012). This was performed using the ChAMP R package (Tian
et al. 2017). The estimated cell-type distributions were used to ad-
just methylation beta values using the regression model.

As shown in previous studies, cell proportions adjustment can
reduce association signals; therefore, it is essential to consider
cell composition variability in epigenetic studies based on whole
blood and other heterogeneous tissue sources (Liu et al. 2013;
Jaffe and Irizarry 2014). We tested the association of each cell
type proportion with age using a linear model with sex and data-
set considered as fixed effects. Cell type proportion was not asso-
ciated with aging (P> 0.05, Supplementary File S1 Supplementary
Tables S2–S7). Therefore, the final model for EWAS employed the
un-adjusted methylation data.

Statistical models for predicting chronological aging
Parametric and semiparametric approaches were used to predict
chronological aging. A statistical and computational challenge
was that the number of methylation sites exceeds the number of
data points. Therefore, shrinkage estimation procedures were ap-
plied (Meuwissen et al. 2001; Gianola et al. 2006). Predictive ability
using the entire methylation data set and subsets of it was evalu-
ated with RKHS regression (Gianola and van Kaam 2008; Morota
and Gianola 2014) and Ridge Regression (Hoerl and Kennard
1970) (BRR) in a Bayesian framework.

Reproducing kernel Hilbert space

RKHS regression is a powerful semiparametric approach to cope
with the issues of dimensionality and complexity raised by a
massive number of predictors (De los Campos et al. 2010b). We
built a covariance structure among methylation values and
treated age as a continuous response using the following kernel
regression model:

y ¼ Xbþ Kaþ e;

where b is a vector of fixed effects including an intercept and
sex and dataset effects with associated incidence matrix X, K
is an n� n positive definitive kernel matrix indexed by adjusted
or un-adjusted methylation levels, a is the vector of RKHS
regression coefficients estimated as the solution of

â ¼mina y� KaÞ
0

y� KaÞ þ ka
0
Kag

��n
, where k is a regularization

parameter and e is the vector of independently distributed resid-

ual effects. Here a and e were assumed as random vectors with

distributions a � Nð0; K�1r2
mÞ ande � Nð0; Ir2

e Þ, where r2
m and r2

e

are the methylomic and the residual variances, respectively, and

I is an identity matrix. RKHS was fitted using the Gaussian kernel

function:

K mi; mi0ð Þ ¼ exp �h

Pp
j¼1 mij �mi0 jð Þ2

p

 !" #
;

where mi; mi0 are vectors of methylation measurements in the i

and i
0

individuals (i¼ 1, 2, . . ., n) for p methylation sites

(j ¼ 1; . . . ; pÞ, h is a bandwidth parameter chosen with cross-vali-

dation (CV), based on their ability to predict a testing set. There

was no significant difference in accuracy between bandwidths

less than 1. The best bandwidth was 0.03, which was used for fur-

ther analyses. RKHS was fitted using the Bayesian likelihood un-

der Gaussian assumptions:

pðyhÞ ¼
Yn
i¼1

N yij
Xl

k¼1
xikbk þ

Xp

j¼1
kijai;r

2
e

� �

where h is the vector of unknown parameters, including the inter-

cept, regression coefficients (bk), residual variance (r2
e ), and kij is

the appropriate element of K.

Bayesian ridge regression

We also used a whole-genome Bayesian Ridge regression ap-

proach (Meuwissen et al. 2001). A Gaussian prior distribution

(BRR) was assigned to methylation effects to control the shrink-

age of estimates. Age was considered as a continuous response

with the following model equation in matrix notation:

y ¼ XbþMuþ e;

where M ¼ fmijg is a matrix of un-adjusted beta values in the ith

individual at jth methylation site (j¼ 1, . . ., p), and u is a vector of

the corresponding methylation site effects. The conditional dis-

tribution of the data was:

pðyhÞ ¼
Yn

i¼1
N yij

Xl

k¼1
xikbk þ

Xp

j¼1
mijuj;r

2
e

� �
;

where h is the vector of all unknown parameters with the follow-

ing prior density:

pðhÞ ¼ pðr2
eÞ
Yl

k¼1
pðbkÞ

Yp

j¼1
pðujÞ:

The fixed effects were assigned a flat prior, the residual vari-

ance was assigned a scaled-inverse X2 density with degrees of

freedom dfe and scale parameter Se using the default treatment

of variances implemented in the BGLR R package (Pérez and de

los Campos 2014). The methylation effects, uj, were assigned a

Gaussian prior with variance r2
u.

Subset selection of CpG sites
In the full models used, there were 4409 samples with more

than 420,000 methylation sites as predictor variables. Although

variable selection methods or shrinkage estimation procedures

can handle a larger number of predictors than the sample size,
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pre-subset selecting of methylation sites may increase the perfor-
mance of the predictive model (Amiri Roudbar et al. 2020).

EWAS subset selection

A previous association study involving methylation sites and
chronological age revealed about 15% significant methylation
sites (Hannum et al. 2013). Here, we applied an EWAS subset se-
lection approach to evaluate the impact of the number of predic-
tors on prediction [for model description, see “EWAS Analyses
to identify age-associated differentially methylated positions
(aDMPs)” section]. For each CV sample, we conducted an EWAS
using training data only to find aDMPs until each CV has aDMP
subsets. These subsets were used to contrast predictions with
those attained with random subsets of methylation probes, i.e.,
fitting the age-associated methylation positions (aDMPs) versus
randomly selected methylation sites.

BPtest subset selection

Each aDMP, detected using only the training set, was tested for
heteroscedasticity using the BPtest model (Breusch and Pagan
1979). For this test, only methylation information from the train-
ing set was used. Methylation trends due to age, sex, and dataset
were removed by fitting a linear model for each aDMP, and the
residuals were retrieved. Next, the BPtest was performed by fit-
ting a linear regression model to these residuals. aDMPs without
heteroscedastic disturbances were selected based on Benjamini-
Hochberg’s false discovery rate (FDR) less than 0.05 (Benjamini
and Hochberg 1995). The influence of this selection approach on
prediction accuracy was evaluated against randomly selected
probes in each CV.

Subset selection of CpG Sites based on previous studies

We used results from three studies to fit prediction models based
on their candidate CpG sites (Horvath 2013; Horvath et al. 2018;
Levine et al. 2018). The “optimal” model from these studies se-
lected 353 (Horvath multi-tissue method) (Horvath 2013), 391
(Horvath skin method) (Horvath et al. 2018), and 513 (Levine
method) (Levine et al. 2018) methylation markers that were highly
predictive of age. We missed some of these methylation sites due
to quality control. The number of missed CpG sites and their des-
ignations are shown in Supplementary File S1, Supplementary
Table S8. Measurements of these candidate CpG sites in each
method were used to predict chronological age using the multiple
regression model:

yi ¼
Xl

k¼1
xikbk þ

Xh

s¼1
misus þ ei;

where us is the methylation effect of the sth site from the subset
selected based on the three methods listed above.

Prediction accuracy
We used two measures of predictive accuracy. The first one was
Pearson’s correlation between predicted age and chronological
age. The second was the root mean square error (RMSE). RMSE
measures closeness between chronological and predicted ages
and correlation measures association.

To assess the prediction accuracy of chronological age,
fivefold CVs were performed. In each fold, 20% of each dataset
was missed randomly. The whole fivefold CV was repeated four
times, producing a total of 20 samples. For each CV, 5000 poste-
rior samples were used to compute the posterior means of the
parameters. Averages of correlation and RMSE of age from the 20

CVs were used to compare the models. All models were fitted us-
ing the “BGLR” R package (Pérez and de los Campos 2014). We
used the coda package diagnostic tests of convergence in the
Bayesian analyses (Plummer et al. 2006). To evaluate the effects
of dataset and age on prediction accuracy, we also fitted a simple
linear regression with only these potential confounders as model
covariates.

Dynamic changes of the methylome through the
aging process
EWAS analyses to identify age-associated differentially
methylated positions (aDMPs)
We fitted a linear regression of chronological age on each CpG
site separately. As methylation levels may be affected by cell
populations’ heterogeneity, the effects of differential cell count
on aDMPs were examined using adjusted and un-adjusted beta
values. Sex and dataset were treated as fixed effects in the model.
The genetic background of each individual was not available,
except for “GSE40279”. Due to this limitation, the genetic back-
ground was not used as a potential confounder in the linear
model. Adjusted and un-adjusted beta values were fitted one-at-
a-time using the following linear model:

y ¼ Xbþmaþ e

where m is the vector of the adjusted/un-adjusted beta values at
a CpG site, and a is the fixed methylation effects. A stringent
Bonferroni-adjusted threshold was used to correct for multiple
testing (0.05/423,394¼ 1.18e-7).

Mapping CpG sites and dynamics through the aging process
CpG islands (CGIs) are, on average, 1000 base pairs (bp) long and
can be distinguished from other genomic regions by being GC-
rich, CpG-rich, and mostly unmethylated. They are frequently as-
sociated with more than 70% of the promoter region of genes
(Deaton and Bird 2011). CpG shores are sequences up to 2 kb dis-
tant from CGIs. Most tissue-specific differential methylation in
normal tissues occurs more frequently in CpG shores than in
CpG islands (Irizarry et al. 2009). CpG regions were further classi-
fied by including CpG shelves as sequences 2–4 kb distant from
CGIs, and CpG open sea as more than 4 kb distant from CGIs
(Bibikova et al. 2011). We used the IlluminaHumanMethylation
450kanno.ilmn12.hg19 package from Bioconductor (Gentleman
et al. 2004) to group CpG probes located on the same island, shore,
shelf, or open sea. Methylation markers in each CpG type were
classified into two groups: (1) age-associated and (2) not age-
associated methylation sites. To evaluate differences in DNA
methylation patterns between the groups due to aging, we fitted
a linear regression of the average individual methylation levels in
each group at different genome locations. We fitted a linear
model as follow:

�Betai ¼
Xl

k¼1
xikbk þ #i;

where �Betai is the average of individual methylation levels in
age-associated or not age-associated methylation sites at a CpG
type (island, shore, shelf, or open sea), and #i is an independent
normal model residual with mean zero and variance r2

#.

Functional annotation analyses
Functional annotation for the selected methylation sites was per-
formed using pathway and disease association analyses. For each
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methylation site, the R package minfi was used to access annota-

tion for each position (Aryee et al. 2014). Then, genes associated

with aDMPs were characterized employing BioMart web services

through the R package biomaRrt (Durinck et al. 2009). Gene lists

retrieved from each group were uploaded to the Database of

Annotation, Visualization, and Integrated Discovery (DAVID;

david.abcc.ncifcrf.gov) v6.8 42 to link them to associated diseases

and pathway using genetic association database (GAD) source

(Becker et al. 2004) and KEGG pathway maps (Kanehisa and Goto

2000), respectively.

Methylation sites influencing sex-specific apparent
methylomic aging rate (AMAR)
AMAR for each individual was computed using results of the best

predictive model, RKHS with EWAS subset selected CpG sites, but

without a sex variable. AMAR was calculated as the individual’s

predicted age for the best model, divided by actual age. It is

known that sex can affect the aging rate derived from a methyl-

ome profile, with a faster aging rate in males than in females

(Hannum et al. 2013). Methylomic aging rate in males was 4%

faster than in females. Here, we included sex as a dummy ex-

planatory variable to account for a sex effect on methylation lev-

els across chronological ages. To test differences between male

and female methylome aging rates, first, we fitted the three lin-

ear models as follows:

Model 1: AMARi ¼ b0 þ b1Ai þ si

Model 2: AMARi ¼ b0 þ b1Ai þ b2Si þ si

Model 3: AMARi ¼ b0 þ b1Ai þ b2Si þ b3SiAi þ si

where AMARi is an estimated response variable for the ith indi-

vidual; Ai is chronological age for the ith individual; Si is the

dummy explanatory variable for sex; b0, b1, b2, and b3 are the in-

tercept, age, male effect, and interactions between sex and age

(difference between male and female slope over aging), respec-

tively; and si is an independent normal model residual with mean

zero and variance r2
s . Models were compared using the Akaike in-

formation criterion (AIC) (Akaike 1998). Model 1 states that there

is no difference between males and females in AMAR over aging,

but Models 2 and 3 state that there are sex differences and inter-

action between sex and age, respectively.
Second, differences in methylome changes over a wide age

range in males and females were tested at each aDMP. Slopes

were compared using the model:

Aid ¼ b0 þ Dd þ b4Mi þ b2Si þ b5SiMi þ eid

where Aid is age for the ith individual in the dth dataset, Dd is the

fixed effect of the dth dataset, Mi is methylation level for the ith

individual, and SiMi is a joint-effect covariate. b4 and b5 are the

methylation effect and interactions between sex and methylation

levels, respectively, and eij is an independent normal residual

with mean zero and variance r2
e . Sex-specific aDMP associations

were corrected for multiple testing using the inclusion threshold

based on the Benjamini-Hochberg at a desired FDR less than 0.05

(Benjamini and Hochberg 1995).

Data availability
The Illumina 450 K methylation array datasets analyzed are pub-

licly available in GEO with accession numbers “GSE55763,”

“GSE40279,” “GSE50660,” and “GSE56105.” Supplementary mate-

rial is available at figshare: https://doi.org/10.25387/g3.14356925.

Results
The whole methylome prediction model
Prediction accuracy metrics using the linear model with only the

fixed effects, including age and dataset, were 11.244 and 0.733 for

RMSE and correlation between real and predicted age, respec-

tively. These results suggest that part of correlation accuracy

may reflect dataset and gender effects (confounders) due to dif-

ferences in age distribution among the datasets and between

genders. Methylation age could be sensitive to factors, such as

sex (Hannum et al. 2013). Accordingly, we examined epigenome-

wide prediction using adjusted and un-adjusted beta values

according to the proportion of WBCs, sex, and dataset. Then, dif-

ferent subsets of methylation markers, including EWAS, BPtest,

and randomly selected markers were investigated.

Effect of adjustment for estimated WBC heterogeneity on
age prediction accuracy
The use of un-adjusted methylation produced higher prediction

accuracy with RKHS than adjusted methylation data (Figure 2).

Therefore, we used un-adjusted methylation data for subsequent

analyses.

Predictive ability of different methylation subsets
Model complexity, prediction accuracy, and goodness of fit for

each type of subset selection are given in Figure 2. EWAS subset

selection seemed to improve prediction accuracy, as the lowest

RMSE and the highest correlation were achieved in this subset.

There were no significant differences between semiparametric

and parametric approaches using EWAS selection. The correla-

tion of predicted age between the two approaches was very high

(Supplementary Figure S2).
We tested each aDMP for heteroscedasticity using a BPtest and

excluded aDMPs with nonnormally distributed and serially inde-

pendent residuals. Markers whose residual variance showed a

change with age are illustrated in Supplementary File S1,

Supplementary Figure S3. Of 123,930 aDMPs, 121,023 markers

showed heteroscedasticity (FDR < 0.05), and over 97% of these

markers showed an increase for independent residuals with age

(see Supplementary File S1, Supplementary Table S9 for details).

For BPtest subset prediction, after excluding aDMPs with hetero-

scedasticity, prediction accuracy from CV analyses was relatively

high when using about 2000 CpG sites (number changed in each

CV). Average correlations between absolute and predicted age

from 20 CVs were 0.96 (with 4.55 years RMSE) and 0.96 (with

4.71 years RMSE) for RKHS and BRR, respectively. These estimates

were about 0.7% higher than those obtained when the same

number of randomly selected methylation sites (random BPtest

subset) was used. In this subset selection method, prediction ac-

curacies were 0.2% (significantly) higher for RKHS than for BRR

but did not differ in RMSE. Selecting subsets of methylation

markers with EWAS produced a gain in prediction accuracy.
We applied these methods considering cell heterogeneity us-

ing adjusted and un-adjusted methylation measurements. The

correlation between chronological and predicted age using ad-

justed (un-adjusted) measures were 0.57 (0.55), 0.56 (0.54), and

0.57 (0.55) for Horvath multi-tissue Horvath skin, and Levine

methods, respectively (Figure 2A). RMSE was 14.9, 15.2, and

15.0 years, respectively, when adjusted measurements were used

(Figure 2B). These accuracies were significantly lower than those

obtained using RKHS and BRR (P < 0.05).
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Dynamic changes of the methylome with aging
Age-associated methylation signatures
Results indicated that the number of probes, significantly associ-
ated with age, was reduced from 123,930 probes in un-adjusted
data to 107,806 probes in adjusted EWAS (Figure 3). This vast
number of age-associated markers points to the complexity of
aging, and these sites can be used for future studies.

Location-specific dynamic changes of the methylome with
aging
EWAS revealed that about 30–33% of age-associated methylation
sites were found in adjusted and unadjusted data and CGIs
had a larger proportion of positive associations (83%, see
Supplementary File S1, Supplementary Table S10). The propor-
tion of positive associations drastically decreased in CpG shore,
shelf, and open sea areas, both with adjusted and unadjusted
beta values. To investigate methylation patterns in different
types of CpG sites, we calculated the average of age-associated
and not-associated methylation beta values for each CGI type
separately and evaluated changes of average methylation with
aging (Figure 4). Significant differences in global methylation lev-
els between males and females were observed in all CpG types,
with an increase in the proportion of methylation at CGI and

decreased proportion at CpG shore, shelf, and open sea in
females compared to males (Supplementary File S1,

Supplementary Tables S11–S14).

Functional annotation of aDMPs
We investigated 10,596 genes with aDMPs for their various dis-

ease associations. A total of 6740 genes were found to be associ-

ated with a disease based on GAD annotation. We identified 22
diseases to be significantly associated with the aDMP genes

(FDR < 0.05). The most significant related disorder was tobacco
use disorder, with 2177 related genes (Supplementary File S1,

Supplementary Table S15). The GAD analysis revealed other age-

related diseases associated with aDMP genes such as type 2 dia-
betes (Rönn et al. 2008), erythrocyte count (Detraglia et al. 1974),

body mass index and related disorders (e.g., waist circumference
and body weight) (Hochberg et al. 1995; Poehlman et al. 1995), cho-

lesterol (Kreisberg and Kasim 1987), triglycerides (Tucker and

Turcotte 2003), cardiovascular diseases (e.g., heart rate, heart fail-
ure, stroke, coronary artery disease, blood pressure, and arteries)

(Taddei 2009; Breitling et al. 2012) and Parkinson disease (Levy
2007) (Supplementary File S1, Supplementary Table S15). These

results also indicated that age-related DNA methylation modifi-
cations in 312 genes were related to alcoholism disorders.

Figure 2 Boxplot of average cross-validation of predictive accuracy (A) correlation and RMSE (B) between chronological and predicted age for different
methods using different subsets of methylation measurements with mean and standard deviation (green) and significance levels; (C) proportion of
times that model in row had correlation (right) and RMSE (left) more and less, respectively, than model in color.
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A total of 3328 genes were found to be associated with KEGG

Pathways that have been previously related to aging (FDR < 0.05)

(Supplementary File S1, Supplementary Table S16). For instance,

the most significant KEGG pathway was the focal adhesion. The

aging process in humans is associated with reduced flexibility of

joints and tissue elasticity caused mainly by alterations in focal

adhesion formation on the surface of cells (Arnesen and Lawson

2006). The second significant KEGG pathway was the regulation

of the actin cytoskeleton, which plays a fundamental role in cel-

lular pathways (Mooren et al. 2012). A total of 142 genes were sig-

nificantly associated with this KEGG pathway. It has been shown

that aging can reduce cytoskeletal integrity and that overexpres-

sion of the heat-shock transcription factor, HSF-1, plays a role in

the preservation of the cytoskeleton (Baird et al. 2014).

Methylome aging rate and sex-specific methylomic aging
rate (AMAR)
The AIC showed that sex significantly affected the methylomic

aging rate in BRR and RKHS (Supplementary File S1,

Supplementary Table S17). As shown in Figure 5, the AMAR was

significantly reduced in females than males by age (P< 0.01). This

result confirms a previous study, which showed a faster aging

rate in males (Hannum et al. 2013). A total of 1549 suggestive sites

were identified, which may influence AMAR producing sex-spe-

cific methylation patterns (Supplementary File S2).

Discussion
Recent studies have applied elastic net regression models and ar-
tificial neural networks to predict chronological age using meth-
ylation clock sites (Hannum et al. 2013; Horvath 2013; Petkovich
et al. 2017; Stubbs et al. 2017; Vidaki et al. 2017). These methods
automatically select a small subset of methylation markers
(maximum a few hundred) to fit a model that is highly predictive
of chronological age. In contrast, our study found that the num-
ber of methylation sites related to age is over 100,000. It appears
more sensible to use an age prediction model where all methyla-
tion sites are fitted simultaneously. Consequently, we compared
two parametric and semiparametric methods. BRR was used as a
parametric method to fit a massive number of methylation sites
by assuming a Gaussian prior distribution of the effect of each
methylation site (de los Campos et al. 2013). We chose RKHS as a
semiparametric method, with a Gaussian kernel to predict chro-
nological age (Morota and Gianola 2014).

Although BRR and RKHS use a different type of shrinkage of
estimates to handle the problem of a large number of the predic-
tors relative to sample size, there was no significant difference
between these models. These results are in agreement with a pre-
vious study that found no difference in whole-genome prediction
accuracies between parametric and semiparametric approaches
in maize (Riedelsheimer et al. 2012). The slight difference between
BRR and RKHS suggests that there is a little or no interaction
effect between methylated CpG sites, that RKHS regression is not

Figure 3 Un-adjusted methylation profiles by age. (A) Heatmap of the top 1000 age-associated methylation markers. CpG sites are sorted by the
magnitude of regression coefficients. Individuals are grouped into intervals of 5 years and ordered from the youngest to the oldest group. (B) Density
plots of beta values by age group for positively (top) and negatively (bottom) age-associated methylation markers in the 10% youngest (iris blue) and
10% oldest (salmon) individuals.
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Figure 4 Plots of regressions of average of individual methylation levels at different locations in the genome on age. Plots illustrate association of
average beta values and age calculated from the four CpG types, including CpG island (A), shore (B), shelf (C), and open sea (D). Methylation markers in
each CpG type classified into two categories: age-associated and not-associated methylation sites. In age-associated sites, the global methylation level
increased and decreased with age in CpG island and off CpG island, respectively (P< 5e-06). In not-associated methylation sites, CpG shelf and open sea
were significantly demethylated with increasing age (P< 0.01).
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able to capture it. Using EWAS, we found that most methylation
sites had no association with age, and subset selection increased
the performance of predictive, with a smaller number of predic-
tors. To further evaluate whole methylome prediction using
RKHS and BRR, three previously presented procedures—Horvath
multi-tissue, Horvath skin method, and Levine method—were
also evaluated. Fitting all methylation sites simultaneously
yielded better predictions of age. The accuracy was slightly
higher than reported in previous studies that used the elastic net
approach (Hannum et al. 2013; Horvath 2013). This increase in ac-
curacy could be due to the large sample size used in our study,
fitting all aDMPs simultaneously, or the different methodologies
used in these studies.

As whole blood is a heterogeneous ensemble of white cells,
with each type having a different epigenetic profile, adjustment
for WBC heterogeneity in EWA studies is strongly recommended
when this type of tissue is used. Heterogeneous cell populations
in the blood may act as a potential confounder when cell distri-
bution differs over target traits. For instance, adjustment for
WBC proportions reduced the strength of association signals in
rheumatoid arthritis disease (Liu et al. 2013). Although EWASs
have illustrated the importance of adjusting for changes in cell-
type composition (Liu et al. 2013; Jaffe and Irizarry 2014), the im-
pact on whole methylation prediction has not been studied in age
prediction. However, adjusting methylation profiles for cellular
heterogeneity had a detrimental effect on the classification abil-
ity of rheumatoid arthritis cases from controls (Amiri Roudbar
et al. 2020). In concordance, we found a decrease in prediction ac-
curacy from using the adjusted methylation data related to un-
adjusted methylation data.

It has been suggested that methylomic aging rates vary among
different individuals (Hannum et al. 2013) and that DNA methyla-
tion changes accumulate over the lifetime. Hannum et al. (2013)

reported 27,800 markers with heteroscedasticity, and 99.8%
showed an increase in variation with age. Our results indicate
that epigenetic drift is a more extensive phenomenon than gener-
ally believed.

Global DNA methylation level decreases with aging in mam-
malian tissues (Wilson and Jones 1983). The methylation of a CGI
located in the promoter region of the estrogen receptor (ER) gene
was associated with age in normal colorectal mucosa (Issa et al.
1994). Furthermore, a vast proportion of age-related methylation
sites in normal breast tissue was located in CGIs, and a close rela-
tionship between age-related DNA methylation changes and epi-
genetic alterations was present in breast tumors (Johnson et al.
2014). In a study on a cancer-free population, no significant dif-
ferences in global DNA methylation were found between differ-
ent middle age groups (Zhang et al. 2011). Our results indicate
that methylation sites located in CGIs tend to gain methylation
with increasing age, whereas aDMPs located in other CpG types,
including shore, shelf, and open sea areas, tend to lose methyla-
tion with aging. Interestingly, the average methylation level of
aDMPs located in CpG islands was significantly higher in older
individuals. With increasing distance from CpG islands, the aver-
age methylation levels for aDMPs significantly decreased with ag-
ing. These results agree with previous studies that found age-
related methylation sites to be methylated and unmethylated
preferentially at CpG islands (Christensen et al. 2009) and CpG
shores (Horvath 2013), respectively. The average methylation
level for nonassociated methylation sites changed slightly and
remained constant over the age range. These results enabled us
to identify distinct age methylation patterns in CpG types accord-
ing to distance from CGIs. This global methylation pattern
revealed that age-related changes in DNA methylation are not
distributed randomly on the genome. Understanding the mecha-
nisms that produce these location-specific methylation patterns
during the human lifespan warrants further research.

Recently, a significant difference in average methylation levels
between males and females was observed in individuals ranging
from 41 to 55 years of age (Tsang et al. 2016). A significantly lower
methylation level was found for males than for females. In con-
trast, in a study of human peripheral blood from individuals
ranging from 45 to 75 years, females had lower methylation levels
(Zhang et al. 2011). With these contradictory reports, the global
DNA methylation variation between sexes remains unclear, al-
though it is accepted that females undergo a slower aging rate, as
they have a slower methylomic aging rate (Hannum et al. 2013)
and a later age-related decline (Gur and Gur 2002). We found that
the average methylation at CGI increased with age, but the aver-
age methylation at CpG shore, shelf, and open sea decreased in
elders. The differences in methylation patterns between males
and females may result from a slower methylomic aging rate in
females. These results suggest that regions located near to and
far from CGIs tend to be methylated and demethylated, respec-
tively, over aging in a sex-specific manner and that the global
sex-specific methylation level may change across the genome.

One limitation in this study was the use of cohorts with differ-
ent age and sex distributions for age prediction. Consequently, a
portion of the correlation between actual and predicted age
might be due to confounders, given that the model with only sex
and dataset achieved a higher correlation (0.733) than the predic-
tion models based on three previous studies with gender and
dataset (0.557–0.570 for adjusted data). This suggests that using a
small number of CpG sites to fit an age prediction model would
not be an appropriate choice when including confounders that
influence prediction. However, our results showed that using a

Figure 5 Regression of AMAR on age in males (blue) and females (red).
Models were (A) reproducing kernel Hilbert spaces (RKHS) regression and
(B) BRR; both models showed sex-specific AMAR patterns. In both
approaches, females had significantly slower AMAR than males (P< 0.01;
see Supplementary File S1, Supplementary Table S17).
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whole-genome methylome prediction approach may overcome
this limitation and could be a better choice for predicting chrono-
logical age with these datasets.

Using methylation profiles to predict chronological age has po-
tential applications in many fields, including disease prevention
and treatment, forensics, and anti-aging medicine. A predicted
biological age can also be used to estimate aging rates, which
help explain epigenetic drift (Hannum et al. 2013). Most of the
age-prediction methods use a small number of methylation sites,
although many of these CpG sites may not be methylated.
Therefore, using whole-genome methylome prediction models in
this study may lead to a more realistic aging rate prediction.

Age-related diseases such as metabolic syndrome, obesity,
type 2 diabetes mellitus, and cardiovascular diseases are increas-
ing due to the growing aging population observed worldwide.
Several mechanisms play essential roles in the development of
age-related diseases, including epigenetic processes (Franceschi
et al. 2018). To assess the functional relationship between epige-
netics and age-related diseases, genes associated with aDMPs
were analyzed by disease association analysis. Smoking can
affect DNA methylation, and some of the influenced genes are
involved in the risk of age-related conditions such as cardiovas-
cular diseases (Breitling et al. 2012; Dogan et al. 2014). Our results
indicate that the accumulation of epigenetic changes with age
was comparable to smoking-associated DNA methylation
changes, which implies that smoking can likely change the
dynamic of the DNA methylation pattern similar to the aging pro-
cess. Results of our pathway analysis indicate that age-associated
epigenetic landscape alterations may contribute to disease
susceptibility through biological pathways.

Genetic and environmental factors can either hasten or delay
the aging process. Several aging phenotypes have been associated
with genetic variation within the FOXO3A gene (Willcox et al.
2008), and some of these genetic variants are associated with a
slowing or delay in age-related disease (Kenyon 2010). Lifestyle
choices such as smoking and physical fitness are among the envi-
ronmental factors that can influence the aging process (Blair et al.
1989). Sex can also affect human longevity, as mortality rates are
higher for males, and females tend to live longer than males in
most countries (Austad 2006). These observations have led to the
search for molecular markers of aging rate, and a faster methylo-
mic aging rate in males than in females has been reported
(Hannum et al. 2013). Although females can live longer than
males, there is a limited number of studies attempting to under-
stand the mechanisms that drive changes in the aging rate in a
sex-specific manner. Methylomic assessment of sex-specific age-
related methylation sites allows us to understand differences in
methylomic aging between sexes. We identified over 1500 puta-
tive methylation sites that could affect variation in methylomic
aging rate. This large number of sex-specific methylated aDMPs
highlights the complexity of the methylomic aging rate.

Conclusions
In this study, we found that choosing age-associated methylation
sites according to EWAS for pre-selection of predictors helps im-
prove prediction ability. Further research on pre-selection meth-
ods may help to find even more accurate prediction models.
The use of cell-type corrections needs to be carefully considered
in chronological age predictions. Interestingly, We found that the
methylation patterns of age-associated sites differ with their
genome position. There is an increase in methylation at CGIs,
whereas CpG shore, shelf, and open sea show decreased

methylation levels with age. We found that methylation sites can
display a sex-specific methylation rate. These sites may help ex-
plain the increased methylomic aging rate for males. However,
understanding the molecular mechanisms underlying sex-spe-
cific aging processes warrants further research.
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