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Cisplatin resistance is a challenge in the treatment of epithelial ovarian cancer. Here,
clinical data showed that the level of netrin-G1 (NTNG1) in cisplatin-resistant cancer
was higher than that in cisplatin-sensitive cancer (2.2-fold, p = 0.005); patients
with a high NTNG1 level in cancer tissues had shorter progression-free survival
(11.0 vs. 25.0 months, p = 0.010) and platinum-free interval (5.0 vs. 20.0 months,
p = 0.021) compared with patients with a low level. Category- or stage-adjusted
analyses demonstrated that the association between the NTNG1 level and prognosis
occurred in type II or FIGO III/IV cancer. The basal level of NTNG1 in SKOV3/DDP
cells (a cisplatin-resistant subline) was higher than that in SKOV3 cells; therefore,
NTNG1 was overexpressed in SKOV3 cells, or silenced in SKOV3/DDP cells. Knocking
in NTNG1 reduced the action of cisplatin to decrease cell death and apoptosis of
SKOV3 cells, accompanied by upregulation of p-AXL, p-Akt and RAD51; however,
opposite effects were observed in SKOV3/DDP cells after knocking down NTNG1. Co-
immunoprecipitation demonstrated that NTNG1 bound GAS6/AXL. Silencing NTNG1
enhanced cisplatin effects in vivo, decreasing tumor volume/mass. These data
suggested that a high NTNG1 level can result in cisplatin resistance in ovarian cancer
cells via the GAS6/AXL/Akt pathway and that NTNG1 may be a useful target to
overcome resistance.
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INTRODUCTION

Ovarian cancer is the most lethal gynecologic malignancy worldwide; epithelial cancer (EOC)
accounts for >85% of cases. The standard treatment for EOC is cytoreductive surgery, followed
by cisplatin (CDDP)-based chemotherapy. However, the 5-year survival rate is <40%, since the
gradually increasing cisplatin resistance during treatment leads to treatment failure (Christie and
Bowtell, 2017; Coburn et al., 2017).

Mechanisms of cisplatin resistance are only partially understood. Cisplatin commonly attacks
DNA leading to apoptosis; therefore, an increase in DNA repair and activation of survival
pathways can result in cisplatin resistance, and numerous candidate genes have been identified
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(Gasparri et al., 2018; Damia and Broggini, 2019). Understanding
the functions of these molecules will help identify targets to
overcome cisplatin resistance.

Netrin-G1 (NTNG1, also known as laminet-1) belongs to
the family of netrins and interacts with diverse single-pass
surface receptors to mediate cell repulsion, attraction, and
adhesion (Sun et al., 2011). NTNG1 contains an extracellular
N-terminal laminin-like domain and a C-terminal glycosylphos-
phatidylinositol (GPI) anchor; NTNG1 predominantly tethers
to the membrane through the GPI anchor, promoting
outgrowth of thalamocortical axons (Yin et al., 2002; Lin
et al., 2003). It has been shown that abnormal expression
of the NTNG1 gene plays a role in the occurrence and
recurrence of colorectal cancer, and that an alteration in
NTNG1 activity is related to poor prognosis via disruption
of the extracellular matrix (Yi et al., 2011; Sho et al.,
2017). However, the role of NTNG1 in ovarian cancer
remains unclear.

The receptor tyrosine kinase AXL triggers cancer progression.
AXL interacts with its ligand growth arrest-specific 6 (GAS6),
promoting cell adhesion, survival, and proliferation via activation
of the ERK or Akt pathway (Graham et al., 2014). Recent data
have indicated that AXL may participate in cisplatin resistance.
AXL can prevent DNA damage due to drugs and promote DNA
repair by upregulating the expression of RAD51, a key protein for
homologous recombination (HR) (Balaji et al., 2017; Kim et al.,
2017; Rose et al., 2020). High expression of AXL is associated
with lower therapeutic responses and poorer prognosis in ovarian
cancer; thus, AXL is a candidate molecule to conquer cisplatin
resistance (Kim et al., 2015; Suh et al., 2015; Tian et al., 2021).
However, underlying mechanisms are poorly understood.

Our protein interaction analysis showed that NTNG1 can
interact with GAS6, suggesting that the role of NTNG1 may
correlate with AXL. Here, the correlation between the expression
level of NTNG1 and cisplatin response in ovarian cancer was
evaluated using online datasets, and the role of NTNG1 in
cisplatin resistance was explored with knock-in and knockdown
experiments. Preliminary data indicated that NTNG1 bound
GAS6/AXL to activate the Akt pathway, thereby modulating the
response of ovarian cancer cells to cisplatin.

MATERIALS AND METHODS

Bioinformatic Analyses
GSE45553 and GSE73935 datasets from the Gene Expression
Omnibus (GEO) that contained mRNA profiles of cisplatin-
sensitive and -resistant human ovarian cancer cell lines were
analyzed. The GSE45553 dataset was for OVCAR-8 and
OVCAR-8C, and GSE73935 was for A2780 and A2780-C;
OVCAR-8C and A2780-C were cisplatin-resistant sublines.
Interactions of the target gene and proteins were analyzed
in the Biological General Repository for Interaction Datasets
(BioGRID)1 (Oughtred et al., 2019).

1https://thebiogrid.org

The KM plotter2 was used to explore the relationship between
the expression level of the target gene and progression-free
survival (PFS) in patients with ovarian cancer (Zhou et al., 2019).

Patients and Cancer Tissues
The use of human tissues was ethically approved by the
local Institutional Review Board. Paraffin-embedded tumor
tissues were collected from 67 EOC patients, who underwent
cytoreductive surgery followed by cisplatin-based chemotherapy
at the Second Affiliated Hospital, Chongqing Medical University
(Chongqing, China) from August 2009 to June 2018. Clinical
data (i.e., age, pathological type/grade, FIGO stage, therapeutic
responses, and survival) were recorded. Resistance was defined
as tumors that recurred or progressed within 6 months
of the last dose, and sensitivity was defined as tumors
that relapsed after 6 months (Matsuura et al., 2017). The
therapeutic outcome was reflected using PFS and the platinum-
free interval (PFI). PFS was the interval from the date of
initial surgery to the date of progression/recurrence or last
contact (censored), and PFI was the interval from the end of
cisplatin treatment to the date of progression/recurrence or last
contact (censored). PFS/PFI received stage- or category-adjusted
analyses. Type I cancer included low-grade serous, clear cell,
and endometrioid cancers; type II was high-grade serous cancer
(Salazar et al., 2018).

Detection of NTNG1 in Cancer Tissues
With an Immunohistochemical Assay
An immunohistochemical assay was performed to detect NTNG1
in cancer tissues with a streptavidin–peroxidase kit (ZSGB-
BIO, Beijing, China), using an anti-NTNG1 antibody (GeneTex,
Irvine, CA, United States). The expression level of NTNG1
was quantified using the software Image-Pro Plus (Media
Cybernetics, Rockville, MD, United States) and was expressed
with the mean density (i.e., integrated absorbance/area). The
cutoff value of a high/low expression level was determined using
the receiver operator characteristic curve.

Cells
Human EOC cell lines SKOV3 and SKOV3/DDP (identified by
STR; Cell Bank, Type Culture Collect., Chin. Acad. Sci., Shanghai,
China) were cultured in RPMI 1640 medium (Gibco, Beijing,
China) enriched with 10% fetal bovine serum (Biol. Ind., Kibbutz
Beit Haemek, Israel) at 37◦C and 5% CO2. SKOV3/DDP was a
resistant subline that can grow in the presence of 0.75 µg/mL
of cisplatin (Yunnan Phytopharm., Kunming, China); cells were
transferred to cisplatin-free medium for 5 days before performing
experiments to avoid interference induced by residual drugs (Yu
et al., 2015, 2016; Qian et al., 2019; Liu et al., 2020).

Cell Viability
Cells were seeded in a 96-well plate (5.0 × 103 cells per well)
and then exposed to cisplatin (0, 0.5, 1.0, 2.0, 4.0, 8.0, and
16.0 µg/mL). Cell viability was determined with a CCK-8 assay

2http://kmplot.com/analysis/
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(Dojindo Lab., Kumamoto, Japan) after 48 h. The half-maximal
inhibition concentration (IC50) was calculated using the probit
regression. For transfected cells, cells were subjected to cisplatin
(IC50) and cell viability was determined after 24, 48, and 72 h.

Cell Transfection
A lentiviral vector of shNTNG1 (GenePharma, Shanghai, China)
was used to downregulate NTNG1 in SKOV3/DDP cells, and
a lentiviral vector of NTNG1 (GenePharma) was adopted to
upregulate NTNG1 in SKOV3 cells. shNTNG1, shNC, NTNG1,
or NC was transferred into cells with the Polybrene kit
(GenePharma). Puromycin (Solarbio Life Sci., Beijing, China)
was added into the medium to remove uninfected cells, thereby
obtaining stably transfected cells. The siRNA sequences were
as follows: shNTNG1, 5′-CCAAGCCTCTCCAGGTTAA-3′, and
shNC, 5′-TTCTCCGAACGTGTCACGT-3′. NC was the negative
control (i.e., empty vector).

Western Blotting
Proteins were extracted after cells were exposed to cisplatin
(IC50) for 48 h using ice-cold RIPA buffer (Beyotime, Chongqing,
China) supplemented with phenylmethanesulfonyl fluoride
(PMSF); the concentration was determined with a BCA
kit (Beyotime). Proteins were separated by SDS-PAGE and
transferred to a PVDF membrane (Merck Millipore, Billerica,
MA, United States). Primary antibodies were as follows:
anti-NTNG1 (GeneTex), anti-RAD51 (Abcam, Cambridge,
United Kingdom), anti-AXL/p-AXL (Cell Signaling Technology,
Danvers, MA, United States), anti-Akt/p-Akt (Cell Signaling
Technol.), anti-GAS6 (Bioss Biotechnology, Beijing, China),
and anti-β-actin (Proteintech, Wuhan, China). The secondary
antibody was a goat anti-rabbit IgG antibody (Abcam). Bands
were analyzed with the software Image Lab (Bio-Rad Lab.,
Hercules, CA, United States). The density ratio was used to
calibrate the level of a target protein, with β-actin as the reference.

To detect the expression level of NTNG1 after cisplatin
exposure, proteins were extracted after SKOV3 or SKOV3/DDP
cells were exposed to cisplatin (IC50 or 0.5 × IC50) for 48 h, or
after SKOV3/DDP cells were cultured in cisplatin-free medium
for 3, 5, 7, and 9 days.

Cell Apoptosis
Cells were treated with cisplatin (IC50), and then apoptotic cells
were detected using an Annexin V assay (Elabscience, Wuhan,
China) after 48 h.

Detection of γ-H2A.X Using an
Immunofluorescent Assay
Cells were exposed to cisplatin (IC50) for 48 h, fixed with 4%
paraformaldehyde for 30 min, blocked with 10% BSA for 1 h,
and incubated with anti-γ-H2A.X antibody (Alexa Fluor-647
conjugate; Abcam) overnight at 4◦C in the dark. Nuclei were
counterstained with DAPI (Beyotime). Cells were observed
under a confocal microscope (Nikon, Tokyo, Japan), and the
fluorescence intensity was determined with Image-Pro Plus.

Co-immunoprecipitation
Co-immunoprecipitation (coIP) was performed to validate the
interaction between NTNG1 and GAS6/AXL. Protein A/G beads
(MedChemExpress, Monmouth Junction, NJ, United States)
were incubated with the primary antibody against NTNG1 (Santa
Cruz Biotechnol., Dallas, TX, United States) with shaking for 1 h.
NTNG1/NC-transfected SKOV3 cells were lysed in prechilled
RIPA buffer supplemented with PMSF, protein A/G beads were
added, and the mixture was shaken for 1 h. The beads were
washed, and the eluted proteins were subjected to western
blotting to detect NTNG1, GAS6, AXL, and p-AXL.

In vivo Therapies
The use of laboratory animals was ethically and scientifically
approved by the local Institutional Review Board in compliance
with the Care and Use of Laboratory Animals. A total of
1.0 × 106 NC− or NTNG1-transfected SKOV3 cells, and
shNC− or shNTNG1-transfected SKOV3/DDP cells, were
subcutaneously injected into the left armpit of 4-week-old female
BALB/c nude mice (Cavens Lab. Anim., Changzhou, China),
with five animals in each group. Cisplatin (10 mg/kg) was
injected via a tail vein every 4 days at four times in groups
NC + CDDP and NTNG1 + CDDP for SKOV3 tumors,
and in groups shNC + CDDP and shNTNG1 + CDDP for
SKOV3/DDP tumors; mice in the remaining groups received
normal saline. The tumor volume was calibrated every 4 days
[(length × width2)/2]. Animals were euthanized 4 days after

TABLE 1 | Clinicopathological characteristics and their associations with the
expression level of NTNG1 in ovarian cancer tissues.

Clinicopathological
variables

Case no. NTNG1 expression level p-value

Low (n = 39) High (n = 28)

Age (year)

<50 23 13 (56.5%) 10 (43.5%) 0.840

≥50 44 26 (59.1%) 18 (40.9%)

Histological type

Serous 59 34 (57.6%) 25 (42.4%) 0.386

Clear cell 7 5 (71.4%) 2 (28.6%)

Endometrioid 1 0 (0.0%) 1 (100.0%)

Pathological grade

1/2 25 12 (48.0%) 13 (52.0%) 0.191

3 42 27 (64.3%) 15 (35.7%)

Category

Type I 32 17 (53.1%) 15 (46.9%) 0.420

Type II 35 22 (62.9%) 13 (37.1%)

FIGO stage

I/II 22 15 (68.2%) 7 (31.8%) 0.247

III/IV 45 24 (53.3%) 21 (46.7%)

Cisplatin response*

Resistant 23 7 (30.4%) 16 (69.6%) 0.001

Sensitive 44 32 (72.7%) 12 (27.3%)

*Resistance was that tumors recurred or progressed within 6 months from the last
dose, and sensitivity was that tumors relapsed after 6 months.
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the last dose; tumors were removed, weighed, and pathologically
examined. NTNG1 and RAD51 proteins in tumor tissues were
immunohistochemically detected.

Statistics
Data were processed with the SPSS software (IBM, Armonk,
NY, United States). Analysis of variance was used, and multiple
comparisons were performed with the t-test. The correlation
between the NTNG1 level and clinicopathological variables was
analyzed with the chi-square test. PFS and PFI were evaluated
with the Kaplan–Meier method. The difference was significant if
the p-value was <0.05.

RESULTS

A High Expression Level of NTNG1 in
Cancer Tissues Indicated
Chemoresistance and a Poorer
Prognosis
Bioinformatic analyses of the GSE45553 and GSE73935 datasets
indicated that NTNG1 was a candidate gene involved in cisplatin
resistance in ovarian cancer; the BioGRID demonstrated an
interaction between NTNG1 and GAS6. The expression level
of NTNG1 in cisplatin-resistant cell lines was higher than in
cisplatin-sensitive cell lines (log2 fold change, 2.3–4.0). The KM
plotter indicated that a higher expression level of the NTNG1

gene was related to a shorter PFS of ovarian cancer patients
in overall as well as in the subgroup that received cisplatin
treatments (p = 0.005, p < 0.001) (Supplementary Figures 1, 2).

To verify the aforementioned results, the correlation
between the expression level of NTNG1 protein in cancer
tissues and clinicopathological variables in 67 EOC cases was
explored (Table 1). The NTNG1 level was higher in resistant
cancers compared with sensitive cancers (0.0124 ± 0.0021 vs.
0.0056 ± 0.0009, p = 0.005) (Figures 1A,B); the cutoff value
was 0.0066. Predictive values were 57.1% (95% confidence
interval [CI]: 37.6–76.7%) and 82.1% (95% CI: 69.4–94.7%) when
using a high level for resistance and a low level for sensitivity,
respectively (p = 0.032). Patients with a high NTNG1 level in
cancer tissues had shorter PFS [median: 11.0 (95% CI 8.9–13.0)
vs. 25.0 (95% CI: 17.1–32.9) months, p = 0.010] and PFI [median:
5.0 (95% CI: 2.7–7.3) vs. 20.0 (95% CI: 13.9–26.1) months,
p = 0.021], compared with those with a low level (Figures 1C,D).
Adjusted analyses showed that the correlation between the high
NTNG1 level and the poorer prognosis was observed in type II
and FIGO III/IV cancers (Supplementary Figure 3). Overall, the
data demonstrated that a high level of NTNG1 in cancer tissues
indicated poorer therapeutic responses and outcomes.

A High NTNG1 Level Caused Cisplatin
Resistance
The IC50 values were 1.4 and 4.2 µg/mL for SKOV3 and
SKOV3/DDP cells, respectively, confirming the resistance

FIGURE 1 | Level of correlated with cisplatin response and prognosis in patients with ovarian cancer (n = 67). (A) Representative immunohistochemical images of
NTNG1 protein in cancer tissues; scale = 100 µm. (B) Expression level of NTNG1 in cisplatin-sensitive or -resistant cancer tissues; a higher level was observed in
resistant cancers. (C,D) Kaplan–Meier analyses of platinum-free interval (PFI) and progression-free survival (PFS); patients with a high NTNG1 level in cancer tissues
had shorter PFI and PFS compared with those with a low level. ∗p < 0.05.
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phenotype of SKOV3/DDP (Figure 2A). NTNG1 was detected
in both cell lines, and the basal expression level in SKOV3/DDP
was higher than that in SKOV3 (2.1-fold, p < 0.001) (Figure 2B).
Therefore, SKOV3 and SKOV3/DDP were used for knock-in and
knockdown experiments, respectively.

Following exposure to cisplatin, the level of NTNG1
dose-dependently increased in SKOV3 (2.6- to 4.2-fold,
p < 0.001) and SKOV3/DDP (1.6- to 2.0-fold, p < 0.001) cells
(Figure 2C). In SKOV3/DDP cells, this increased level gradually
decreased to the basal level following the removal of cisplatin
(p = 0.007) (Figure 2D).

Overexpression of NTNG1 decreased the percentages of
dead and apoptotic cells induced by cisplatin in SKOV3
cells (p = 0.006–0.030, p = 0.004) (Figures 3A,C,E,F). These
percentages were increased in SKOV3/DDP cells after silencing
NTNG1 (p = 0.004–0.018, p = 0.011) (Figures 3B,D,E,G).
Cisplatin-induced expression of NTNG1 was also observed
following knock-in or knockdown. The findings demonstrated
that NTNG1 was involved in cisplatin resistance.

NTNG1 Promoted DNA Repair
DNA damage/repair was assayed by detecting γ-H2A.X and
RAD51. γ-H2A.X was involved in the retention of repair

complexes at sites of DNA damage, and RAD51 was a key
molecule for HR (Bonner et al., 2008; Zhao et al., 2017).
Cisplatin induced the formation of γ-H2A.X foci and an increase
in the RAD51 level in both cell lines, i.e., initiating DNA
repair. Overexpressing NTNG1 increased the RAD51 level in
SKOV3 cells (p = 0.002), while the γ-H2A.X level decreased
(p = 0.023) (Figures 4A,B,E). Silencing NTNG1 reduced the
RAD51 level in SKOV3/DDP cells (p = 0.001), but the γ-H2A.X
level was increased (p = 0.025) (Figures 4C,D,F). These data
showed that NTNG1 upregulated the expression of RAD51,
favoring DNA repair.

NTNG1 Improved DNA Repair Through
the AXL/Akt Pathway
The BioGRID database indicated an interaction between NTNG1
and GAS6, suggesting that NTNG1 can activate the AXL/Akt
pathway to enhance DNA repair. Cisplatin caused DNA damage,
inducing phosphorylation of AXL/Akt; the levels of p-Akt and
p-AXL were increased in SKOV3 cells following overexpression
of NTNG1 (p = 0.012, p = 0.013) (Figures 5A–C), but were
decreased in SKOV3/DDP cells following silencing of NTNG1
(p = 0.001, p = 0.002) (Figures 5D–F).

FIGURE 2 | The level of NTNG1 was increased in cisplatin-resistant ovarian cancer cells (n = 3). (A) Cell survival (%) following cisplatin exposure; higher values were
noted in SKOV3/DDP cells, confirming the resistance phenotype. (B) Expression level of NTNG1 was assayed by western blotting; the basal level in SKOV3/DDP
cells (determined 5 days after cisplatin removal) was higher than that in SKOV3 cells; cisplatin induced its expression in SKOV3/DDP cells. (C) The level of NTNG1
increased with increasing concentration of cisplatin in SKOV3 and SKOV3/DDP cells. (D) The expression level of NTNG1 in SKOV3/DDP cells gradually decreased to
the basal level following cisplatin removal. CDDP, cisplatin. ∗p < 0.05.
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FIGURE 3 | NTNG1 enhanced the action of cisplatin in vitro (n = 3). (A,C) The level of NTNG1 was increased in NTNG1-transfected SKOV3 cells; overexpression of
NTNG1 increased the cell-survival percentage following cisplatin exposure. (B,D) The NTNG1 level was decreased in shNTNG1-transfected SKOV3/DDP cells;
silencing NTNG1 decreased the cell-survival percentage following cisplatin treatment. (E–G) Apoptosis induced by cisplatin; the percentage of apoptotic SKOV3
cells decreased following overexpression of NTNG1, but increased in SKOV3/DDP cells after silencing NTNG1. CDDP, cisplatin. ∗p < 0.05.

To understand the mechanism of NTNG1 regulation of the
AXL/Akt pathway, the interaction of NTNG1 and GAS6/AXL
was validated by a coIP assay. The immunoprecipitate obtained
from lysates of SKOV3 cells contained NTNG1, GAS6, and
AXL/p-AXL; overexpression of NTNG1 increased the levels
of GAS6 and AXL/p-AXL (Figure 5G). These data indicated
that NTNG1 directly bound GAS6/AXL to activate the
AXL/Akt pathway.

NTNG1 Modulated the Action of DNA
in vivo
To determine the effect of NTNG1 on the action of cisplatin
in vivo, NTNG1- or shNTNG1-transfected cells were
injected into mice to form tumors. In SKOV3 tumors,
overexpression of NTNG1 did not affect the tumor; tumor

volume and mass in group NTNG1 + CDDP were greater
than those in group NC + CDDP (p = 0.030, p = 0.029)
(Figures 6A–C). In SKOV3/DDP tumors, silencing NTNG1 did
not inhibit the tumor; smaller tumors were detected in group
shNTNG1 + CDDP compared with group shNC + CDDP
(p = 0.021, p = 0.009) (Figures 6A,D,E).

NTNG1 and RAD51 in tumor tissues were analyzed.
These two proteins were present at a higher level in
SKOV3/DDP tumors compared with SKOV3 tumors, and
cisplatin treatment induced an increase in both tumor
types. In SKOV3 tumors, levels of NTNG1 and RAD51 in
group NTNG1 + CDDP were higher than those in group
NC + CDDP (p < 0.001, p = 0.003) (Figures 6F,H,I); however,
in SKOV3/DDP tumors, levels in group shNTNG1 + CDDP
were lower than those in group shNC + CDDP (p < 0.001,
p = 0.001) (Figures 6G–I). These data confirmed that the
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FIGURE 4 | Effects of NTNG1 on DNA damage/repair (n = 3). (A–D) Immunofluorescent detection of γ-H2A.X; the level was increased in SKOV3 and SKOV3/DDP
cells following cisplatin exposure; after cisplatin treatment, the level in NTNG1-transfected SKOV3 cells was lower than that in NC-transfected cells, but a higher level
was observed in shNTNG1-transfected SKOV3/DDP cells compared with shNC-transfected cells; scale = 10 µm. (E,F) Cisplatin induced the expression of RAD51;
following cisplatin exposure, a higher level was noted in NTNG1-transfected SKOV3 cells compared with NC-transfected cells, but a lower level was detected in
shNTNG1-transfected SKOV3/DDP cells compared with shNC-transfected cells. CDDP, cisplatin. ∗p < 0.05.
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FIGURE 5 | NTNG1 bound GAS6/AXL to activate the AXL/Akt pathway (n = 3). (A–F) AXL, p-AXL, Akt, and p-Akt were assayed by western blotting; the levels of
p-AXL and p-Akt were increased following cisplatin exposure, indicating these molecules were involved in cell survival; such an inductive effect was enhanced in
SKOV3 cells following overexpression of NTNG1 but was suppressed in SKOV3/DDP cells after silencing NTNG1. (G) Co-immunoprecipitation in SKOV3 cells;
proteins were assayed by western blotting; the immunoprecipitate contained NTNG1, GAS6, and AXL/p-AXL; higher levels were noted following overexpression of
NTNG1, confirming an interaction between NTNG1 and GAS6/AXL. CDDP, cisplatin. ∗p < 0.05.

level of NTNG1 in tumor tissues determined the efficacy of
cisplatin treatment.

DISCUSSION

Clinical data indicated that patients with a low NTNG1 level in
cancer tissues had longer PFI and PFS and that cancers exhibiting
a low NTNG1 level were sensitive to cisplatin. The NTNG1
level did not correlate with other clinicopathological variables.
Thus, longer PFI and PFS resulted from a better therapeutic
response. Category- or stage-adjusted analyses demonstrated
that the correlation between a high NTNG1 level and poorer
prognosis occurred only in type II or FIGO III/IV cancers.
These two results were consistent. Here, type II cancer was
high-grade serous cancer, which was frequently detected at stage
III/IV (Garces et al., 2015). Type II cancer had gene mutations
(e.g., TP53 and BRCA) and copy amplifications (e.g., MYC and
CCNE1), which can cause cisplatin resistance (Brachova et al.,
2013; Rojas et al., 2016; Singh et al., 2019; Gorski et al., 2020). The
sample size was small, and therefore the present results should
be validated in larger trials. Using a low level to show sensitivity
had a higher predictive value compared with using a high level
to indicate resistance, i.e., a low NTNG1 level can provide more
information for clinical decisions.

Cisplatin attacked DNA to cause breaks, and double-strand
breaks (DSBs) led to cell death via apoptosis; enhancing DSBs
was a strategy to modulate cisplatin treatment and to overcome

resistance (He et al., 2014; Wan et al., 2018; Qian et al., 2019). The
γ-H2A.X foci formed at the DSB sites to favor an accumulation
of repair molecules and were therefore used to monitor DSB
repair (Liu et al., 2016). HR was the major pathway employed to
repair DSBs induced by cisplatin; RAD51 was a key molecule in
this pathway (Sugiyama and Kantake, 2009; Helleday, 2010; Lee
et al., 2019). Levels of γ-H2A.X and RAD51 were upregulated
following cisplatin exposure, i.e., cisplatin caused DSBs, initiating
HR. Overexpression of NTNG1 increased the RAD51 level in
SKOV3 cells, boosting HR; silencing NTNG1 decreased the
RAD51 level in SKOV3/DDP cells, debasing HR; the expression
pattern of NTNG1 determined the cells’ response to cisplatin.
These results were consistent with alterations of the percentages
of dead and apoptotic cells following knock-in or knockdown of
NTNG1. The γ-H2A.X foci disappear after DSBs were repaired
(Pintado-Berninches et al., 2019). Consequently, a lower level of
γ-H2A.X was observed following overexpression of NTNG1, but
a higher level was detected after silencing NTNG1. The present
data showed that NTNG1 modulated sensitivity to cisplatin by
adjusting HR capability.

Survival pathways were necessary for cell survival and
may be involved in chemoresistance. The Akt pathway was
such a pathway to prevent apoptosis (Zhang et al., 2016).
Activation of Akt can induce the expression of RAD51 to
enhance DNA repair, while inactivation of Akt downregulated
RAD51 to augment the action of DNA-damaging drugs
(Ko et al., 2016; Boichuk et al., 2020). AXL, highly expressed
in multiple cancer types, can activate Akt to favor cell
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FIGURE 6 | NTNG1 modulated the action of cisplatin in xenograft tumors (n = 5). (A) Image of SKOV3 and SKOV3/DDP tumors. (B,C) Volume and mass of SKOV3
tumors; values in group NTNG1 + CDDP were greater than those in group NC + CDDP, indicating a decrease in antitumor efficacy. (D,E) Volume and mass of
SKOV3/DDP tumors; values in group shNTNG1 + CDDP were less than those in group shNC + CDDP, demonstrating a stronger anticancer action. (F,G)
Immunohistochemical images of NTNG1 and RAD51 proteins in tumor tissues; scale = 100 µm. (H,I) Levels of NTNG1 and RAD51 proteins; cisplatin treatment
induced the expression of RAD51; in SKOV3 tumors, levels of NTNG1 and RAD51 in group NTNG1 + CDDP were higher than those in group NC + CDDP; in
SKOV3/DDP tumors, lower levels were detected in group shNTNG1 + CDDP compared with group shNC + CDDP. CDDP, cisplatin. ∗p < 0.05.

proliferation and chemoresistance (Li et al., 2014; Tian
et al., 2016). AXL was the only known ligand of GAS6;
binding of GAS6 to AXL activated the kinase domain
of AXL, and downstream signaling pathways such as the
Akt and ERK pathways were activated (Wang et al., 2016;
Antony et al., 2018; Li et al., 2019). Activation of Akt
and AXL was realized via phosphorylation. The BioGRID

suggested that GAS6 be a target protein of NTNG1. This
was supported by our coIP results, which demonstrated an
interaction between NTNG1 and GAS6/AXL. Cisplatin induced
an increase in the level of p-AXL and p-Akt, confirming
their roles in cisplatin resistance of ovarian cancer cells;
the inductive effect was amplified in SKOV3 cells following
overexpression of NTNG1, and an opposite result was observed
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in SKOV3/DDP cells when silencing NTNG1. These findings
suggested the following mechanism: NTNG1 interacted with
GAS6/AXL, activating the Akt pathway, which upregulated the
expression of RAD51 and improved the HR capacity, ultimately
leading to cisplatin resistance.

In vivo data demonstrated that NTNG1 determined the
therapeutic outcome of cisplatin: upregulation of NTNG1
decreased the therapeutic efficacy, but downregulation enhanced
the anticancer action. These data were consistent with the results
of in vitro therapies. The expression pattern of RAD51 protein
displayed a similar trend. Thus, NTNG1 modulated the action
of cisplatin by affecting HR. The therapeutic efficacy should
be verified on an orthotopic ovarian cancer model to improve
the clinical relevancy (Zhang et al., 2017; Liu et al., 2020).
SKOV3/DDP represented acquired resistance, but resistance can
be intrinsic in refractory ovarian cancer (Luvero et al., 2014;
Cornelison et al., 2017). Thus, the role of NTNG1 in intrinsic
cisplatin resistance should be explored.

Overall, the level of NTNG1 was higher in cisplatin-resistant
ovarian cancer tissues compared with cisplatin-sensitive ones;
patients with a high NTNG1 level in cancer tissues had shorter
PFS and PFI. NTNG1 directly bound GAS6/AXL to regulate
phosphorylation of AXL and Akt, upregulated the expression
of RAD51, enhanced DSB repair, and eventually resulted in
cisplatin resistance. Thus, NTNG1 was a target for ovarian cancer
treatment, and inhibiting NTNG1 may be a useful strategy to
overcome cisplatin resistance.
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