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Abstract

Deregulation of the transforming growth factor-b (TGFb) signaling pathway in epithelial ovarian cancer has been reported,
but the precise mechanism underlying disrupted TGFb signaling in the disease remains unclear. We performed chromatin
immunoprecipitation followed by sequencing (ChIP-seq) to investigate genome-wide screening of TGFb-induced SMAD4
binding in epithelial ovarian cancer. Following TGFb stimulation of the A2780 epithelial ovarian cancer cell line, we
identified 2,362 SMAD4 binding loci and 318 differentially expressed SMAD4 target genes. Comprehensive examination of
SMAD4-bound loci, revealed four distinct binding patterns: 1) Basal; 2) Shift; 3) Stimulated Only; 4) Unstimulated Only. TGFb
stimulated SMAD4-bound loci were primarily classified as either Stimulated only (74%) or Shift (25%), indicating that TGFb-
stimulation alters SMAD4 binding patterns in epithelial ovarian cancer cells. Furthermore, based on gene regulatory network
analysis, we determined that the TGFb-induced, SMAD4-dependent regulatory network was strikingly different in ovarian
cancer compared to normal cells. Importantly, the TGFb/SMAD4 target genes identified in the A2780 epithelial ovarian
cancer cell line were predictive of patient survival, based on in silico mining of publically available patient data bases. In
conclusion, our data highlight the utility of next generation sequencing technology to identify genome-wide SMAD4 target
genes in epithelial ovarian cancer and link aberrant TGFb/SMAD signaling to ovarian tumorigenesis. Furthermore, the
identified SMAD4 binding loci, combined with gene expression profiling and in silico data mining of patient cohorts, may
provide a powerful approach to determine potential gene signatures with biological and future translational research in
ovarian and other cancers.

Citation: Kennedy BA, Deatherage DE, Gu F, Tang B, Chan MWY, et al. (2011) ChIP-seq Defined Genome-Wide Map of TGFb/SMAD4 Targets: Implications with
Clinical Outcome of Ovarian Cancer. PLoS ONE 6(7): e22606. doi:10.1371/journal.pone.0022606

Editor: Patrick Tan, Duke-National University of Singapore Graduate Medical School, Singapore

Received February 22, 2011; Accepted June 26, 2011; Published July 25, 2011

Copyright: � 2011 Kennedy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by grants from National Institutes of Health U54CA113001, R01CA069065 and National Cancer Institute CA85289 and by
funds from the Ohio State University Comprehensive Cancer Center and The Ohio State University Biomedical Informatics. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Victor.Jin@osumc.edu

. These authors contributed equally to this work.

Introduction

The transforming growth factor-b (TGFb) signaling pathway

plays an important role in controlling proliferation, differentiation,

and other cellular processes including the growth of ovarian surface

epithelial cell (OSE) [1,2]. Dysregulation of TGFb signaling is

frequently observed in epithelial ovarian cancer (EOC) and may be

crucial to EOC development [3,4]. The effects of TGFb are

mediated by three TGFb ligands — TGFb1, TGFb2 and TGFb3,

acting through TGFb type 1 and type 2 receptors [5–7]. TGFBR2 is

the specific receptor for TGFb ligands. The functional receptor

complex regulates the activation of downstream Smad and non

Smad pathways [8]. The phosphorylated type 1 receptor recruits

and phosphorylates receptor-regulated Smads R-Smads). Of the

five R-Smads in mammals, the TGFBR2–ALK5 complex activates

SMAD2 and SMAD3, whereas the TGFBR2–ALK1 complex

activates SMAD1, SMAD5 and SMAD8 [9]. Activated R-Smads

form heteromeric complexes with the common partner Smad (co-

Smad; SMAD4 in mammals) and translocate into the nucleus [6].

As the affinity of the activated Smad complex for the Smad-binding

element is insufficient to support association with endogenous

promoters of target genes, Smad complexes must associate with

other DNA binding transcription factors to regulate expression [7].

Numerous studies have shown that various families of transcription

factors, such as the forkhead, homeobox, zinc finger, LEF1, Ets, and

basic helix–loop–helix (bHLH) families, can serve as SMAD4

partner proteins to achieve high affinity and selectivity for target

promoters with the appropriate binding elements [10–14].

The A2780 human epithelial ovarian cancer cell line is sensitive

to cis-diamminedichloroplatinum(II) (cisplatin), one of the plati-

num-type agents (carbolatin or cisplatin) used in the treatment of

ovarian cancer. In addition to serving as a useful model for

studying drug-sensitive disease, A2780 cells display partial TGFb
dysregulation, indicated by only a modest increase in SMAD4
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expression and transduction of existing SMAD4 from the

cytoplasm to the nucleus following TGFb stimulation [15]. Thus,

this cell line is also an appropriate model system for carrying out

genome-wide mapping of SMAD4 target genes and identifying the

deregulated TGFb/SMAD4 target genes and pathways implicated

in ovarian cancer patients.

Recent comparisons of ChIP-seq (chromatin immunoprecipita-

tion-sequencing) to array-based approaches clearly demonstrated

that ChIP-seq technology yielded higher resolution, greater depth

and improved mapping accuracy of transcription factor binding

and histone modifications on a genome-wide scale [16–18]. In the

current study, we used ChIP-seq technology to study TGFb/

SMAD4 regulation in the platinum-sensitive A2780 ovarian

cancer cell line. We profiled SMAD4 binding loci following with

TGFb stimulation. Using computational approaches, we have

investigated the SMAD4 binding pattern and compared it with the

SMAD4 binding pattern of both a normal immortalized ovarian

surface epitheilial cell (IOSE) from our previous study [12] and

human keratinocytes (HaCaT) from Koinuma et al [11]. Further,

we generated TGFb/SMAD4-regulated gene signatures and

utilized an in silico mining approach to correlate the identified

signatures with clinical outcome data from two publicly available

ovarian cancer patient cohorts. Our integrative approach revealed

significant associations of TGFb/SMAD4 regulatory networks

with both progression free and overall survival in ovarian cancer

patients. By identifying thousands of SMAD4 binding loci as well

as regulated genes, our data provide both a new resource for

studying the mechanism underlying dysregulated TGFb signaling

in ovarian cancer cells as well as potential prognostic biomarkers

for future ovarian cancer translational research.

Results

Genome-Wide SMAD4 occupancy defined by ChIP-seq
technology

Our previous studies [12,15,19,20] and others [2,4,21–23] have

tried to establish and characterize the molecular mechanisms of

dysregulated TGFb-mediated signaling in ovarian cancer cells and

acquired cisplatin-resistant ovarian cancer cells. In order to further

elucidate the details of the underlying mechanisms, we used ChIP-

seq technology to identify the genomic locations bound by

SMAD4 in A2780 cells before and after TGFb stimulation.

Using ChIP-seq, all samples were initially sequenced to generate

a set of raw reads (each read has a length of 36 bp) from Illumina/

Solexa GAII system (Table S1) ranging from ,43 million to ,51

million reads per sample. After mapping to UCSC Human HG18

assembly, a set of ,26 million and ,32 million mapped reads with

unique genomic locations were obtained for Unstimulated A2780

and TGFb-stimulated A2780 respectively. We then applied our

peak-calling detection program, BELT, [24,25] (See Materials
and Methods) to identify the binding loci of SMAD4 in these

two conditions. Briefly, our BELT program uses a percentile

scoring method to determine the enrichment threshold value for

each of the top percentiles from all binding regions, followed by

identifying the number of binding loci at each percentile level. In

order to determine the significance of each percentile, a set of

randomly simulated reads is used as a background to estimate the

false discovery rate (FDR). Our ChIP-seq data confirmed multiple

SMAD4 binding loci previously identified in different tissues and

cell types including Gadd45A, CTGF, JAG1, LEMD3 [14], MYC

[26], EDN1, RYBP, DST, and BCAT1 [11].

Basal occupancy. We identified 2,009 SMAD4 binding loci

in the basal (unstimulated) condition in the A2780 cell line (Table
S1). We found that 1,499 (74.6%) loci were located within

+/2100 kb of a known RefSeq gene [27]. Surprisingly, only small

portion (267 of 1499, 13.3%) were within the promoter region (+/

28 kb), of a gene while the majority of binding loci were either

10 kb upstream of the 59TSS or 10 kb downstream 39TSS

(Figure 1A – red line). This unbiased whole genome wide location

analysis suggested that many other previous genome-wide studies

based on promoter ChIP-chip technology [11,12,28] may only

identify subsets of SMAD4 target genes.

TGFb-stimulated binding. Upon stimulation with TGFb,

2,362 SMAD4 binding loci were identified (Table S1). Overall,

the distribution of the location of SMAD4 binding loci after TGFb
stimulation is very similar to the one before stimulation (Figure 1A
– black line for stimulated and red line for unstimulated).

However, the binding patterns between two conditions (before

and after TGFb stimulation) are dramatically different

(Figure 1B). We first removed these binding loci located far

away from any known RefSeq genes (+/2100 kb) and then

classified them (1,723 loci for stimulated and 1,499 loci for

unstimulated) into four different binding patterns: 1) Basal Binding

– two binding loci are associated with same gene and within 1 kb

distance of each other (i.e. unchanged binding); 2) Shift Binding –

two binding loci are associated with same gene in both conditions,

but they are more than 1 kb apart from one another; 3) Stimulated

Only Binding – a binding loci associated with a gene only in the

stimulated condition; 4) Unstimulated Only Binding – a binding

loci associated with a gene only in the unstimulated condition.

Based on the above classification, we determined that 74.2%

(1,279 of 1,723) and 73.5% (1,102 of 1,499) of the binding loci

were in the Stimulated Only Binding and Unstimulated Only

Binding categories respectively. While 24.8% (429 of 1,723) and

25.5 (382 of 1,499) binding loci were classified into the Shift

Binding category for the stimulated and the unstimulated

condition respectively, only 15 binding loci in each condition

(0.9% and 1.0% respectively) fell into the Basal Binding category.

Our genomic mapping results showed that TGFb stimulation of

ovarian cancer cells may alter the landscape of SMAD4 binding

patterns. A complete list of classified binding patterns is shown in

Table S2.

Further, in order to verify that TGFb stimulation resulted in the

binding changes we observed in the ChIP-seq data, we randomly

chose a set of 22 targets identified by our analysis and performed

ChIP-qPCR using DNA isolated from an immunoprecipitation

that was distinct from the DNA used for ChIP-seq. Our ChIP-

qPCR validations not only confirmed the targets identified in the

ChIP-seq data but also further demonstrated that the activated

exogenous TGFb signaling is capable of producing drastic changes

in SMAD4 binding patterns (Figures 1C, 1D and Figures
S1A,B).

Regulation of TGFb-stimulated SMAD4 target gene
expression in A2780

Next, we performed gene expression microarrays to determine

the expression status for SMAD4 target genes after TGFb
stimulation. A2780 mRNA from three independent biological

replicates of both before and after 3 hours of TGFb stimulation

was prepared and assayed on Affymetrix U133 Plus 2 Platform.

Overall, 3,191 genes were identified as being significantly Up or

Down-regulated after TGFb stimulation with at least a 0.5 Log2-

fold change in expression and p value of less than 0.1 (Figure 2A).

After examining the correlation with 1,443 TGFb-stimulated

SMAD4 target genes (corresponding to 1,723 SMAD4 binding

loci in the stimulated condition), a majority (2,873 of 3,191) of

genes with differential expression in A2780 surprisingly lacked

SMAD4 binding loci, where 318 genes had at least one SMAD4

Genome-Wide Mapping of TGFb/SMAD4 Targets
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binding loci and showed at least a 0.5 Log2-fold expression change

after 3 hours of TGFb stimulation (Figure 2B). Details of 3,191

significantly differentially expressed genes are available in Tables
S4 and 318 genes in Table S5.

Gene ontology analysis showed that the differentially expressed

genes with SMAD4 binding loci were significantly enriched for

genes involved with cell part morphogenesis and developmental

proteins (Figure 2C—Gene&Loci), in line with the previous

studies in different cell types [12,36]. We also found that SMAD4

binding associated genes lacking differential expression were

enriched for genes with EGF-like domain and polymorphism

suggesting that different signaling pathways may mediate SMAD4

functions other than TGFb signaling (Figure 2C—Loci only),

while the large set of differentially expressed genes lacking SMAD4

binding loci were involved in immune functions and proteinaceous

extracellular matrix. After examining a more constraint p-value of

0.05 and fold change of 0.5 for TGFb stimulated differentially

expressed genes, we obtained a set of 1763 genes. Of these genes,

we found 184 (10.4%) genes to have at least one TGFb stimulated

SMAD4 binding site (Table S6). This percentage is very similar

to the dataset of which 318 (10%) of 3191 differentially expressed

genes have at least a TGFb stimulated SMAD4 binding site

(Table S5). The GO function analysis was also very similar in top

categories (Figure S2). To further confirm differential expressed

SMAD4 targeted genes resulting from TGFb stimulation, we

randomly chose a set of 18 targets identified by our analysis and

performed a RT-qPCR. More than 70% (13 of 18) genes were

validated by RT-qPCR as shown in Figure 2D and Figure S3. A

list of designed primers is shown in Table S7.

SMAD4-dependent gene regulatory networks in
TGFb-induced ovarian cancer cells

Our previous study [12] and a study from Koinuma et al [11]

have identified a set of 150 TGFb stimulated SMAD4 target genes

in IOSE (an immortalized ovarian surface epithelial cell line) and a

set of 92 TGFb stimulated SMAD4 target genes in HaCaT (an

immortalized keratinocyte cell line). It was not surprising to find

limited overlap of only 6 of 150 in IOSE, 6 of 92 in HaCaT, and 1

for all three studies in common with the 318 SMAD4 target genes

in this study (Figure 3A) as only one, A2780, is a cancer cell line

and the other two are normal cell lines. Another possibility for

such low overlapping rates is that it may be due to the limited

targets identified using promoter array (ChIP-promoter-chip). GO

analysis [29] also showed target genes in HaCaT and IOSE were

primarily involved in regulation of cell proliferation (or anti-

apoptosis) and development process (muscle development), which

were different from target genes in A2780 (Figure 3B).

To further compare the difference of the TGFb-stimulated

SMAD4-dependent gene regulatory information between these

three cell types, we applied a computational analytical approach

we previously developed [30] to build the SMAD4-dependent

regulated networks in HaCaT, IOSE, and A2780, respectively

(Figure 4). Briefly, our computational analytical approach started

with ChIP based datasets and gene expression data. Each SMAD4

binding loci wa matched to known a RefSeq gene ID which were

then be examined for differential gene expression. A set of

differentially expressed SMAD4 target genes after TGFb stimu-

lation were further used for finding the most significant

transcription factor (TF) binding partners by ChIPMotifs [31] or

ChIPModudles [32], which were used as Hub TFs. The Hub TF-

gene connection was determined by scanning the Hub TFs’

PWMs in all binding loci and a permutation test was used to test

the reliability of each connection of the network. The resulted

regulatory network was visualized by Cytoscape [33].

We identified six Hub TFs, GFI1, NR3C1, SOX17, STAT4,

ZNF354C, and TCF8 from 318 SMAD4-dependent target genes

in A2780 cells, while four Hub TFs, LEF1 (TCF), ELK1,

COUPTF (NR2F5), and E2F, were identified in IOSE cells by

our previous study using a similar approach (CART model) [12].

Our computational analytical approach also identified three Hub

TFs, E2F1, SP1, and USF, for 92 SMAD4-dependent target genes

in HaCaT cells, which was very similar to the TF motifs identified

from the Koinuma et al. study [11]. The top motif reported in

their study, AP1, was missed in our results due to using an

advanced classification algorithm in our ChIPModules [32] and

being able to eliminate those TF motifs which are also enriched in

random sets. Interestingly, we also found one Hub TF E2F (E2F1)

was common between the two normal cells, but not in common

with A2780 cells. Together with GO function analysis, our results

indicated that E2F may act as a major SMAD4 co-transcription

factor partner in mediating cell proliferation in normal cells but

lost in carcinoma cells. The resultant gene regulatory networks

(GRN) for all three cells are shown in Figure 4. Overall, our gene

regulatory network analysis strongly indicates that TGFb stimu-

lates a different SMAD4-dependent regulatory mechanism in

ovarian cancer cells compared to normal cells, i.e., the SMAD4

regulation network has become ‘‘rewired’’ in ovarian cancer cells.

Gene signatures of selection and clinical outcome
One of the promising potential applications of genome-wide

‘omics studies using cell line systems is identification of gene

signatures that can provide better prognostic information

compared with standard clinical and pathological parameters

[34,35]. To address the relationship of TGFb stimulated SMAD4-

dependent target genes and clinical outcome of ovarian cancer

patients, we examined the 307 target genes identified in A2780

cells in this study, which were not identified in previous studies of

normal cells, in two different clinical ovarian cancer cohort studies

that had reported survival data [36,37]. We first classified the

patients into different sub-groups, based on their gene signatures,

and then correlated the data with the patient survival information.

In mining the 153 patient cohort from Bild et al [36], we were able

to use the 187 of 307 genes identified in the gene expression

dataset to apply the hierarchical clustering method with distance-

based measures from a trial-and-error perspective and classify the

genes into four gene groups (Figure 5A). For each of the four gene

groups, we further clustered the 153 samples into four patient

groups (PGs, Figure 5B), and correlated the PGs with their

Figure 1. Identification of TGFb/SMAD4 binding loci. A) The distribution of the location of SMAD4 binding loci in a histogram plot based on
their relative to a closest known RefGene 59TSS. B) Classification of SMAD4 binding loci into four binding patterns. Stimulated Only binding loci are
those whose associated RefGene has binding loci only in the stimulated set, likewise for Unstimulated only. Shift binding loci have a binding loci
appearing on the same gene in both conditions and they are greater than 1,000 nt apart. Basal binding loci appear on the same gene in both
conditions but they are less than 1,000 nt apart. C) A screenshot showing LRRC17 binding pattern, where SMAD4 binds to 59TSS of LRRC17 after
TGFb stimulation, is categorized to Stimulated Only Binding. D) Abundance of DNA following SMAD4 ChIP pull down as compared to DNA present
following pull down with non-specific IgG antibody as determined by quantitative syber green PCR. U and S used to represent the Unstimulated and
Stimulated binding regions of SLC40A1 respectively. * represents a t-test p-value of less than 0.05 and denotes significant enrichment relative to IgG
control.
doi:10.1371/journal.pone.0022606.g001
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survival information. Of 153 patients, only 124 have complete

survival information, thus were further used for survival curve

plots. We found that a signature of a subset of 49 genes (G2 gene

group) that was able to predict a significant survival correlation for

62 of the patients with a p-value of 0.0471 (Figure 5C,D).

Specifically PG: 4 (25 patients) displayed poor median survival of

31 months compared to PG: 3 (37 patients), with a median survival

of 63 months. A survival curve plot for two patient groups, PG: 3

and PG: 4 using a randomly selected 49 genes (where they are not

within 49 G2 genes) showed a log-rank test p-value of 0.1558

(Figure 5E). Due to limited pathological information available for

this patient cohort, we were not able to significantly correlate our

gene signatures with other clinical outcomes. However, a notably

high percentage of stage IV patients clustered into PG3 while all

stage IC and two stage IIC patients clustered into PG4, despite a

similar number of stage IIIC patients in each (Table S8), perhaps

indicating that TGFb/SMAD4 regulated genes could be poten-

tially used to classify a subtype of ovarian cancer patients.

When we applied the same in silico mining approach to the

second patient cohort from Lu et al [37], (comprised of 42 patients

and 5 normal people), the results showed that a gene signature of

19 of the 307 genes predicted better survival rates for PG4 and

Normals than other PGs with a p-value of 0.0078 (Figure S4).

Discussion

We have for the first time applied ChIP-seq technology to

whole-genome-wide mapping of TGFb-stimulated, SMAD4-

dependent regulated genes in an ovarian cancer cell line

(A2780). Our data show that compared to the basal state (no

TGFb stimulation), a majority of SMAD4 binding loci are either

newly bound to chromatin (74.2%) or shifted bound (24.8%) upon

TGFb stimulation, suggesting TGFb stimulated cancer cells may

alter the landscape of SMAD4 binding patterns. Further, our GO

analysis revealed striking similarities between the top 10 GO

categories for 1,443 and 1,316 SMAD4 target genes in Stimulated

and Unstimulated conditions (data not shown). However, 318

differentially expressed genes, containing at least one stimulated

SMAD4 binding loci, were significantly enriched for more specific

GO terms, such as cell part morphogenesis and developmental

proteins. This result indicates that SMAD4 may regulate a very

specific set of target genes in response to TGFb signaling, in order

to facilitate specific functions in that cell type through this specific

signaling pathway. Indeed, GO analysis for SMAD4 target genes

without gene expression level changes after TGFb stimulation

found one of the enriched gene categories is ‘EGF like signaling’,

providing further evidence that other signaling pathways may

modulate SMAD4-dependent regulated genes in ovarian cancer.

One such example may be the bone morphogenetic proteins

(BMPs), which are also upstream of SMAD4 and thus may be

capable of regulating some of these SMAD4 target genes. BMPs

have been shown to be key regulators of ovarian physiology and

involved in ovarian cancer development and other cancers [38–

40]. In future studies the contribution of each signaling pathways’

regulation of the identified SMAD4 target genes will attempt to be

disambiguated.

Similar to other findings for transcription factors, including

estrogen receptor alpha (ERa) [41–43], androgen receptor (AR)

[44], and peroxisome proliferator-activated receptor (PPAR) [45],

we observed that a majority (.70%) of SMAD4 binding loci

located more than 8 kb away from 59TSS of a known RefSeq

gene. This might suggest the TGFb binding loci come in close

proximity to the promoter through chromosome looping upon

TGFb stimulation. Interestingly, our de novo motif analysis also

identified a SMAD-like motif in a set of 5-distal binding loci but

not in a set of 59-promoter loci (data not shown). Our genome-

wide location analysis also pinpoints the importance of whole-

genome-wide sequencing technologies, as we showed many

binding loci are far away from the 59TSS of a known gene and

therefore a promoter-array technology may miss many target

binding loci of a transcription factor. Our future studies will focus

on conducting ChIP-3C-qPCR to confirm whether these distal

binding loci are indeed related to these particular genes,

potentially uncovering the underlying mechanism of TGFb/

SMAD4 mediated gene regulation.

One important aspect of this study is the use of in silico mining of

publicly available patient cohort data to identify a subset of

TGFb/SMAD4 target genes as a gene signature for predicting

clinical (survival) outcomes. As far as we know, this is the first study

to attempt to use TGFb signaling responsive SMAD4 regulated

genes to classify ovarian cancer patients into different sub-types of

patient groups, as well as predict poor survival from good survival

populations with statistical significance (Figure 5). Thus,

combining ChIP-seq identified binding loci, gene expression

profiling, and an in silico mining of patient cohorts may provide

a powerful approach for identifying potential gene signatures with

biological and clinical importance.

In conclusion, our study provides the first comprehensive

genome-wide map of thousands of TGFb/SMAD4 targets in an

ovarian cancer cell line, which could further be used for studying

SMAD4 functions in tumorigenesis. To our knowledge, this is the

first study to link TGFb/SMAD4 regulated genes to clinical

information on ovarian cancer patient survival and identify

potential gene signatures for prognosis in ovarian cancer. In our

future studies, we will conduct ChIP-seq analysis of TGFb/

SMAD4 binding sites using a panel of ovarian cancer cell lines

representing different histological subtypes and ovarian cancer

initiating cells.

Materials and Methods

Cell culture and TGFb stimulation
A2780 cells [15] were cultured in RPMI 1640 (Invitrogen,

Carlsbad, CA) supplemented with 10% fetal bovine serum in a 37u
5%CO2 incubator. Prior to TGFb stimulation, cells were split at

,70% confluency and inspected daily. For ChIP, 80% confluent

cells were optimally stimulated with 10 ng/ml recombinant

TGFb1 (Sigma, St. Louis, MO) for 1 hour prior to formaldehyde

Figure 2. TGFb/SMAD4 regulated genes. A) A heatmap of the expression fold changes for genes between the unstimulated and the TGFb
stimulated condition, showing three group of genes, up-regulated, no change, and down-regulated. Up and down regulated genes are defined as
having a Log2 fold change of greater than 0.5 or less than 20.5 respectively. B) A comparison between the genes with SMAD4 binding loci (1443) in
the TGFb stimulated condition with all genes showing differential expression (3193), showing three different groups, those with differential
expression and no SMAD4 binding loci, those with no differential expression and a SMAD4 binding loci and those with both. C) GO annotations for
the three different group genes showing in the Venn diagram (B). D) RNA expression level as determined by qRT-PCR relative to GAPDH expression
levels. Experiments were performed in biological triplicate. * represents a t-test p-value of less than 0.05 and denotes significant difference in
expression between unstimulated and stimulated conditions.
doi:10.1371/journal.pone.0022606.g002
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Figure 3. A comparison of TGFb/SMAD4 target genes. A) A Venn diagram shows the comparison of TGFb/SMAD4 target genes in three
different cell types. B) GO annotations for the unique genes for each cell type.
doi:10.1371/journal.pone.0022606.g003

Figure 4. TGFb-induced SMAD4-dependent gene regulatory networks in A) HaCaT, B) IOSE, C) A2780 cells.
doi:10.1371/journal.pone.0022606.g004
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Figure 5. The selection of gene signatures and their associated clinical outcome. A) The hierarchical clustering result of the 187 genes into
four gene groups, namely G1, G2, G3 and G4. The vertical axis represents the gene clusters (187 genes) and the horizontal axis stands for diverse
samples (153 patients). B) The hierarchical clustering result of the 153 patients into four patient groups, namely PG: 1, PG: 2, PG: 3 and PG: 4 by using
the G2 group of 49 genes. C) Survival curve plot for the G2 gene group. The horizontal axis represents the survival months and the vertical for the
percent survival (%) within the corresponding patient group. Totally four patient groups, i.e. PG: 1, PG: 2, PG: 3 and PG: 4 are analyzed for the G2 gene
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cross-linking while expression analysis was performed after 3 hours

of stimulation with 10 ng/ml TGFb1.

Chromatin immunoprecipitation and massive parallel
sequencing

Chromatin immunoprecipitation (ChIP) was performed as

previously described [46,47] with some note worthy changes. Briefly,

cells were rinsed with room temperature PBS before being cross-

linked in a 1% formaldehyde solution. Cells were then harvested and

homogenized in the presence of protease inhibitors before DNA was

sonicated. Magnetic Dynal beads (Invitrogen) combined with a

mixture of antibodies (20% SMAD4 #9515 (Cell Signaling

Technology, Danvers, MA) and 80% SMAD4 DCS-46 (Santa Cruz

Biotechnology, Santa Cruz, CA) were used to pull down SMAD4

overnight. Purified DNA was used to detect fold enrichment by

Syber Green qRT-PCR see Table S3 for a list of primers.

Sequencing libraries were generated for massive parallel

sequencing using standard methods. Briefly, 500 ng of pulldown

DNA was subjected to end repair, terminal adenylation, and

adapter ligation before fragments ranging from ,175–250 were

isolated from a 2% E-gel (Invitrogen). Subsequent to a

standardized 12 cycle PCR, DNA quality was evaluated on a

DNA 1000 Bioanalyzer chip (Agilent Technologies, Santa Clara,

CA) before being submitted for sequencing on an Illumina GAII.

All ChIP-seq data is deposited in the Gene Expression Omnibus

(GEO) database at National Center for Biotechnology Information

(http://www.ncbi.nlm.gov/geo) and are accession number

GSE27526.

Gene expression profiling
Total RNA was extracted from cells using Trizol (Invitrogen) for

microrarray analysis on an Affymetrix HGU133 Plus 2 arrays

(which includes more than 55,000 probes corresponding to

,23,000 human genes on the chip) using standard hybridization

and scanning protocols provided by Affymetrix (Santa Clara, CA).

RNA for each sample (TGFb-stimulated and unstimulated

conditions) was isolated in biological triplicate. The RNA

expression array data can be accessed through the NCBI Gene

Expression Omnibus (GEO) database at National Center for

Biotechnology Information through the accession number

GSE27526.

RT-qPCR and ChIP-qPCR
Total RNA was extracted from TGFb stimulated and

unstimulated cells using Trizol (Invitrogen). cDNA was then

generated from 1 mg of isolated RNA through reverse transcrip-

tion with a mix of oligo-dT and random hexomers in the presence

of SuperScript III (Invitrogen). A Step One Plus instrument from

Applied Biosystems was used in conjuncture with SYBER Green

reagents (Applied Biosystems, Carlsbad, CA) to detect levels of

gene expression. The DDCt method of gene expression analysis

was used to determine the relative level of expression as compared

to the internal GAPDH control. A student’s t-test was used to

determine statistical significance of differential expression between

biological triplicates. A list of specific primers used for expression

analysis can be found in Table S7.

Our SMAD4 ChIP-seq results were confirmed via ChIP-

qRTPCR. Briefly primers of approximately 150 bp were con-

structed to cover regions where were sequenced in the ChIP-seq

experiment, and amplified with SYBER Green (Applied Biosys-

tems). DNA was quantified on a nanodrop ND3300 (Thermo

Scientific, Waltham, MA) using a Quant-iT Picogreen dsDNA

Assay Kit (Invitrogen), and equal quantities of DNA were used as

template. Comparison of SMAD4 and IgG pulldowns for both

stimulated and unstimulated samples are reported as the average

value of triplicate measurements a student’s t-test was used to

determine statistical significance. For a complete list of the primers

used to amplify those regions see Table S3.

Processing ChIP-seq and microarray gene expression
data

A standard procedure for extracting image files, mapping the

reads onto human genome, and filtering the mapped reads to

unique reads was followed with the Solexa 1.6 pipeline. The

TGFb stimulated and unstimulated samples were each produced

in two lanes of raw reads. The reads from these two lanes were

combined in to a single data set. Both samples in the combined

data set were processed using BELT [24,25] developed in our

laboratory with a 300 nt bin size at an acceptance threshold of

0.996 v.s. an input sample. (Table S2).

The microarray expression data was normalized using the

standard protocol for the MAS5 algorithm implemented by

Affymetrix in R, and a student’s t-test was performed to determine

the significance of the difference between the sets of biological

triplicates for the stimulated and untreated samples. Significance

was liberally defined as p,0.10, and a differential fold chance was

defined as Log2-fold change .0.50.

Gene regulatory network analysis
We apply our computational analytical approach developed in

our laboratory [30], which includes a de novo method ChIPModule

[32] to identify the Hub TFs for 318 TGFb/SMAD4 genes in

A2780 cells and 92 TGFb/SMAD4 genes in HaCaT cells

respectively. The Hub TFs for 150 TGFb/SMAD4 genes in

IOSE cells were from our previous study [12] which used a similar

machine learning approach, CART model [48]. The gene

regulatory networks were constructed by scanning the binding

loci of each gene using the position weight matrix (PWM) of Hub

TFs. The topology and visualization of the resulted hierarchal

network is built by Cytoscape [33], where blue nodes represent

Hub TFs, while red and green nodes correspond to Up and Down

regulated genes respectively. The significance of the network is

statistically tested by a permutation test to determine the

probability of each edge of the network under random

circumstances.

Patient cohorts
The patient cohorts including gene expression and survival

information for patients used in this work were from two previous

studies, Bild et al [35] and Lu et al [36], which are publicly

available. All gene expression data were previously normalized

and were directly used in our study (153 patients in Bild et al from

GSE3149 and 42 patients for Lu et al provided in their Supporting

Tables).

For all hierarchical cluster analyses, log expression values of

each gene were mean centered, and genes and tumors were

group. D) A detailed survival curve plot for two patient groups, PG: 3 and PG: 4, showing a significant log-rank test p-value of 0.0471.E) A survival
curve plot for two patient groups, PG: 3 and PG: 4 using a randomly selected 49 genes (where they are not within 49 G2 genes) showing log-rank test
p-value is 0.1558.
doi:10.1371/journal.pone.0022606.g005
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clustered by using Pearson correlation and average linkage

(MatLab). The Kaplan–Meier estimate was used to compute

survival curves using logrank test, and the p-value of the likelihood-

ratio test was used to assess statistical significance. The survival

curves were generated using Prism 5 (GraphPad Software).

Supporting Information

Figure S1 Validation of SMAD4 binding loci. A. Screen-

shots showing binding peaks for COL12A1 and SHANK2. B.

Using biologically independent ChIP samples to perform ChIP-

qPCR, we confirmed 22 total binding loci (patterns) for SMAD4

target genes.

(TIF)

Figure S2 GO for 184 TGFb/SMAD4 differentially
expressed genes with a p-value of less than 0.05 showing
a similar functional categories with 318 genes. Together

with RT-qPCR validations, our results demonstrated that the

identified genes (318) in the study are valid for the further

downstream analysis.

(TIF)

Figure S3 Using a second ChIP sample (biologically
independent) to perform RT-qPCR, we confirmed eight
more differential expressed genes for TGFb/SMAD4
target genes.

(TIF)

Figure S4 Using TGFb/SMAD4 regulated genes for a
second cohort to predict patient survival. A. A hierarchal

clustering to classify 42 patients and 5 normal samples from Lu et

al study using 307 SMAD4 target genes. B. A group of 19 gene

signatures is able to predict the good survival (Normal and PG1)

from bad survival.

(TIF)

Table S1 A summary of binding sites of SMAD4 in
unstimulated and TGFb stimulated A2780 cells identi-
fied by ChIP-seq.
(DOC)

Table S2

(XLS)

Table S3 A list of primers designed for ChIP-qPCR.
(DOC)

Table S4

(XLS)

Table S5

(XLS)

Table S6

(XLS)

Table S7 A list of primers designed for RT-qPCR.
(DOC)

Table S8 A summary of 124 patients’ tumor stages and
median survival months in each groups classified by a
subset of 49 TGFb/SMAD4 gene signatures.
(DOC)
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