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T cell migration from blood to, and within lymphoid organs and tissue, as well as,

T cell activation rely on complex biochemical signaling events. But T cell migration

and activation also take place in distinct mechanical environments and lead to drastic

morphological changes and reorganization of the acto-myosin cytoskeleton. In this

review we discuss how adhesion proteins and the T cell receptor act as mechanosensors

to translate these mechanical contexts into signaling events. We further discuss how cell

tension could bring a significant contribution to the regulation of T cell signaling and

function.
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INTRODUCTION

To mount a proper adaptive immune response and establish immune memory, T cells carry out
many distinct cellular processes. In a simplified view, these processes can be grouped in three
categories. (a) The adhesion cascade, during which circulating T cells exit the blood flow to roll,
adhere and eventually extravasate through the endothelial cell layer. (b) Migration, on the wall of
blood or lymph vessels, within lymph nodes and inflamed or cancerous tissues. And (c), activation,
which primes naïve T cells and triggers cytotoxicity and cytokine secretion from effector cells.
The molecular interactions and signaling pathways associated with T cell activation (1), migration
through venular walls (2) and T cell migration in general (3) have been extensively characterized
and are comprehensively described in these recent reviews. But the emergence of novel biophysical
approaches has allowed to shine light on a previously neglected aspect of these processes: they all
generate mechanical stimuli.

During the adhesion cascade, the blood flow applies an external shear stress on T cells binding
and migrating on and through endothelial cells (2). T cell migration in tissues is driven by
morphological changes, constantly fluctuating actin polymerization and molecular motors-driven
contractions, which all generate internal mechanical tension (4). It goes the same with T cell
activation, which involves a tight contact between T cells and antigen-presenting cells or target cells,
acto-myosin contractions and a sustained actin retrograde flow (5). Adding to the multiplicity of
these mechanical contexts, T cells interact with substrates displaying various and changing stiffness
(6) and with adhesion molecules that are either diffusive or firmly anchored to cortical actin (7).
Hence, the idea that force plays an essential role in the T cell-mediated immune response has
matured from an exciting hypothesis to a well-established field of T cell biology (8–11).

In this review we first focus on demonstrated mechanotransduction events in T cells. We
discuss how adhesion proteins—selectins and integrins—and the T cell receptor (TCR) act as
mechanosensors during the adhesion cascade and during T cell activation, respectively. In the
second part of the review, we get inspiration from other cell types and systems to picture how
cell tension might contribute to the cellular signaling that regulates T cell migration and activation.
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SHEAR FORCE: A KEY PLAYER DURING
T CELL ROLLING AND ARREST ON THE
ENDOTHELIUM

In search for their cognate antigen, T cells circulate between
peripheral tissues and secondary lymphoid tissues, thereby
exploiting a network of blood and lymphatic vessels (12). T
cells circulating in the blood enter lymph nodes through high
endothelial venules (HEVs). Before they can extravasate trough
HEVs, T cells first need to roll, arrest and finally adhere to the
vessel walls (2, 13). Forces derived from the blood flow play a
decisive role in this adhesion cascade, contributing both to the
initial capture by selectins and to the firm integrin-mediated
arrest preceding extravasation (Figure 1).

Rolling on HEVs is mediated by fast on and off rates
interactions between selectins on T cells and their ligands
displayed by the endothelium. Pioneering work using atomic
force microscopy (AFM) in combination with flow-chambers
revealed that selectin-ligand interactions form catch bonds—
molecular interactions whose dissociation rate decreases with
force, see Glossary at the end of the article—when subjected to
low shear force generated by the blood flow (11, 14, 15). Thus,
a mechanotransduction process, driven by a conformational
change in the selectin headpiece, prolongs the life time of the
bond between selectins and their ligand and thereby gives rise to
enhanced cell adhesion under flow conditions (Figure 1A).

T cell tethering and rolling eventually leads to arrest and firm
adhesion on endothelial cells, which is driven by heterodimeric
integrins and their ligands and which also requires low force from
the blood flow (2, 13, 16). Remarkably, integrin adhesiveness is
increased very shortly after T cells make contact with endothelial
cells, through a multistep process during which force plays an
essential role (17). The first step in integrin-mediated adhesion
is activation by signals coming from selectins and chemokine
receptors. In a certain way, this first step prepares integrin to bear
tensile forces, as it (a) increases integrin affinity for immobilized
ligands on the extracellular side and (b) strengthened integrin-
actin cytoskeleton connection on the intracellular side through
the recruitment of talin and kindlin to the intracellular integrin
tail (17, 18). Indeed, integrin activation by chemokines alone
is not sufficient to trigger adhesiveness, which is achieved only
by the effect of shear force from the blood flow (19). Integrins
bound to immobilized ligand on one side and firmly anchored
to the actin cytoskeleton on the other side are pulled into a
high affinity, open conformation by the low force of the shear
flow (Figure 1B). This force-mediated reorganization of integrin
conformation eventually allows stable bonds with ligands at the
surface of endothelial cells to support T cell immobilization.

T CELL MIGRATION: STEERING TOWARD
STIFFNESS

After adhesion and extravasation through endothelial cells,
T cells adopt a motile behavior to reach antigen-presenting
cells in lymph nodes or inflamed tissues. As described in an
excellent recent review, the link between the actin cytoskeleton,

adhesion modules and the extracellular matrix is highly
dynamic and allows cells to convert the mechanical properties
of their environment into signaling (20). In the context of
migration, this can result in durotaxis—the ability of cells to
migrate toward stiffer substrates. Durotaxis is another way
how mechanotransduction could potentially contribute to T cell
functions. Typical targets of T cells, such as (a) cancer cells
that can be softer than normal cells (21); (b) tumors, that
are stiffer than normal tissue because of high collagen density
and crosslinking (22, 23), or (c) antigen-presenting cells (6)
have specific stiffness properties. Changes in extracellular matrix
stiffness of specific tissues are generally associated with disease
progression (24). Neutrophils, whose amoeboid type ofmigration
is similar to that of T cells, spread more and migrate slower but
more persistently and exert stronger traction forces on stiffer
substrates (25, 26). Like neutrophils, T cell migration on ICAM-
1 coated surfaces is also influenced by substrate rigidity. Indeed,
it has been recently shown that T cells migrate faster on stiffer
substrates (27).

T CELL ACTIVATION NEEDS FORCE

Contact of a migrating T cell with a target cell or an antigen-
presenting cell displaying a cognate antigen result in activation
and arrest and in the formation of an immunological synapse
(1, 28). In this paragraph, we will discuss in detail how
mechanotransduction plays an essential role in this process.
By demonstrating that T cell activation with antigen-coated
beads requires the beads to be larger than 4µm, Mescher
provided the first hint that the generation of tension over a
significant scale is indispensable for T cell activation (29). The
first mechanosensor model for TCR was published quite some
time later, in a study demonstrating that the binding of an
immobilized agonist antibody to CD3ε induces a torque in the
structure of the TCR-CD3 complex. Non-activating antibodies
however, need to be conjugated to a bead and pulled tangentially
to the receptor using optical tweezers to induce a similar
activating response (30, 31). By suggesting that the migration-
related movement of T cells engaging a cognate peptide at the
surface of antigen-presenting cells induces tangential forces on
TCR, this study is also an important reminder that T cells
are actually migrating and under tension when they find their
cognate antigen. Mechanosensing cells or proteins can sense and
react to externally applied mechanical stimuli, without actively
contributing to the force that is at the source of the stimulus.
For instance, in the case of a cell submitted to shear stress. This
can be termed passive mechanosensing (32), in contrast to active
touch sensing (mentioned further in this review), where the
mechanosensor is actively involved in the mechanical stimulus
it is sensitive to, a bit like poking a mango to determine if it is
ripe or not. Cell motility generates cell tension and thereby might
lead to passive mechanosensing as migration-related forces are
transferred onto the TCR-CD3 complex (Figure 2A). Similarly,
formation of the immunological synapse leads to activation
of the integrin LFA-1 and to tight adhesion to immobilized
ICAM-1 on antigen-presenting cells (33), as well as, acto-myosin
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FIGURE 1 | Mechanotransduction during the adhesion cascade. The proteins that mediate rolling and arrest of T cells on endothelial cells during the adhesion

cascade are mechanosensors, which are sensitive to and relies on the force of the shear flow. (A) During the early steps of the adhesion cascade, selectins at the tip of

microvilli of T cells interact with their ligands at the surface of endothelial cells to mediate tethering and rolling. Shear force impose a tension on this bond and thereby

induces a conformational change in the selectin headpiece, which gives to the selectin-ligand bond a catch-bond characteristic. (B) Integrins mediate arrest after

rolling and firm adhesion to the endothelium. Shear force also plays an essential role in this multistep process. Inside-out signaling from selectins of from chemokine

receptors induces a first conformational change that increases the affinity of integrins for ICAMs and anchors them to the cytoskeleton through the recruitment of talin.

Shear force pulls ligand-bond integrins into a high affinity, open conformation and increases the life-time of the bond through a catch-bond process.

contractions (34) and cytoskeletal tensions [(35), Figure 2B].
Hence, transition frommigration to activation upon engagement
of a cognate peptide represents a mechanical signal that is very
likely to results in passive mechanosensing by TCR. Interestingly,
TCR engagement promotes local actin polymerization around
the receptor itself (35), in a way that reminds of the signal-
dependent and talin-mediated anchorage of integrins to the actin
cytoskeleton during the adhesion cascade. This means that TCR
is further anchored to the underlying cortical actin cytoskeleton
upon activation, which could very well make it more susceptible
to respond to mechanical stimuli. Along this line, it is now well-
established that T cells, like many other cells, engage in the
“active touch sensing” described by Kobayashi and Sokabe (32)

by actively pushing and pulling on the substrate they adhere to
in order to interrogate its stiffness (Figure 2B). Within the first
tens of seconds of TCR triggering on a biomembrane force probe
setup, T cells engage in a sequence of pushing and pulling forces
even in the absence of LFA-1 engagement (36). Traction force
microscopy (TFM) on polyacrylamide gels further confirmed
that antibody activation of CD3 leads to acto-myosin-mediated
pulling forces, which originate at the cell edge and are directed
toward the cell center (37). Another TFM study on micropillars
determined that these centripetal forces are generated through
the binding of TCR to activating ligands, further suggesting
that integrins are not the mechanosensor at play during T cell
activation (38). These forces are in the range of 100 pN, which
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is lower than the nanonewton forces observed during epithelial
cells migration (39). Of note, phosphorylation of the early TCR
signaling kinase Lck takes place on the side of the pillars facing
the cell edge, suggesting that TCR signaling is triggered where
the tension is highest and strengthening the idea that TCR works
better when it is under tension (38). The surface of T cells
is covered with microvilli, whose tips are enriched with TCR
[(40, 41), Figure 2A]. These microvilli extend and retract while T
cells scan antigen-presenting cells and it is likely that the first step
of antigen recognition on antigen-presenting cells is mediated by
TCR located on stretched microvilli. This raises the possibility
that active touch sensing might already be involved in the very
early stages of T cell activation, as TCR at the tip of microvilli
is subjected to specific forces resulting from the scanning of
antigen-presenting cells. But forces applied on TCR at the tip of
microvilli are also likely to be reduced by the elastic nature of
these projections, which can act as shock absorbers, for instance
in the context of the adhesion cascade (42). Further investigations
are required to determine if TCR at the tip of microvilli is
put under tension due to the exploratory character of these
projections, or if on the contrary, the force on TCR is dissipated
through a shock absorber effect. Finally, forces imposed on TCR
located on collapsed microvilli will be very different once the
immunological synapse is fully established.

A direct consequence of the active touch sensing through TCR
is that T cell activation is influenced by substrate stiffness. As
a matter of fact, T cells pull more on stiffer substrates than on
softer ones (37). CD4T cells produce also more IL-2 on harder
substrates up to 100 kPa (27, 43), but the stiffness contribution
to T cell activation is somehow lost beyond 100 kPa (43, 44).
More generally, every aspect of T cell activation is potentiated
by stiffer surfaces up to 100 kPa (27). The effect of substrate
stiffness on T cell activation could even be larger than reported
in these studies, which all used functional antibodies against CD3
to activate T cells. It is indeed likely that differences in the rigidity
of substrates might have amore pronounced effect on the binding
of TCR to its natural ligand, a cognate peptide presented by
major histocompatibility complex (MHC), than to an activating
antibody.

The mechanism behind stiffness sensing in T cells is not
identified yet, but talin might be involved. As part of the complex
protein assembly between integrins and the actin cytoskeleton
(45), talin is an essential element of the substrate stiffness sensing
machinery and preventing talin to mechanically engage with
integrin disrupts extracellular rigidity sensing (46). Interestingly,
T cells lacking talin fail to stop migrating in response to TCR
triggering (47). As mentioned above, talin is essential to integrin-
mediated adhesion (17) and in particular to LFA-1 adhesiveness
for ICAM-1 following TCR triggering (48). It is likely that
the affinity of LFA-1 for ICAM-1 is increased during T cell
arrest upon TCR activation through a similar mechanism than
described above during the arrest on endothelial cells in the
blood flow. One can indeed consider that during activation,
the LFA-1—ICAM-1 bond is put under tension by acto-myosin
contractions and actin retrograde flow in a similar fashion that
it is stretched by extracellular forces resulting from shear flow
during the adhesion cascade (Figure 2B). As a matter of fact

it has been shown that ICAM-1 is immobilized at the surface
of antigen-presenting cells in order to promote T cell-antigen
presenting cells conjugation and T cell activation (33). Hence
talin mechanosensing properties could contribute to the stop
signal that precedes the establishment of the immunological
synapse and eventually to full T cell activation. However, a
recent study somehow challenges the idea that the talin-LFA-
1 axis supports the stop signal. Feigelson et al. reported that
the integrin ligands on antigen-presenting cells, ICAM-1 and -2,
are dispensable for these cells trigger arrest activation of T cells
(49). Finally, intravital microscopy studies have shown that T
cells do not necessarily stop when encountering a stimulatory
antigen-presenting cells. Antigen recognition can happen during
long-lasting contact, the immunological synapse, but also during
shorter and more dynamic interactions, termed kinapse [(28, 50),
Figure 2A]. While the functional difference between synapse and
kinapse has not been fully established, the duration and nature of
the antigen-presenting cell-T cell interaction contribute to shape
the outcome of T cell activation (51). Therefore, it is likely that
the mechanosensitive properties of integrin and TCR contribute
to this process by leading to distinct signaling in the context of a
synapse or of a kinapse.

Thus, T cells pull on activating substrates and they are more
susceptible to be activated by stiffer substrates. Having this in
mind, it does not take a bit leap to imagine that the active touch
used by T cells is not only a mechanism to interrogate substrate
stiffness. Indeed, a few recent studies indicate that putting TCR
under tension is in fact an integral part of the activation process
(Figure 2B). Presenting T cells with activating peptide-MHC
complex (pMHC) on an AFM microscope showed that T cell
activation requires both the binding of a cognate antigen and
forces through TCR (52). An in depth analysis of the kinetics
of TCR-pMHC interactions using a biomembrane force probe
showed that TCR establishes catch bonds with cognate pMHC
and slip bonds—molecular interactions whose dissociation
rate increases with force—with non-agonistic pMHC, thereby
making force applied through TCR a component of the antigen
discrimination process (53). The formation of catch bond is even
what distinguishes stimulatory from non-stimulatory ligands
between peptides that bind TCR with similar affinity (54). These
results are further confirmed by two studies from Lang and
colleagues using optical tweezers and DNA tethers. They first
identified an elongated structural element of the TCRβ constant
chain, the FG loop (55), as a key factor for the contribution
of the force in antigen discrimination (56). More recently,
they demonstrated that TCR needs non-physiological levels of
pMHC molecules to be triggered in the absence of forces (57).
Using DNA-based nanoparticle tension sensors Liu et al. further
demonstrated that piconewton forces are transmitted through
TCR-CD3 complexes a few seconds after activation and that these
forces are required for antigen discrimination (58).

In summary, passive mechanosensing of the forces resulting
from migration and activation, and active touch sensing through
the TCR-CD3 complex probably act together to connect TCR
triggering at the same time to the physical environment (speed
of migration, stiffness of the presenting cells) the T cell evolves in
and to ligand selectivity (8). This maybe brings us back to amodel
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FIGURE 2 | Mechanotransduction during T cell activation. (A) TCRs at the tip of microvilli are subjected to specific forces while T cells migrate on or form a kinapse

with antigen-presenting cells. It is not yet determined if tensions are “absorbed” due to the elastic nature of microvilli, or if on the contrary, microvilli push against the

antigen-presenting cells, thereby increasing the tension on TCR (B) During and after the formation of an immunological synapse with a cell presenting a cognate

antigen, migration-related, and acto-myosin-mediated tensions drive integrins into a full affinity state, similarly to what happens during the adhesion cascade

(Figure 1B). These forces also lead to passive mechanosensing by TCR. Additionally, TCR itself further engages in active mechanosensing, by pulling and pushing on

pMHC molecules. Non-stimulatory ligands form slip-bonds under tension and fail to trigger TCR signaling. By contrast, stimulatory ligands engage in a catch-bond

with TCR, which leads to a conformational change and in turn promotes TCR signaling. Binding to a stimulatory ligand also increase the density of F-actin around the

TCR to further anchor it to the underlying cytoskeleton. All in all, tensions through the TCR-pMHC bond contribute to TCR triggering and antigen discrimination.

described just 10 years ago, which proposed that the TCR-CD3
complex requires to be stretched in order to be activated (59).
A postulate that is strengthened by the fact that TCR triggering
involves a mechanical switch of its structure (60).

Forces that T cells generate upon activation do not relate
only to signal intensity and specificity, but also contribute to
the T cell response, notably in the context of killing. Cancer
target cells that express a higher number of adhesion molecules
facilitate the release of lytic granules by cytotoxic T lymphocytes
(61). More strikingly, tension induced on target cells by cytotoxic
T lymphocyte facilitates perforin pore formation in target cells
and thereby increases the transfer of granzyme proteases and
cytotoxicity (62).

TENSION IN T CELLS: FURTHER FACTS
AND PERSPECTIVES

Cell tension is the result of a complex interplay between tension
mediated through the cytoskeleton and membrane tension. The
cortical actin—plasmamembrane relationship plays a central role

in mechanobiology and is very well described in recent reviews
(63, 64). In this regard, proteins that link the plasma membrane
to the underlying cortical actin such as Ezrin/Radixin/Moesin
(65) are likely to play a determining role in T cell mechanical
properties and mechanotransduction. Ezrin, which directly
regulates membrane tension (66) is deactivated upon T cell
activation to promote cell relaxation and in fine conjugation
to antigen-presenting cells (67). Similarly, constitutively active
Ezrin increases membrane tension and impairs T cell migration
in vivo (68). Hence, it appears that the ability of T cells to relax
and deform their membrane is directly related to their ability
to migrate and be activated. This is confirmed by the fact that
naïve T cells are less deformable than T lymphoblasts, as assessed
by a micropipette aspiration assay. The same study showed that
depolymerization of the actin cytoskeleton makes naïve T cells
and T lymphoblasts more deformable altogether (69).

Variations in membrane tension can influence T cell signaling
in various ways. Mechanosensitive (MS) channels open up
to mediate ion flux in response to membrane stretch (32,
70). First discovered in bacteria where they compensate for
sudden changes in environmental osmolality, MS channels have
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FIGURE 3 | How cell tension could regulate cellular processes essential to T cell activation. Cell tension, either generated by external forces (such as the blood flow), or

resulting from intracellular mechanisms (molecular motors, actin flow, modification of the linkage between membrane and the cytoskeleton) can regulate: (a) Ca2+ flux,

through MS ion channels, (b) cell proliferation and differentiation, through the opening of the nuclear pore complex or modification of chromatin compaction, (c) endo-

and exocytosis, via membrane tension and d) actin polymerization, through the activity of the small GTPase Rac or the binding and unbinding of BAR domain proteins.

been shown to mediate intracellular Ca2+ rise in response to
tension applied to focal adhesion or along actin fibers (71).
T cells express a large variety of potential MS channels (72)
and an electrophysiological study showed that one of them,
TRPV2, opens and mediates Ca2+ entry in T cells subjected
to mechanical stress (73). It has recently been shown that the
most potent mechanosensitive ion channel identified to date,
Piezo 1, is expressed in T cells, where it contributes to T cell
activation through Ca2+-influx, albeit the study did not actually
investigate if this is through mechanical stress (74). In this
regard, a study using AFM in synchronization with fluorescence
imaging reported that mechanical stimulation alone, without
TCR stimulation, is sufficient to elicit an increase in intracellular
Ca2+ (75). This is in agreement with the expression of Piezo 1
in T cells, but somehow in contradiction with Hu and Butte,
who reported that mechanical stimulation triggers Ca2+ flux only
when coupled with TCR triggering (52). Further studies are still
required to determine whether or not mechanical stimuli alone
are sufficient to trigger Ca2+ flux through Piezo 1 in T cells.

Whether or not MS channels play a role in T cell migration
also remains to be determined. It is however likely that
membrane tension contributes to organize polarity during T cell
migration, in light of what has been observed in neutrophils.
Ten years after the inhibitory effect of cell tension on the
small GTPase Rac had been shown (76), Houk et al used
micropipette aspiration to show that cell tension acts as a

long-range inhibitor to prevent Rac-mediated actin protrusions
elsewhere than at the leading edge of motile neutrophils (77).
These results were extended to further demonstrate that cell
tension limits actin assembly through a negative feedback
pathway involving phospholipase D2 and the mammalian target
of rapamycin complex 2 (mTORC2) (78). Membrane tension
also impact on the distribution and dynamics of membrane-
bending proteins, such as BAR domain proteins (79), and
reciprocally (80). In this context, it is interesting to note that
tension promotes membrane tensformation of the leading edge
of COS-1 cells, through the recruitment of FBP17, a membrane-
bending and curvature-sensing activator of WASP-dependent
actin polymerization (81). Even though T cells and COS-1 cells
have noticeably different mechanisms of migration, it seems
likely that tension and actin polymerization could act in concert
to install polarity in migrating and in activated T cells via similar
mechanisms.

Carrying the speculation further, we could even imagine that
the contribution of membrane tension to T cell activation or
migration extends to the regulation of intracellular trafficking.
As discussed in comprehensive reviews, the plasma membrane
is largely inelastic and can increase in area only 2–3%
before rupture occurs (63, 82, 83). Consequently, cells actively
respond to membrane tension through regulation of intracellular
trafficking, increased membrane tension favoring exocytosis (84–
86) and reduced membrane tension leading to endocytosis (87).
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This means that cell tension could act as a mechanical long-
range messenger to directly influence and coordinate endocytic
and exocytic events (82, 83, 88) taking place during T cell
migration and activation. In fact, intracellular trafficking is a key
factor in establishing functional polarity by spatially restricting
membrane proteins at a specific localization in the cell, thereby
confining signaling and interactions with other cells or with the
extracellular matrix. Selective endocytosis of a given receptor can
locally reduce its surface expression. Similarly, targeted recycling
can increase the local concentration of a protein within the
plasmamembrane. Incidentally, T cells are highly polarized, both
duringmigration (uropod vs. leading edge) and during activation
(immunological synapse). It is thus possible that membrane
tension contributes to the regulation of these processes through
the organization of specific endocytic and exocytic events. For
instance, endocytosis and recycling are essential to integrin
polarization and activity in motile cells in general (89, 90) and
in T cells in particular (91, 92). Similarly, targeted delivery of
vesicles to the immunological synapse is required for full T cell
activation (93, 94) and secretion of cytotoxic granules (95, 96).
A good illustration of how this could happen can be found
during phagocytosis by macrophages, a process that is in many
ways similar to the formation of the immunological synapse and
during which membrane tension coordinates the actin-driven
formation of the phagocytic cup and exocytosis-fusion of vesicles
(97).

Finally, cell tension does not stop at the plasma membrane or
the cortical cytoskeleton. As well described in a recent review,
forces are transferred from the cell surface to the nuclear envelope
through the intermediate of the cytoskeleton or directly from
the external environment (98). The structure and function of the
nucleus are affected by these tensions, which allows it to function
as a mechanosensor (99, 100). Accordingly, tensions can regulate
gene expression bymodifying the connection of heterochromatin
to the nuclear lamina (101). Forces transferred to the nuclear
envelope have also been reported to favor cell proliferation (98).
Nuclear deformation has further been shown to directly lead to
the import of specific transcription factors through the opening
of nuclear pore complexes (102, 103). Because of its size and
rigidity, the nucleus is the limiting factor during cell migration
in a dense meshwork (104). Typically, dendritic cells use myosin

II-driven contractions (105) and produce a dense actin network
around the nucleus (106) to promote nucleus deformation and

in turn facilitate squeezing through constrictions. 3D migration
of T cells in confined environments is thus very likely to lead
to compression of the nucleus. Similarly, the pulling exerted
by T cells on antigen-presenting cells is susceptible to lead to
compression or even flattening of the nuclear envelope. Hence
it is conceivable that tension resulting from prolonged migration
in confined environment or from T cell binding to an antigen-
presenting cell can lead to rearrangement of the chromatin
structure or to the opening of nuclear pores and thereby influence
the regulation of gene expression leading to T cell differentiation
or proliferation.

CONCLUSION

T cells are subjected to ever-changing forces, either generated
intracellularly or from their environment. They further interact
tightly with cells displaying various levels of stiffness and
with molecules whose anchorage to the underlying actin
cytoskeleton varies. But more important than the multiplicity
of these mechanical contexts, is the fact that they very often
are associated with specific processes participating to T cell
function. It is therefore very likely that distinct mechanical
signals team up with biochemical signals to ensure that T
cells do the right thing at the right place and time. The role
of mechanotransduction in the adhesion cascade preceding
extravasation and in T cell activation is now well-established,
although there is still room to refine the model describing it. Now
is maybe the time to investigate the importance of cell tension
for T cells (Figure 3), using what we have learned from other
cell types and taking advantage of ever-improving biophysical
approaches.
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GLOSSARY

Shear stress (or shear force) Shear stress is the tangential force applied by a flowing fluid on the surface of an object

Catch bond/Slip bond A catch bond is a bond that becomes stronger (increased lifetime) when a pulling force is applied to it. By contrast, a slip bond becomes

weaker (decreased lifetime) with applied force

Mechanosensing Mechanosensing is the process through which cells or proteins detect and respond to variations of forces and mechanical properties of

their environment

Mechanosensor A mechanosensor is a molecule/protein that mediates mechanosensing

Passive mechanosensing During passive mechanosensing, a mechanosensor detects applied mechanical stimuli (without applying force or tension itself)

Active touch sensing Active touch sensing is the process through which cells actively probe the mechanical properties of their environment (for instance

substrate stiffness)

Mechanotransduction Mechanotransduction is the process during which mechanosensors translate mechanical inputs into intracellular signaling events

Stiffness (or elastic modulus) Stiffness is a measure of the ability of an object or a substance to resist deformation upon an applied force

Durotaxis Migrating cells can sense stiffness of the substrate they migrate in or on, typically via active touch sensing. Durotaxis is the ability of cells

to move up rigidity gradients.
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