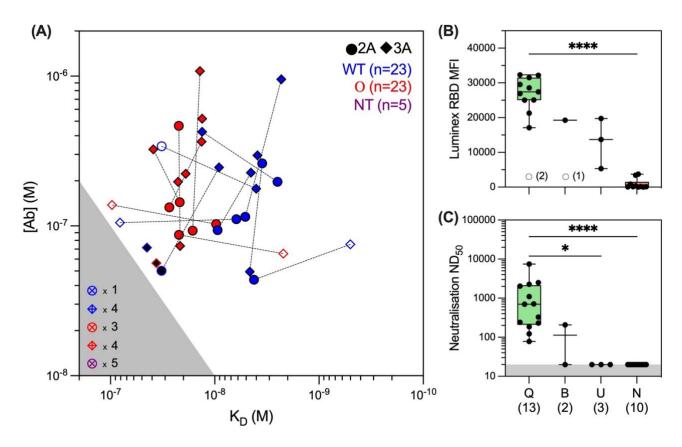
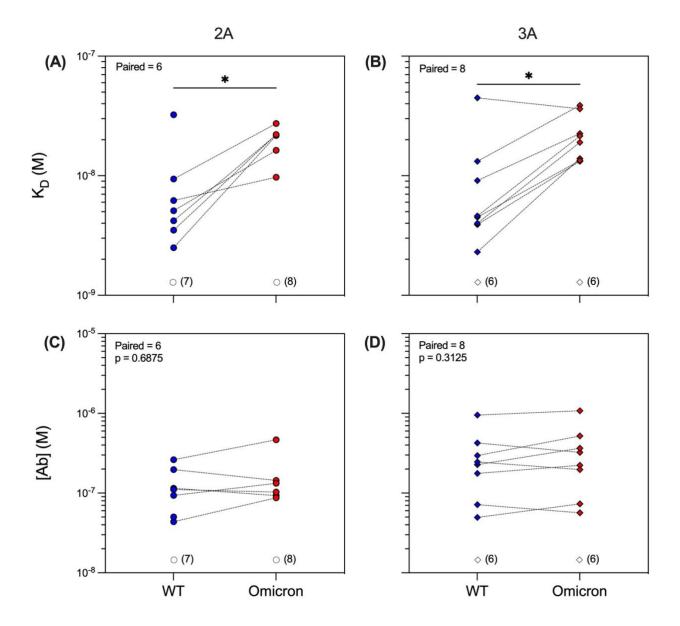


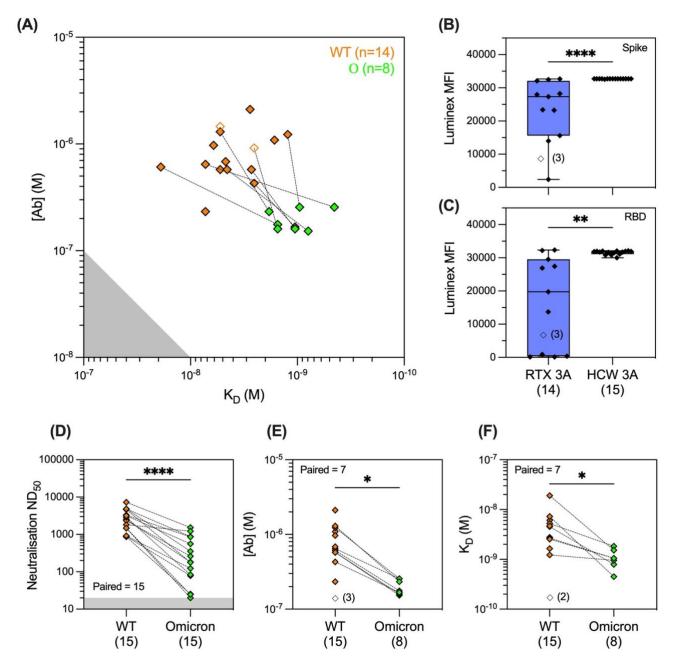
Supplementary Material


Microfluidic antibody profiling after repeated SARS-CoV-2 vaccination links antibody affinity and concentration to impaired immunity and variant escape in patients on anti-CD-20 therapy

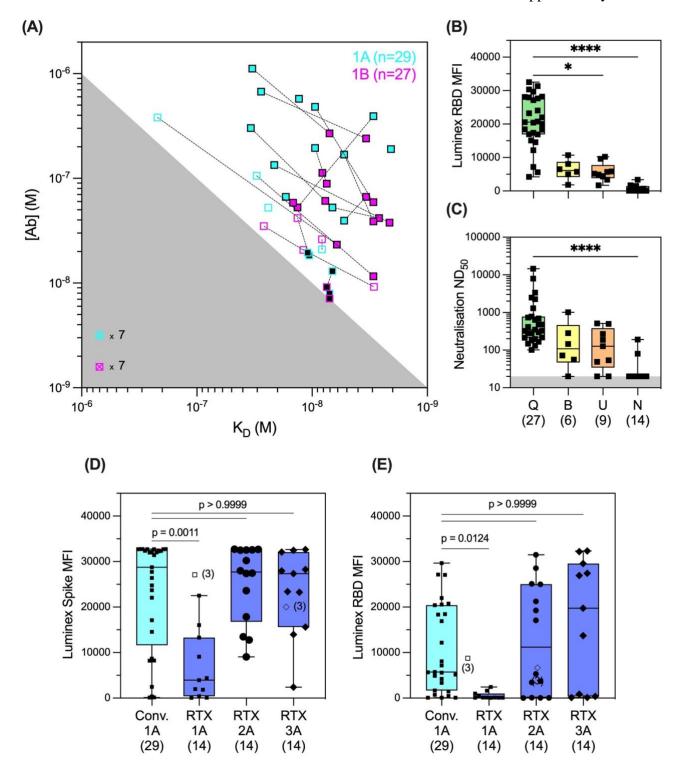
Ashley Priddey¹, Michael Xin Hua Chen-Xu², Daniel James Cooper², Serena MacMillan¹, Georg Meisl³, Catherine K Xu³, Myra Hosmillo⁴, Ian G. Goodfellow⁴, Rafael Kollyfas⁵, Rainer Doffinger⁶, John R Bradley², Irina I Mohorianu⁵, Rachel Jones², Tuomas P.J. Knowles^{3,7}, Rona Smith², V Kosmoliaptsis^{1,8*}


¹Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK. ²Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK and Cambridge University Hospitals NHS Foundation Trust, cambridge, UK. ³Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ⁴Department of Pathology, Division of Virology, University of Cambridge, Cambridge, UK. ⁵Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW, UK. ⁶Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK. ⁷Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK. ⁸NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at the University of Cambridge and the NIHR Cambridge Biomedical Research Centre, Cambridge, UK

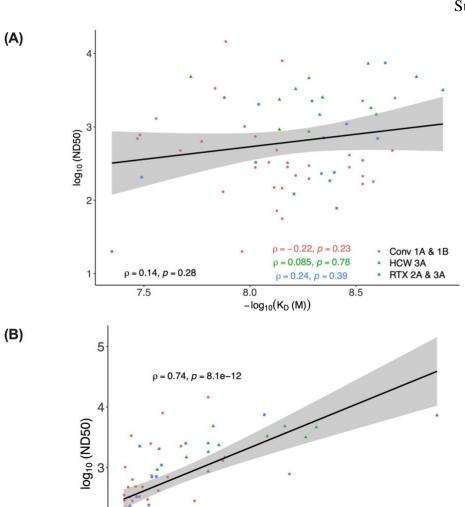
1 Supplementary Figures

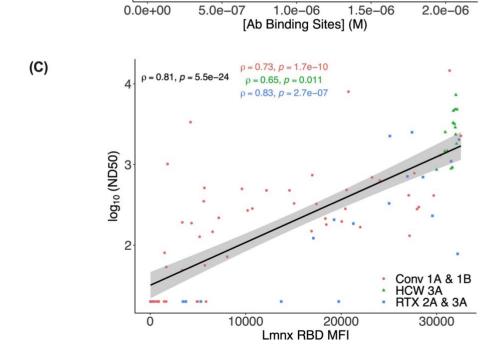

^{*} Correspondence: V. Kosmoliaptsis: vk256@cam.ac.uk

Supplementary Figure 1. Microfluidic antibody affinity (MAAP), Luminex and neutralisation data for the Rituximab patient cohort. (A) 2-D scatter plot displaying the best-fit values for antibody binding site affinity (KD, M) and concentration ([Ab], M) measured from MAAP assessment of Rituximab treated vasculitis patient sera taken one month after the 2nd (2A, circles) and 3rd (3A, diamonds) vaccine doses against Wild type (WT, blue symbols) and Omicron (red symbols) Spike RBD domains. Cross-containing symbols represent samples which demonstrated no binding. Unfilled symbols display the measured upper bound 95% confidence intervals for both [Ab] and KD for samples which could not be fully quantified via MAAP due to the inability to constrain the lower bound of the KD value. Black-filled symbols represent samples that were measured at the limit of assay sensitivity (where [Ab]/KD≈1). Purple symbols represent samples which were not assessed via MAAP against either RBD variant, however, are assumed to be non-binders due to their minimal Luminex RBD MFI and negative neutralisation assay data. Grey region represents the unquantifiable range where [Ab]/KD≤1. Dotted lines connect samples from each timepoint from the same patient assessed against the same antigen. (B) Categorisation of all samples assessed via MAAP against WT Spike RBD into quantifiable binding (Q=13), quantified but borderline sensitivity (B=2), unquantifiable binding due to inability to constrain the lower bound KD value (U=3), and nonbinders (N=10). MAAP quantifiable samples had significantly higher Luminex WT RBD MFI (p<0.0001) than non-binders. Unfilled symbols represent samples (number) where Luminex MFI data was unavailable. (C) MAAP-quantified samples also demonstrated a significantly higher neutralising capacity (ND50) against WT SARS-CoV-2 than unquantifiable and non-binding samples (p<0.0001 and p=0.0228, respectively) as measured by viral neutralisation assay. Box blots in B and C represent the median, range and interquartile range for each dataset. Statistical analysis in B and C were carried out via Dunn's multiple comparisons test, presented p-values are two-tailed.



Supplementary Figure 2. Comparison of anti-SARS-CoV-2 antibody affinity and concentration against the Wild type (WT) and Omicron variants after the second and third vaccine dose in the Rituximab patient cohort. Comparison of affinity (K_D, M) and binding site concentration ([Ab], M) of serum antibodies from Rituximab-treated vasculitis patients showed weaker affinity against the Omicron variant (red symbols) compared to the WT variant (blue symbols). This was consistent in samples taken one month after the 2nd vaccine dose (A; 2A, p=0.0312) and after the 3rd vaccine dose (B; 3A, p=0.0156). The concentration of antibodies that recognised RBD proteins was found to be similar for WT or Omicron strains at both timepoints (C; 2A, p=0.6875, and D; 3A, p=0.3125). Dotted lines connect identical samples assessed against different variants. Unfilled symbols represent the samples (number) where MAAP data was unobtainable due to insufficient or unquantifiable binding. P-values presented are two-tailed from the Wilcoxon paired signed-ranks test.


Supplementary Figure 3. Microfluidic antibody affinity (MAAP), Luminex and neutralisation data for the Health Care Worker (HCW) cohort. Assessment of healthcare worker sera taken one month after the 3rd sensitisation event (3A) using MAAP against WT (orange symbols) and Omicron (green symbols) Spike RBD domains. The 2-D scatter plot maps the best-fit values for antibody affinity (K_D, M) and binding site concentration ([Ab], M) (A). Comparison of Luminex anti-Spike (B; p<0.0001) and -RBD (C; 0.0054) mean fluorescence intensity (MFI) in HCW versus Rituximab treated patients at similar time points (3A: one month after the third exposure). Panel **D** depicts the comparison of neutralisation capacity (ND50) in sera from vaccinated healthcare workers at the 3A time point against Omicron versus WT SARS-CoV-22 variant (**D**; p<0.0001). Panel **E** shows the concentration of antibody binding sites that recognised the Omicron variant RBD in comparison to the WT RBD (**E**; p=0.0156) and panel **F** shows the affinity of these antibodies against the two


variants (\mathbf{F} ; p=0.0156) at the 3A timepoint. Grey regions represent the assay limits, where in \mathbf{A} this is the unquantifiable range where [Ab]/K_D≤1. In \mathbf{D} the grey region represents the lower limit of detection for the neutralisation assay. Box blots in \mathbf{B} - \mathbf{C} represent the median, range and interquartile range for each dataset. Unfilled symbols in \mathbf{A} , \mathbf{E} and \mathbf{F} represent samples which could not be fully quantified via MAAP due to the inability to constrain the lower bound of the K_D value. Unfilled symbols in \mathbf{A} represent samples with unquantifiable binding (U) via MAAP due to inability to constrain the lower bound K_D value, where the displayed values are the measured upper bound 95% confidence interval values for both [Ab] and K_D . Unfilled symbols in \mathbf{B} - \mathbf{C} represent the samples (number) that did not have MFI data available. Dotted lines in \mathbf{A} , \mathbf{D} and \mathbf{F} connect the same sample assessed against different variants. P-values presented are two-tailed from the Mann Whitney test for panels \mathbf{B} - \mathbf{C} and Wilcoxon paired signed-ranks test for panels \mathbf{D} - \mathbf{F} . In \mathbf{D} - \mathbf{F} , additional statistical analysis was carried out which compared the ranks of the median via Mann Whitney test, all of which showed a statistically significant difference between the analysed cohorts (\mathbf{D} ; p<0.0001, \mathbf{E} ; p<0.0001, \mathbf{F} ; p=0.0001).

Supplementary Figure 4. Microfluidic antibody affinity profiling (MAAP), Luminex and neutralisation data for the convalescent cohort. (A) 2-D scatter plot displaying the best-fit values for antibody affinity (K_D, M) and binding site concentration ([Ab], M) measured against Wild type (WT) Spike RBD using MAAP assessment of convalescent patient sera taken one month (1A, teal symbols) and 3 months (1B, magenta symbols) after natural infection during the first wave of SARS-CoV-2. Cross-containing symbols represent samples which demonstrated no binding. Unfilled

symbols display the measured upper bound 95% confidence intervals for both [Ab] and K_D for samples which could not be fully quantified via MAAP due to the inability to constrain the lower bound of the K_D value. Black-filled symbols represent samples that were measured at the limit of assay sensitivity (where [Ab]/KD≈1). Grey region represents the unquantifiable range where [Ab]/ $K_D \le 1$. Dotted lines connect samples taken from the same patient at each timepoint. (B) Categorisation of all samples assessed via MAAP against WT Spike RBD into quantifiable binding (Q=27), quantified but borderline sensitivity (B=6), unquantifiable binding due to inability to constrain the lower bound K_D value (U=9), and non-binders (N=14); MAAP quantifiable antibodies had significantly higher Luminex WT RBD MFIs than those in the U and N categories (p=0.0104 and p<0.0001, respectively). (C) MAAP quantifiable antibodies also had significantly higher neutralising capacity (ND₅₀) than those in the N category (p<0.0001). Grey region represents the lower assay limit. (D-E) Comparison of Luminex anti-Spike (D) and -RBD (E) mean fluorescence intensities (MFI) in the convalescent cohort versus Rituximab-treated (RTX) patients at one month after each sensitisation event. Both anti-Spike and anti-RBD responses were higher in the convalescent versus the Rituximab-treated cohort one month after the first sensitisation event (infection or vaccination, respectively) (Spike; p=0.0011, RBD; p=0.0124), whereas no difference was evident after the second and third vaccination dose in the RTX cohort (all p-values >0.9999). Statistical analyses in **B-E** were carried out via Dunn's multiple comparisons test and presented pvalues are two-tailed. Box blots in **B-E** represent the median, range and interquartile range for each dataset. Unfilled symbols represent samples (number) where Luminex MFI data is unavailable.

 $\rho = 0.65, p = 4.7e-05$ $\rho = 0.72, p = 0.0052$ $\rho = 0.61, p = 0.017$ Conv 1A & 1B HCW 3A RTX 2A & 3A

2

Supplementary Figure 5. Relationship between serum Wild type SARS-CoV-2 serological readouts across patient cohorts. (A) Relationship between serum Wild type SARS-CoV-2 neutralisation titre (logND₅₀) and antibody affinity (-log₁₀K_D, M) across timepoints and patient cohorts. Data points from each patient cohort are represented by different shapes. A linear model fit (smooth line) is shown and the Spearman correlation coefficient is depicted, indicating the strength and direction of the correlation between ND₅₀ and -log₁₀K_D. The Spearman correlation coefficients for data in each patient cohort are also shown. (B) Relationship between serum Wild type SARS-CoV-2 antibody affinity (-log₁₀K_D, M) and Luminex anti-RBD MFI across timepoints and patient cohorts. Data points from each patient cohort are represented by different colours. A linear model fit (smooth line) is shown and the Spearman correlation coefficient is depicted, indicating the strength and direction of the correlation between -log₁₀K_D and Luminex RBD MFI. The Spearman correlation coefficients for data in each patient cohort are also shown. (C) Relationship between serum Wild type SARS-CoV-2 antibody binding site concentration ([Ab], M) and Luminex anti-RBD MFI across timepoints and patient cohorts. Data points from each patient cohort are represented by different colours. A linear model fit (smooth line) is shown and the Spearman correlation coefficient is depicted, indicating the strength and direction of the correlation between [Ab] and Luminex RBD MFI. The Spearman correlation coefficients for data in each patient cohort are also shown.

2 Supplementary Tables

Supplementary Table 1. Demographic details of all cohorts studied. A summary of the available demographic information for each patient cohort assessed within in the study. Clinical data was obtained from electronic medical records and patient interviews and was covered by ethics as described in the methods. *SARS-CoV-2 exposure events for the healthcare worker cohort consisted of two doses of Pfizer vaccine and one natural infection.

-	Vasculitis Patients (n=14)	Healthcare Workers (n=15) one HCW (subjected 213) is missing age/sex/ethnicity.	Convalescent Patients (n=30)
Age (median (range)), years	66 (24 – 82)	37 (24 – 60)	50 (15-85)
Sex, male (number (%))	8 (57%)	2 (14%)	13 (43%)
Ethnicity, White British (number (%))	13 (93%)	10 (71%)	23 (85%)
Missing data		1 (7%)	
Diagnosis			
ANCA-associated vasculitis	11 (79%)	-	-
SLE	1 (7%)	-	-
IgG4 disease	1 (7%)	-	-
Other*	1 (7%)	-	-
Comorbidities			
Hypertension	8 (57%)	-	8 (27%)
Diabetes	4 (29%)	-	5 (17%)
Chronic lung disease	4 (29%)	-	1 (3%)
Cardiac disease	2 (14%)	-	0 (0%)
History of malignancy	1 (7%)	-	0 (0%)
Vaccines			
Pfizer x3 doses	6 (43%)	15 (100%)*	NA
AZ x 3 doses	1 (7%)	-	NA
AZ x2 doses + Pfizer x1 dose	3 (21%)	-	NA
Unknown Combination	4 (29%)	-	NA
GFR (ml/min/m2) (median (IQR))	80.5 (63 – 93)	-	-
Rituximab			
Days prior to 1 st vaccine dose (median (IQR)	222.5 (124.5 – 361.25)	-	-
Within 6 months	5 (36%)	-	-
Within 12 months	11 (79%)	-	-
Within 5 years	14 (100%)	-	-
Between 1 st and 2 nd vaccine dose	3 (21%)	-	-
Between 2 nd and 3 rd vaccine dose Cyclophosphamide	6 (43%)	-	-
Between 1 st and 2 nd vaccine dose	2 (14%)	-	-
Between 2 nd and 3 rd vaccine dose	1 (7%)	-	-
Time between vaccines (median (range)), days			
Time between vaccines (median (range)), days			
1 st and 2 nd vaccines	77 (58 – 119)	missing	-
2 nd and 3 rd vaccines	190 (147 – 201)	missing	-

Supplementary Table 2. All data for the Rituximab-treated vasculitis patient cohort. A

summary of the samples obtained from each patient within the rituximab-treated vasculitis cohort (ethics reference: 20/EM/180) and all the raw data gathered from Luminex (RBS spike, Spike S1 and Nucleocapsid), pseudotype neutralisation (Neut. ND_{50}), and microfluidic antibody affinity profiling (MAAP) assays for each sample. 2A and 3A represent samples taken at one month post second and third vaccine dose, respectively. Q/B/U/N represents whether the sample assessed via MAAP could be fully quantified (Q), whether it was near the border of detectible sensitivity (B; [Ab]/KD<2), whether it was unquantifiable due to the inability to effectively constrain the lower 95% confidence interval (U), or whether there was no binding observed (N). * represents samples which were not assessed via MAAP but are assumed to be non-binders due to minimal Luminex signal and negative neutralisation. * represents values that may be raised due to the [Ab]/ K_D <2. * represents values which may be inaccurate due to the lack of lower 95% K_D constraints. – means that data was not available for sample using this assay.

D. d.	Sample	RBD	Lu	minex (MI	FI)	N. ANDSO		MAAP Data							
Patient	Timepoint	Variant				Neut. ND50	Q/B/U/N	ŀ	$\zeta_{\rm D} (\rm nM)$		[Ab] (nM)		[Ab]/KD	
			RBD	Spike	N			Best Fit	Upper	Lower	Best Fit	Upper	Lower	=	
	2A	WT	25094.5	27406.0	972.5	2254.0	Q	5.1	8.5	2.4	115.2	137.5	87.2	22.59	
101		Omicron	-	-	-	125.5	Q	16.3	22.3	10.5	93.0	122.2	68.1	5.71	
	3A	WT	-	-	-	7468.0	Q	2.3	10.3	1.2	952.1	2663	702.3	413.96	
		Omicron	-	-	-	648.7	Q	13.9	27.4	6.7	1082.3	1960.6	749.5	77.86	
	2A	WT	33.0	17847.5	78.5	<20	N*	-	-	-	-	-	-	-	
102		Omicron	-	-	-	<20	N*	-	-	-	-	-	-	-	
	3A	WT	369.5	15629.0	99.5	<20	N	-	-	-	-	-	-	-	
		Omicron	-	-	-	<20	N	-	-	-	-	-	-	-	
	2A	WT	52.8	23606.0	63.3	<20	N*		-	-	-		-	-	
103		Omicron	-	-	-	<20	N*	-	-	-	-	-	-	-	
	3A	WT	874.5	23405.0	68.0	<20	N		-	-	-		-	-	
		Omicron	-	-	-	<20	N	-	-	-	-	-	-	-	
	2A	WT	28556.8	32514.0	248.0	697.7	Q	2.5	3.4	1.9	197.3	246.2	173.6	78.92	
104		Omicron	-	-	-	49.0	Q	21.7	35.5	12.5	143.9	204.3	104.0	6.63	
	3A	WT	27415.0	27961.0	879.0	2509.0	Q	13.2	25.1	6.6	424.6	613.5	260.9	32.17	
		Omicron	-	-	-	314.2	Q	38.8	148.1	11.4	324.5	1076.0	135.8	8.36	
	2A	WT	21268.0	32678.0	1249.0	185.0	Q	4.2	6.6	2.6	43.7	60.8	35.8	10.40	
105		Omicron	-	-	-	<20	Q	22.0	30.6	14.5	87.2	119.3	62.5	3.96	
	3A	WT	19741.0	28266.5	138.0	<20	U	0.0^{y}	0.5 ^y	0.0^{y}	54.8 ^y	75.4 ^y	6.8 ^y	_y	
		Omicron	-	-	-	<20	U	7.1 ^y	2.2^{y}	0.0^{y}	9.8^{y}	65.4 ^y	4.1 ^y	1.38 ^y	
	2A	WT	3730.0	30226.0	282.0	<20	N	-	-	-	-	-	-	-	
106		Omicron	-	-	-	<20	N	-	-	-	-	-	-	-	
	3A	WT	32188.0	32484.0	325.5	78.0	Q	3.9	5.0	3.0	296.2	329.7	263.5	75.95	
		Omicron	-	-	-	153.3	Q	13.2	24.3	6.1	519.7	718.8	371.3	39.37	
	2A	WT	42.8	9046.5	496.8	<20	N*	-	-	-	-	-	-	-	
107		Omicron	-	-	-	<20	N*	-	-	-	-	-	-	-	
	3A	WT	127.0	2398.0	307.0	<20	N	-	-	-	-	-	-	-	
		Omicron	-	-	-	<20	N	-	-	-	-	-	-	-	
	2A	WT	5301.0	27451.0	407.0	<20	U	0.2 ^y	32.3 ^y	0.0^{y}	205.9 ^y	340.7 ^y	102.2 ^y	1029.50 ^y	
108		Omicron	-	-	-	<20	N	-	-	-	-	-	-	-	
	3A	WT	-	-	-	240.3	Q	4.0	6.1	2.7	176.8	222.4	135.7	44.20	
		Omicron		-	-	<20	Q	19.0	43.3	8.6	223.1	383.1	111.5	11.74	
	2A	WT	25015.3	32554.8	48.8	329.0	Q	9.4	12.7	6.3	93.7	117.1	71.9	9.97	
109		Omicron			-	<20	Q	27.3	39.1	18.1	132.8	194.8	99.7	4.86	
	3A	WT	26930.5	27356.0	99.0	711.0	Q	4.5	5.6	3.3	227.1	254.9	197.0	50.47	
		Omicron	-	-	-	<20	Q	13.4	17.3	10.2	365.3	423.6	313.1	27.26	

Supplementary Material

	2A	WT	19252.5	27957.3	6181.0	206.5	В	32.4 ^x	68.8 ^x	7.9 ^x	50.2 ^x	117.2 ^x	17.5 ^x	1.55 ^x
110		Omicron	-	-	-	<20	N	-	-	-	-	-	-	-
	3A	WT	32331.0	32661.5	6564.0	2033.0	Q	9.1	10.8	7.3	245.9	271.4	218.3	27.02
		Omicron	-	-	-	177.6	Q	22.5	33.3	15.4	197.3	257.7	145.4	8.77
	2A	WT	103.5	12767.5	172.0	<20	N*	-	-	-	-	-	-	-
111		Omicron	-	-	-	<20	N*	-	-	-	-	-	-	-
	3A	WT	135.5	13983.5	202.5	<20	N	-	-	-	-	-	-	-
		Omicron	-	-	-	<20	N	-	-	-	-	-	-	-
	2A	WT	31501.8	32716.3	704.8	1097.0	Q	3.5	5.3	2.2	261.7	315.9	217.2	74.77
112		Omicron	-	-	-	61.4	Q	22.1	33.7	13.8	466.2	584.4	367.9	21.10
	3A	WT	29550.5	32095.0	1574.0	230.9	Q	4.6	9.4	1.5	49.5	73.6	29.9	10.76
		Omicron	-	-	-	<20	Q	21.5	34.2	13.0	73.4	109.1	46.5	3.41
	2A	WT	3439.7	13478.3	79.0	<20	N*	-	-	-	-	-	-	-
113		Omicron	-	-	-	<20	N*	-	-	-	-	-	-	-
	3A	WT	-	-	-	<20	В	44.8 ^x	81.6 ^x	17.0 ^x	71.7 ^x	159.5 ^x	32.2 ^x	1.60 ^x
		Omicron	-	-	-	<20	В	36.3 ^x	66.9 ^x	13.4 ^x	56.5 ^x	133.4 ^x	26.6 ^x	1.56 ^x
	2A	WT	17083.5	32590.0	1504.0	122.0	Q	6.2	10.9	3.4	111.3	146.9	80.4	17.95
114		Omicron	-	-	-	<20	Q	9.7	13.3	7.2	102.9	118.4	88.7	10.61
	3A	WT	13717.5	23244.0	1078.0	<20	U	8.2 ^y	81.0 ^y	0.0^{y}	9.1 ^y	105.1 ^y	0.0^{y}	1.11 ^y
		Omicron	-	-	-	<20	U	1.0 ^y	96.9 ^y	0.0^{y}	12.9 ^y	138.2 ^y	3.7 ^y	12.90 ^y

Supplementary Table 3. All data for the healthcare worker cohort. A summary of the samples obtained from each patient within the rituximab-treated vasculitis cohort (ethics reference: 17/EE/0025) and all the raw data gathered from Luminex (RBS spike, Spike S1 and Nucleocapsid), pseudotype neutralisation (Neut. ND50), and microfluidic antibody affinity profiling (MAAP) assays for each sample. 3A represents samples taken at one month post third SARS-CoV-2 exposure (2 vaccines and one natural infection). Q/B/U/N represents whether the sample assessed via MAAP could be fully quantified (Q), whether it was near the border of detectible sensitivity (B; [Ab]/KD between 1-2), whether it was unquantifiable due to the inability to effectively constrain the lower 95% confidence interval (U), or whether there was no binding observed (N). Y represents values which may be inaccurate due to the lack of lower 95% KD constraints. – means that data was not available for sample using this assay.

	Sample	RBD	Lu	minex (MI	FI)	37 375 50	MAAP Data							
Patient	Timepoint	Variant .				Neut. ND50	Q/B/U/N	ŀ	$\zeta_{\rm D} (\rm nM)$			[Ab] (nM)		[Ab]/KD
			RBD	Spike	N		Q/B/O/N	Best Fit	Upper	Lower	Best Fit	Upper	Lower	- [AU]/KD
201	3A	WT	32121.0	32728.5	22051.0	4816	Q	1.6	3.4	0.3	1090.0	1460.0	483.0	664.63
201	3A	Omicron	-	-	-	873.9	-	-	-	-	-	-	-	-
202	3A	WT	31714.0	32711.0	4931.0	3293	Q	6.1	10.9	1.2	971.0	1550.0	429.0	159.44
202	202 3A	Omicron	-	-	-	857.8	-	-	-	-	-	-	-	-
203	203 3A	WT	30891.0	32735.0	6116.0	2522	Q	4.6	8.2	2.2	575.0	815.0	382.0	126.37
203		Omicron	-	-	-	182.7	Q	0.8	1.8	0.1	153.0	222.0	86.9	193.43
204	204 3A	WT	31984.0	32737.0	11615.0	2355	Q	7.3	10.9	4.1	646.0	815.0	483.0	88.98
204	JA	Omicron	-	-	-	260.3	Q	0.5	1.2	0.1	256.0	373.0	184.0	568.89
205	3A	WT	31505.0	32735.0	412.0	891.7	U	2.5 ^y	5.3 ^y	0.0^{y}	971.0 ^y	1460.0 ^y	340.0 ^y	382.28 ^y
203	JA	Omicron	-	-	-	79.01	-	-	-	-	-	-	-	-
206	3A	WT	31939.0	32735.0	5814.5	2889	U	0.0^{y}	2.5 ^y	0.0^{y}	609.0 ^y	916.0 ^y	119.0 ^y	_y
200	JA	Omicron	-	-	-	83.09	Q	1.5	3.6	0.7	160.0	233.0	121.0	104.58
207	3A	WT	31862.0	32735.0	20377.0	3178	Q	1.2	2.2	0.1	1230.0	1640.0	646.0	1000.00
207	311	Omicron	-	-	-	562.2	Q	1.0	1.8	0.3	256.0	324.0	176.0	268.34
208	3A	WT	31740.0	32737.0	5096.0	4639	Q	5.3	9.4	1.5	1300.0	1950.0	609.0	246.68
200	371	Omicron	-	-	-	178.9	Q	1.8	4.3	0.5	233.0	295.0	176.0	126.63
209	3A	WT	31929.0	32734.0	4667.0	4824	Q	19.0	38.2	7.5	609.0	971.0	382.0	32.05
	571	Omicron	-	-	-	353.8	Q	1.5	2.7	0.7	176.0	233.0	126.0	115.03
210	3A	WT	29985.0	32713.5	8161.0	864	Q	5.3	10.6	2.1	575.0	1030.0	361.0	109.11
	571	Omicron	-	-	-	25.5	-	-	-	-	-	-	-	-
211	3A	WT	30841.0	32603.5	5122.0	1466	Q	4.7	9.4	1.6	685.0	1030.0	405.0	146.06
211	571	Omicron	-	-	-	<20	-	-	-	-	-	-	-	-
212	3A	WT	32004.0	32734.0	27589.0	7297	Q	2.8	5.3	0.9	2110.0	2760.0	1360.0	761.73
212	571	Omicron	-	-	-	1536	-	-	-	-	-	-	-	-
213	3A	WT	32068.0	32735.0	23521.0	1814	Q	2.7	5.9	0.7	575.0	916.0	405.0	213.75
213	571	Omicron	-	-	-	1225	Q	1.1	3.0	0.4	160.0	309.0	115.0	152.38
214	3A	WT	31102.0	32731.0	17863.0	1478	Q	2.5	3.9	1.1	429.0	542.0	286.0	168.90
		Omicron	-	-	-	24.6	Q	1.1	2.0	0.3	167.0	223.0	109.0	159.05
215	3A	WT	31643.0	32735.0	1087.0	921.3	Q	7.3	13.4	3.3	233.0	330.0	155.0	32.09
	2.1	Omicron	-	-	-	123.3	-	-	-	-	-	-	-	-

Supplementary Table 4. All data for the convalescent patient cohort. A summary of the samples obtained from each patient within the convalescent patient cohort who were exposed to ancestral strain of SARS-CoV-2 during the first wave (ethics reference: 17/EE/0025) and all the raw data gathered from Luminex (RBS spike, Spike S1 and Nucleocapsid), pseudotype neutralisation (Neut. ND50), and microfluidic antibody affinity profiling (MAAP) assays for each sample. 1A and 1B represents samples taken at one- and three-months after the first positive COVID test, respectively. Q/B/U/N represents whether the sample assessed via MAAP could be fully quantified (Q), whether it was near the border of detectible sensitivity (B; [Ab]/KD between 1-2), whether it was unquantifiable due to the inability to effectively constrain the lower 95% confidence interval (U), or whether there was no binding observed (N). The represents values that may be raised due to the [Ab]/KD<2. The represents values which may be inaccurate due to the lack of lower 95% KD constraints. — means that data was not available for sample using this assay.

Patient	Sample imepoint 1A 1A 1B 1A 1B 1A	WT WT WT	RBD 28211.5 3365.5 4228.0	Spike 32721.0 24755.0	N 31937.0	Neut. ND50	Q/B/U/N		$X_{D}(nM)$					[Ab]/KD
302	1A 1B 1A 1B	WT	28211.5 3365.5 4228.0	32721.0	31937.0	2479.0	Q/B/C/IV				[Ab] (nM			· [AU]/KD
302	1A 1B 1A 1B	WT	3365.5 4228.0			2470.0		Best Fit	Upper	Lower	Best Fit	Upper	Lower	
303	1B 1A 1B		4228.0	24755.0		2478.0	Q	2.07	5.92	0.455	190	303	106	91.79
303	1A 1B				31038.5	191.6	N	-	-	-	-	-	-	-
	1B	WT		25393.5	31776.0	3354.0	Q	14.6	40.5	2.94	58.5	99.1	17.9	4.01
		VV 1	27941.0	32733.0	32123.0	280.4	Q	9.4	34.0	1.2	483.0	1090.0	190.0	51.22
304	1A	VV 1	18341.0	31937.0	31068.0	213.2	Q	2.9	5.3	1.2	59.2	94.3	41.7	20.14
		WT	31347.0	32737.0	32735.5	14580.0	Q	13.0	23.3	7.7	575.0	916.0	429.0	44.23
305	1A	WT	9607.0	27754.5	31715.0	498.2	U	8.4 ^y	30.3 ^y	0.0^{y}	29.4 ^y	106.0 ^y	5.1 ^y	3.50 ^y
303	1B	VV I	5607.0	21572.5	16095.0	350.2	Q	2.9	14.6	0.2	11.6	37.1	4.1	3.95
306	1A	WT	890.0	8678.0	6978.0	<20	N	-	-	-	-	-	-	-
300	1B	VV I	702.0	6260.0	3021.0	<20	N	-	-	-	-	-	-	-
307	1A	WT	1507.0	8239.5	20981.0	80.37	N	-	-	-	1-1	-	-	-
307	1B	VV I	1673.0	12215.0	14433.0	<20	N	-	-	-	-	-	-	-
308	1A	WT	4329.0	28763.0	28407.0	187.4	U	3.9 ^y	8.2 ^y	0.0^{y}	9.6 ^y	21.0 ^y	2.9 ^y	2.44 ^y
308	1B	VV I	5179.0	27945.5	20467.0	127.0	U	1.9 ^y	8.2 ^y	0.0^{y}	8.2 ^y	26.2 ^y	1.8 ^y	4.29 ^y
309	1A	WT	89.0	116.0	282.0	<20	N	-	-	-	-	-	-	-
309	1B	VV I	82.0	74.0	203.5	<20	N	-	-	-	-	-	-	-
310	1A	WT	4966.0	14558.0	31916.5	<20	В	10.9 ^x	46.9 ^x	0.2 ^x	19.5 ^x	97.1 ^x	6.1 ^x	1.79 ^x
310	1B	W I	4899.5	13056.0	30355.0	<20	U	8.15 ^y	26.2 ^y	0.0^{y}	7.92^{y}	35.0 ^y	1.16 ^y	0.97^{y}
211	1A	WT	1683.0	8207.0	14663.0	53.6	U	8.4 ^y	24.0 ^y	0.0^{y}	14.2 ^y	52.6 ^y	2.3 ^y	1.69 ^y
311	1B	W I	1459.5	8346.0	10403.0	<20	N	-	-	-	-	-	-	-
212	1A	WT	23224.0	32375.5	32074.5	693.0	Q	34.0	86.4	7.5	303.0	864.0	164.0	8.91
312	1B	W I	16894.0	31319.0	31706.0	149.1	Q	7.7	14.6	2.7	60.9	116.0	38.2	7.92
212	1A	WT	27659.0	32732.5	32737.0	780.3	Q	33.0	150.0	8.2	1120.0	1870.0	303.0	33.94
313	1B	W I	20759.0	32123.0	31280.5	7983	Q	7.1	30.3	0.5	269.0	609.0	59.2	38.16
214	1A	WT	16968.0	32278.0	32428.5	738.9	Q	9.4	21.3	2.3	195.0	330.0	81.5	20.68
314	1B	W I	20561.5	32018.5	31996.0	484.2	Q	7.5	15.0	2.1	89.0	164.0	44.2	11.91
215	1A	XV/T	32532.0	32734.5	32736.0	2264.0	Q	2.9	11.9	1.2	393.0	1340.0	277.0	133.67
315	1B	WT	27150.0	31419.0	31279.0	130.6	Q	13.4	24.0	3.7	52.7	97.1	26.2	3.93
216	1A	WT	10206.0	26395.0	30329.0	269.1	U	13.4 ^y	220.0 ^y	0.0^{y}	20.7 ^y	382.0 ^y	6.5 ^y	1.54 ^y
316	1B	WT	7177.0	22897.0	19629.5	217.8	Q	6.1	16.9	0.6	23.3	46.9	6.5	3.83
217	1A	WT	84.0	366.0	114.0	<20	N	-	-	-	-	-	-	-
317	1B	WT	85.0	413.0	139.5	<20	N	-	-	-	-	-	-	-

318	1A	WT	1817.5	17131.5	31787.0	1015.0	В	10.6 ^x	38.2 ^x	0.7 ^x	18.4 ^x	94.3 ^x	7.3 ^x	1.74 ^x
318	1B	W I	5674.0	26432.0	28345.0	512.2	U	4.7 ^y	13.4 ^y	0.0^{y}	11.6 ^y	41.7 ^y	4.1 ^y	2.47 ^y
210	1A	WT	291.0	147.5	336.5	<20	N	-	-	-	-	-	-	-
319	1B	W I	464.0	259.0	969.5	<20	N	-	-	-	-	-	-	-
220	1A	WT	5851.0	23703.0	11289.0	<20	U	4.7 ^y	11.9 ^y	0.0^{y}	5.8 ^y	20.7 ^y	2.0 ^y	1.23 ^y
320	1B	W I	3355.0	13418.5	4301.0	49.0	U	1.4 ^y	2.9 ^y	0.0^{y}	4.1 ^y	9.2 ^y	1.8 ^y	2.85 ^y
221	1A	WT	28124.5	32728.0	31844.0	296.3	Q	5.3	10.9	0.3	169.0	269.0	52.7	32.07
321	1B	W I	21992.0	32163.5	26469.0	167.2	Q	2.9	5.3	0.9	38.8	69.4	29.0	13.20
322	1A	WT	30362.0	32734.5	32735.0	1300.0	Q	27.7	103.0	6.3	674.0	1500.0	281.0	24.33
322	1B	VV I	29678.0	32470.0	31842.0	412.6	Q	3.4	10.9	0.1	240.0	382.0	134.0	70.59
323	1B	WT	15070.5	31792.5	32546.0	328.8	Q	8.2	16.9	1.9	113.0	192.0	44.9	13.87
22.4	1A	WT	20056.0	32369.0	31792.5	196.4	Q	5.3	10.9	1.9	39.4	58.5	20.4	7.48
324	1B	W I	20432.0	31670.5	28798.0	282.3	Q	3.4	10.9	0.8	66.7	113.0	34.5	19.62
325	1A	WT	10694.0	31967.0	31073.5	283.8	В	6.7 ^x	11.9 ^x	0.5 ^x	13.0 ^x	29.4 ^x	5.8 ^x	1.95 ^x
323	1B	VV I	8062.0	30697.0	21154.0	71.9	В	7.5 ^x	19.0 ^x	1.2 ^x	9.2 ^x	33.0^{x}	4.6 ^x	1.23 ^x
326	1A	WT	14585.0	31423.5	32736.0	476.8	Q	21.3	5.6	0.4	134.0	67.0	23.8	6.29
320	1B	VV I	12174.0	30130.0	31422.0	101.5	Q	2.1	42.9	5.3	37.7	269.0	46.9	17.70
327	1A	WT	77.0	2470.0	553.0	<20	N	-	-	-	-	-	-	-
321	1B	** 1	77.0	2483.0	457.0	<20	N	-	-	-	-	-	-	-
328	1A	WT	17395.0	31999.5	31133.0	324.2	Q	6.7	11.9	2.9	52.7	94.3	33.0	7.92
328	1B	vv 1	18443.0	31608.0	26901.0	179.9	Q	2.6	6.7	0.6	41.7	66.5	18.4	15.92
329	1A	WT	24032.0	32023.0	32023.0	633.0	Q	16.9	34.0	5.3	66.5	169.0	37.1	3.93
330	1A	WT	6530.0	22076.0	22076.0	146.3	В	7.1 ^x	16.9*	0.7 ^x	7.9 ^x	109.0 ^x	0.9 ^x	1.12 ^x
330	1B	W I	5723.5	19402.0	24526.5	56.2	В	7.1 ^x	16.9*	0.7 ^x	7.1 ^x	23.3 ^x	2.2 ^x	1.01 ^x