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Abstract: Accelerometer-based fitness trackers and smartwatches are proliferating with incessant
attention towards health tracking. Despite their growing popularity, accurately measuring hallmark
measures of physical activities has yet to be accomplished in adults of all ages. In this work, we
evaluated the performance of four machine learning models: decision tree, random forest, extreme
gradient boosting (XGBoost) and least absolute shrinkage and selection operator (LASSO), to estimate
the hallmark measures of physical activities in young (20–50 years), middle-aged (50–70 years], and
older adults (70–89 years]. Our models were built to recognize physical activity types, recognize
physical activity intensities, estimate energy expenditure (EE) and recognize individual physical
activities using wrist-worn tri-axial accelerometer data (33 activities per participant) from a large
sample of participants (n = 253, 62% women, aged 20–89 years old). Results showed that the
machine learning models were quite accurate at recognizing physical activity type and intensity
and estimating energy expenditure. However, models performed less optimally when recognizing
individual physical activities. F1-Scores derived from XGBoost’s models were high for sedentary
(0.955–0.973), locomotion (0.942–0.964) and lifestyle (0.913–0.949) activity types with no apparent
difference across age groups. Low (0.919–0.947), light (0.813–0.828) and moderate (0.846–0.875)
physical activity intensities were also recognized accurately. The root mean square error range for
EE was approximately 1 equivalent of resting EE [0.835–1.009 METs]. Generally, random forest
and XGBoost models outperformed other models. In conclusion, machine learning models to label
physical activity types, activity intensity and energy expenditure are accurate and there are minimal
differences in their performance across young, middle-aged and older adults.

Keywords: wrist; accelerometer; physical activity; energy expenditure; machine learning; random
forest; age groups

1. Introduction

Regular and sufficient amounts of physical activity (PA) are significant in increas-
ing health benefits and mitigating health risks. Globally, one out of four adults (almost
1.4 billion) do not meet the World Health Organization (WHO) PA recommendations [1].
Mobility is an essential factor for independence and social life engagement. Those who lose
mobility have higher risk of morbidity, disability, and mortality [2–5]. Recently, WHO has
published the Global action plan on physical activity 2018–2030 (GAPPA) to enhance PA
with a target of 15% reduction in physical inactivity by the year 2030 [6]. The most recent
WHO guidelines on physical activity and sedentary behavior [7] suggest that adults (aged
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18 and older) should do at least 150–300 min of moderate-intensity aerobic PA or at least
75–150 min of vigorous intensity aerobic PA, or an equivalent combination of moderate-
and vigorous-intensity activity throughout the week. Additionally, adults should replace
their time spent being sedentary with PA.

To meet the WHO goals, accurate estimation of physical activity type, intensity and
duration are required. The proliferation of fitness trackers and wearable accelerometers
offer an excellent opportunity to achieve this goal. The literature contains many examples
of machine learning algorithms used for the processing and modeling of the accelerometer
data including decision tree [8], random forest [8,9], bag-of-words [10], neural network [11]
and others [12–19]. However, these models are often limited to a specific age group (e.g.,
adults 20–40 years old). The looming question here is whether known age differences in
movement patterns influence the performance of the machine learning models. There is
a paucity of research to examine the differences between models built to recognize PA
type and intensity, recognize individual PA, and estimate energy expenditure (EE) across
different age groups. Such knowledge will be useful in deriving age-specific models that
improve prediction accuracy.

Historically, the adopted approach used to recognize PA type and intensity and to
estimate energy expenditure (EE) relied on data collected from the hip position in standard-
ized laboratory settings. The advantage of the hip over other positions is the proximity to
the body’s center of the mass, offering a convenient and accurate approach for capturing
ambulatory activity [20]. However, the hip position is riddled with patient/participant
compliance issues and inability to gather 24 h data [21]. Alternatively, the wrist posi-
tion has become popular for collecting accelerometer data due to a rise in smartwatches,
convenience, ability to capture sleep quality (24 h) and enhanced compliance in research
studies [22–25]. Unfortunately, despite the popularity of wrist-worn accelerometers, there
is a paucity of models that are deemed viable for accurately assessing PA [26,27]. The use
of the wrist position to recognize PA type and intensity and estimate EE is challenging
due to its potential limitation in quantifying and capturing large lower limb movements
and other lifestyle activities. Therefore, models that can accurately recognize PA type and
intensity and estimate energy expenditure from the wrist are greatly needed to meet the
current demand.

This study utilizes a large amount of high-resolution raw accelerometer data collected
from the wrist position coupled with metabolic intensity assessed in 253 adults aged
20–89 years. An aggregated set of relevant features was used as an input to machine
learning models to recognize PA type and intensity, identify individual PA, and estimate
EE. Machine learning models developed on specific age groups (young [20–50], middle
(50–70] and old (70–89]) were then compared to test the hypothesis that model performance
varies across age group, as shown in Figure 1. Results are expected to help evaluate
whether machine learning models used to represent wrist-worn accelerometer data need to
be tailored to known age differences in movement and behavior to optimize their accuracy.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 1. A block diagram showing the steps followed to collect and process the data. 

2. Materials and Methods 
2.1. Participants 

Participants were community dwelling adults 20+ years old who were able to read 
and speak English language, were willing to undergo all testing procedures, and their 
weight was stable in the last three months (+/−5 lbs). Two-hundred and fifty-three (253) of 
the 264 participants who were enrolled were included in the analysis. Those excluded 
either had: missing start/end time of activities (6 participants), insufficient length of activ-
ity or missing values (3 participants) and missing demographic information (2 partici-
pants). The Institutional Review Board at the University of Florida approved all study 
procedures, and all participants provided written informed consents before the study. 

2.2. Prescribed Activities and Visits 
The ChoresXL study methods have been described previously by our group [28,29]. 

Briefly, participants performed a battery of 33 typical daily activities that were categorized 
into activity types and intensities calculated post-facto from metabolic unit data (Supple-
mental Table S1). Tasks were chosen because they mimic daily chores activities, common 
among most Americans, and they are consistent with average time spent in the 2010 Amer-
ican Time Use Survey [30]. All tasks were performed in a standardized laboratory setting 
with scripted instructions for approximately 8–10 min to achieve a steady state energy ex-
penditure. Participants performed all tasks at their own speed and were ordered from low-
est to highest metabolic demand to reduce transfer of high metabolic effects of one task to 
another. To ease burden and exhaustion, participants performed all tasks over four visits. 
However, some did not complete all visits. Overall, 213 participants attended all 4 visits, 21 
attended 3 visits, 7 attended only 2 visits, and 12 attended only 1 visit. In total, there were 
941 data collection visits. 

2.3. Instrumentation 
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2. Materials and Methods
2.1. Participants

Participants were community dwelling adults 20+ years old who were able to read and
speak English language, were willing to undergo all testing procedures, and their weight
was stable in the last three months (+/−5 lbs). Two-hundred and fifty-three (253) of the
264 participants who were enrolled were included in the analysis. Those excluded either
had: missing start/end time of activities (6 participants), insufficient length of activity or
missing values (3 participants) and missing demographic information (2 participants). The
Institutional Review Board at the University of Florida approved all study procedures, and
all participants provided written informed consents before the study.

2.2. Prescribed Activities and Visits

The ChoresXL study methods have been described previously by our group [28,29].
Briefly, participants performed a battery of 33 typical daily activities that were categorized
into activity types and intensities calculated post-facto from metabolic unit data (Supple-
mental Table S1). Tasks were chosen because they mimic daily chores activities, common
among most Americans, and they are consistent with average time spent in the 2010 Amer-
ican Time Use Survey [30]. All tasks were performed in a standardized laboratory setting
with scripted instructions for approximately 8–10 min to achieve a steady state energy
expenditure. Participants performed all tasks at their own speed and were ordered from
lowest to highest metabolic demand to reduce transfer of high metabolic effects of one task
to another. To ease burden and exhaustion, participants performed all tasks over four visits.
However, some did not complete all visits. Overall, 213 participants attended all 4 visits,
21 attended 3 visits, 7 attended only 2 visits, and 12 attended only 1 visit. In total, there
were 941 data collection visits.

2.3. Instrumentation

Participants wore ActiGraph GT3X-BT monitors on their right wrists (ActiGraph Inc,
Pensacola, FL, USA). The ActiGraph GT3X-BT monitor is a tri-axial lightweight accelerom-
eter that records accelerations in units of gravity (1 g) in perpendicular, anterior-posterior
and medio-lateral axes. Accelerometers were programmed to collect data at 100 Hz sam-
pling rate. Participants also wore a 2 kg portable metabolic unit that estimated energy
expenditure using principles of indirect calorimetry, Cosmed K5 (COSMED, Rome, Italy).
Before data collection, the oxygen (O2) and carbon dioxide (CO2) sensors were calibrated
using a gas mixture sample of 16.0% O2 and 5.0% CO2 and room air calibration. The turbine
flow meter was calibrated using a 3.0-L syringe. A flexible facemask was positioned over
the participant’s mouth and nose and attached to the flow meter. Oxygen consumption
(VO2 = mL·min−1·kg−1) was measured breath-by-breath and was subsequently smoothed
with a 30-s running average window. Steady-state VO2 for each task was manually calcu-
lated over approximately 2 min when there was evidence of a plateau, which indicates
metabolic demand is matched to physical workload. Data were expressed as METs after
dividing the VO2 values by the traditional standard of 3.5 mL·min−1·kg−1 [31].

2.4. Problem Formulation

In this paper, we targeted four main tasks to measure the hallmark measures of PA:
(1) recognize PA type (classification task) through splitting this task into three binary
classification tasks: (i) sedentary vs. non-sedentary; (ii) locomotion vs. non-locomotion
and iii) lifestyle vs. non-lifestyle; (2) recognize PA intensity (classification task) through
splitting this task into three binary classification tasks: (i) low vs. non-low; (ii) light vs.
non-light and (iii) moderate vs. non-moderate; (3) recognize individual PA (classification
task) and (4) estimate the energy expenditure while performing the scripted activities
(regression task). We extracted consecutive non-overlapping 60-s windows from the raw
accelerometer data. Previous studies used various window lengths, ranging from 0.1 s to
128 s [32–35]. A 60-s window was chosen as a compromise between having sufficient data
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for accurate feature extraction and balancing computational resources. In total, 49 time—
and frequency—domain features, listed in Table 1, were extracted. Although there is
inconsistency among researchers about the aggregation of relevant features, in this work,
we combined features from previous studies [8,36–40]. During data processing, some
cases with different collection frequencies were discovered (15 at 80 Hz and 100 at 30 Hz).
However, no resampling was performed because the resolution was sufficient to extract
features over a 60-s window.

Table 1. Description of features extracted from the raw data.

Feature Description

Ti
m

e

Mean of vector magnitude (mvm) Sample mean of the VM in the window

SD of vector magnitude (sdvm) Standard deviation of VM

Mean angle of acceleration relative to vertical on the device
(mangle)

Sample mean of the angle between x axis and VM in
the window

SD of the angle of acceleration relative to vertical on the
device (sdangle) Sample standard deviation of the angles in the window

Mean of acceleration (mean_x, mean_y and mean_z) Sample mean of acceleration from x axis, y axis and z axis in
the window

SD of acceleration (sd_x, sd_y and sd_z) Standard deviation of acceleration from x axis, y axis and z
axis in the window

Coefficient of variation of acceleration (cv_x, cv_y and cv_z) Standard deviation of acceleration from x axis, y axis and z
axis in the window divided by their mean, multiplied by 100

Min of vector magnitude and acceleration (min_vm, min_x,
min_y and min_z)

Min value of VM and acceleration from x axis, y axis and z
axis in the window

Max of vector magnitude and acceleration (max_vm, max_x,
max_y and max_z)

Max value of VM and acceleration from x axis, y axis and z
axis in the window

25% quantile of vector magnitude and acceleration
(lower_vm_25, lower_x_25, lower_y_25 and lower_z_25)

Lower 25% quantile of VM and acceleration from x axis, y
axis and z axis in the window

75% quantile of vector magnitude and acceleration
(upper_vm_75, upper_x_75, upper_y_75 and upper_z_75)

Upper 75% quantile of VM and acceleration from x axis, y
axis and z axis in the window

Third moment of vector magnitude and acceleration
(third_moment_vm, third_moment_x, third_moment_y and
third_moment_z)

Third moment of VM and acceleration from x axis, y axis
and z axis in the window, which are used to depict the
shape of the signals

Fourth moment of vector magnitude and acceleration
(fourth_moment_vm, fourth_moment_x, fourth_moment_y
and fourth_moment_z)

Fourth moment of VM and acceleration from x axis, y axis
and z axis in the window, which are used to depict the
shape of the signals

Skewness Skewness of the VM, acceleration from x axis, y axis, and z
axis in the window

Kurtosis Kurtosis of the VM, acceleration from x axis, y axis and z
axis in the window

Coefficient of variation (CV) Standard deviation of VM in the window divided by the
mean, multiplied by 100

Fr
eq

ue
nc

y

Percentage of the power of the vm that is in 0.6–2.5 Hz
(p625)

Sum of moduli corresponding to frequency in this range
divided by sum of moduli of all frequencies

Dominant frequency of vm (df) Frequency corresponding to the largest modulus

Fraction of power in vm at dominant frequency (fpdf) Modulus of the dominant frequency/sum of moduli at
each frequency
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2.5. Model Training

Four main models were developed for PA type recognition, PA intensity recognition,
EE estimation and individual PA recognition. The models were generated separately across
three age groups: young [20–50 years], middle (50–70 years], and old (70–89 years]. For
EE estimation, 247 participants provided valid data and were included. All the scripted
activities (33 activities) were used in the case of individual PA recognition, PA intensity
recognition and EE estimation. However, for PA type recognition, some activities were
removed (strength exercise leg extension, strength exercise chest press, strength exercise
leg curl, stretching yoga); they did not fit sedentary, locomotion or lifestyle categories. We
utilized four algorithms to build our machine learning models: decision tree [40], random
forest [40], extreme gradient boosting (XGBoost) [41] and least absolutes and selection
operator (LASSO) [42]. Our selection of these algorithms was based on the fact that all the
models provide better interpretability and include feature selection as part of the model
building process. For the PA type recognition, we built binary classification models for each
type and age group, resulting in 48 models. Similarly, for the PA intensity recognition, we
built binary classification models for each intensity and age group, resulting in 48 models.
For individual PA recognition, we built one multi-class classification model (33 classes) for
each age group using the best performing model (XGBoost), resulting in 4 models. For
EE estimation, we built one regression model for each group, resulting in 16 models. All
the utilized machine learning algorithms are naturally resistant to insignificant predictors.
They intrinsically perform feature selection to enhance the predictability of the models [43].
In all tasks, all participants were randomly distributed into 5 folds. In order to solve the
data imbalance, the models were set to automatically adjust weights inversely proportional
to the frequencies of the classes in the input data. We used 5-fold nested cross validation
(nested-CV), which uses a series of train, validation and test set splits. The nested CV
consists of an inner CV loop nested in an outer CV loop. The inner loop is responsible for
hyperparameter tuning (the process of searching for the optimal parameters of the model),
while the outer loop is responsible for error estimation and generalization. Initially, the
data is split into outer training and testing datasets (outer loop). Then, the outer training
dataset is further split into inner training and testing datasets (inner loop). Validation and
hyperparameter tuning happen in the inner datasets, then the performance is reported
on the outer testing datasets. This process was repeated 5 times. Then, the model with
the highest performance was chosen. In this approach, the model selection becomes an
integral part of the model fitting process, which results in preventing bias in performance
evaluation [44–46]. We used four metrics to report the models’ performance: F1-Score = 2
× (precision × recall)/(precision + recall), area under the curve (AUC) = area under true
positive rate vs. false positive rate, balanced accuracy = (sensitivity + specificity)/2 and
accuracy. The F1-Score measures the harmonic mean of precision and recall. The F1-Score
was used to compare across age groups, because it protects against the imbalance across
classes seen in PA type and intensity categories. There is no absolute criterion for a “good”
value of F1 measure, but values above 0.80 generally indicate good performance. For the
continuous data from energy expenditure (METs), the root mean square error (RMSE) was
used to evaluate performance.

2.6. Brief Overview of the Utilized Machine Learning Algorithms

LASSO (least absolute shrinkage and selection operator) is a statistical and machine
learning regression algorithm used for feature selection and regularization to enhance
the performance of the model. It is a type of linear regression that utilizes the concept of
shrinkage, in which the data points are shrunk towards a central point [47]. We utilized the
Glmnet package [47], in which the LASSO linear and logistic regression are implemented.

Decision tree learning is one of the most common machine learning algorithms due
to its simplicity and interpretability. The tree is a graphical representation of decisions.
It consists of leaves representing the class labels (e.g., sedentary or non-sedentary), and
branches representing conjunctions of features (e.g., time- and frequency-domain features)
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that lead to those class labels. The tree is built by splitting the source dataset into subsets.
Each subset is used to select the feature that best split the data equally. Decision tree learning
can be used for building classification trees (e.g., PA type and intensity recognition) or
regression trees (e.g., EE estimation) [48].

Random forest is an ensemble learning algorithm based on the concept of bagging (or
bootstrap aggregation), in which predictions from multiple decision trees are combined
through a majority voting mechanism. In random forest, however, only a subset of features
are selected randomly to build a forest of decision trees [40].

XGBoost (extreme gradient boosting) is also an ensemble learning algorithm based on
the gradient boosting framework, in which models are built sequentially to boost (increase)
the performance of the previous models by utilizing the gradient descent algorithm to
minimize errors. However, XGBoost offers better hardware and software optimization
mechanisms, prevents overfitting by penalizing complex models and handles sparse
patterns and missing data efficiently [41].

3. Results

Table 2 shows participants’ descriptive characteristics per age group: young (20–
50 years), middle (50–70 years) and old (70–89 years). There are no noticeable differences
between the different age groups with respect to BMI, women percentage and number
of Hispanic. Figure 2 shows a slight performance reduction from younger to older age
groups and from sedentary to more high variability lifestyle activities. The performance of
the machine learning models were similar in recognizing sedentary PA type and varied
in recognizing locomotion and lifestyle PA types. Generally, XGBoost and random forest
models outperformed other models. However, the XGBoost models were slightly better
than the random forest models in most of the tasks, except for recognizing sedentary PA
type across all age groups. Figures S1–S3 show other performance metrics including AUC,
balanced accuracy and accuracy.
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Table 2. Participants descriptive characteristics by age group.

Young Middle Old All

Age range, years [20–50] (50–70] (70–89] [20–89]

Mean Age (SD), years 35.2 (10.7) 61.9 (5.6) 77.7 (5.1) 61.7 (17.7)

Mean BMI (SD), kg/m2 26.1 (5.5) 26.9 (5.5) 27.7 (5.8) 27 (5.6)

Women % 60% 67% 58% 62%

Number of Hispanic 3 2 1 6

Total number 60 95 98 253

Results for PA intensity show that the models’ performance was slightly higher for
young and middle age groups compared to the old age group, as shown in Figure 3. The
performance of low intensity models across age groups outperformed the performance
of the moderate, then light intensities. The performance of the machine learning models
were close in recognizing low PA intensity and varied in recognizing light and moderate
PA intensities. Generally, XGBoost and random forest models outperformed other models.
However, the XGBoost models were slightly better than the random forest models in most
of the tasks, except for recognizing low PA intensity in the young age group. Figures S4–S6
show other performance metrics including AUC, balanced accuracy and accuracy.
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Figure 4 shows that METs RMSE decreased (improved) from young to middle to older
age groups. The performance of the machine learning models was close for the young age
group and varied for the middle and old age groups. Generally, XGBoost and random
forest models outperformed other models. However, the XGBoost models were slightly
better than the random forest models, except for the young age group.
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Table 3 shows the performance of recognizing individual PA using XGBoost. It can
be noticed that activities mainly involving wrist movements (washing dishes, computer
work, cleaning windows) tend to perform better than others. However, there is no clear
difference across age groups.



Sensors 2021, 21, 3352 9 of 15

Table 3. Performance metrics of recognizing individual physical activities using XGBoost. Each value is the mean and
standard deviation of the 5-fold nested cross validation.

Young Middle Old All

Individual Activities Recognition Performance (F1 Score)

leisure walk 0.544 (0.055) 0.491 (0.070) 0.391 (0.059) 0.497 (0.026)
rapid walk 0.645 (0.055) 0.545 (0.061) 0.470 (0.048) 0.567 (0.037)
light gardening 0.585 (0.056) 0.529 (0.051) 0.495 (0.025) 0.571 (0.047)
yard work 0.416 (0.035) 0.478 (0.046) 0.404 (0.070) 0.489 (0.040)
prepare serve meal 0.520 (0.022) 0.482 (0.037) 0.480 (0.046) 0.520 (0.027)
digging 0.711 (0.040) 0.686 (0.050) 0.637 (0.053) 0.719 (0.038)
straightening up dusting 0.460 (0.051) 0.427 (0.041) 0.415 (0.027) 0.483 (0.014)
washing dishes 0.782 (0.012) 0.706 (0.024) 0.596 (0.035) 0.716 (0.023)
unloading storing dishes 0.666 (0.031) 0.669 (0.044) 0.597 (0.036) 0.675 (0.021)
walking at rpe 1 0.366 (0.064) 0.491 (0.027) 0.318 (0.056) 0.437 (0.027)
personal care 0.660 (0.043) 0.709 (0.028) 0.552 (0.027) 0.672 (0.011)
dressing 0.494 (0.035) 0.450 (0.038) 0.335 (0.023) 0.456 (0.021)
walking at rpe 5 0.482 (0.050) 0.440 (0.104) 0.356 (0.094) 0.443 (0.029)
sweeping 0.602 (0.068) 0.634 (0.073) 0.518 (0.057) 0.625 (0.018)
vacuuming 0.637 (0.029) 0.611 (0.044) 0.533 (0.035) 0.625 (0.024)
stair descent 0.705 (0.120) 0.693 (0.055) 0.635 (0.064) 0.706 (0.040)
stair ascent 0.543 (0.104) 0.561 (0.085) 0.518 (0.023) 0.600 (0.047)
trash removal 0.425 (0.047) 0.473 (0.050) 0.355 (0.017) 0.465 (0.034)
replacing sheets on a bed 0.626 (0.064) 0.677 (0.029) 0.559 (0.024) 0.665 (0.031)
stretching yoga 0.628 (0.026) 0.642 (0.033) 0.557 (0.043) 0.630 (0.035)
mopping 0.673 (0.039) 0.660 (0.033) 0.623 (0.041) 0.702 (0.041)
light home maintenance 0.507 (0.027) 0.536 (0.035) 0.459 (0.028) 0.530 (0.025)
computer work 0.780 (0.043) 0.800 (0.039) 0.759 (0.049) 0.795 (0.017)
heavy lifting 0.650 (0.031) 0.672 (0.024) 0.495 (0.041) 0.647 (0.035)
shopping 0.506 (0.052) 0.537 (0.039) 0.524 (0.033) 0.563 (0.040)
ironing 0.636 (0.033) 0.687 (0.014) 0.620 (0.056) 0.700 (0.023)
laundry washing 0.426 (0.036) 0.509 (0.039) 0.411 (0.040) 0.479 (0.021)
strength exercise leg curl 0.576 (0.044) 0.644 (0.062) 0.656 (0.108) 0.695 (0.028)
strength exercise chest press 0.681 (0.082) 0.668 (0.063) 0.602 (0.079) 0.697 (0.017)
strength exercise leg extension 0.367 (0.128) 0.462 (0.092) 0.329 (0.079) 0.419 (0.019)
tv watching 0.614 (0.050) 0.616 (0.019) 0.546 (0.069) 0.624 (0.030)
standing still 0.631 (0.081) 0.644 (0.060) 0.527 (0.094) 0.612 (0.036)
washing windows 0.764 (0.058) 0.720 (0.045) 0.739 (0.056) 0.755 (0.024)
Macro average (F1 score) 0.584 (0.023) 0.594 (0.021) 0.516 (0.011) 0.600 (0.014)

Figures S7–S9 show the confusion matrices of recognizing PA type across age groups.
The confusion increases as we move from sedentary to lifestyle PA type, which is consistent
with the F1 scores shown in Figure 2. Figures S10–S12 show the confusion matrices of
recognizing PA intensity across age groups. Similarly, the confusion of the models are
consistent with the F1 scores shown in Figure 4.

Figures S13–S15 show the top 15 features that contributed the most in recognizing
PA type across age groups extracted from the XGBoost models. It can be noticed that the
ranking of features is similar across age groups within each PA type. Figures S16–S18 show
the top 15 features that contributed the most in recognizing PA intensity across age groups.
Similarly, it can be noticed that the ranking of features is similar across age groups within
each PA intensity.

4. Discussion

The goal of the study was to build accurate machine learning models to recognize the
hallmark measures of physical activities and estimate energy expenditure across different
age groups. We analyzed a large dataset of raw accelerometer data collected from the wrist
position. We utilized four machine learning algorithms to build our models including: deci-
sion tree, random forest, extreme gradient boosting (XGBoost) and least absolute shrinkage
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and selection operator (LASSO). Results showed that the machine learning models were
quite accurate at recognizing physical activity type and intensity and estimating energy
expenditure. However, models performed less optimally when recognizing individual
physical activities. Our hypothesis that increasing age would impact model performance
was rejected as only slight differences were detected among age groups.

The results of the models built to recognize physical activity type showed high per-
formance for all age groups, as shown in Figure 2. Although the results were similar
across age groups, there was a slightly higher performance in the young, followed by
the middle, then the old age group for a majority of the activity types. Additionally, the
highest performance was for sedentary, locomotion, then lifestyle activities for all age
groups. Physical activity types seem to be more distinguishable and cause less confusion
for younger ages as reflected on the confusion matrices shown in Figures S7–S9. It is hard
to interpret the drop in the performance from young to old age groups. One potential cause
of this drop is the deviations from the standardized protocol that are more common in older
adults. For example, there was a certain amount of variability in the trash removal activity
among older adults compared to younger adults (older adults could not pull the trash
bag quickly). This suggests that the ML models need to incorporate these compensations
more accurately among older populations. Another reason is that older adults do not like
the wrist device as tight as the younger adults. This can result in unintended artifactual
movement, which occurred more commonly among the older. An additional cause could
be that the middle and old age groups include more participant data than the young age
group. Therefore, the models tend to generalize better and be less optimistic. On the other
hand, the drop in the performance from sedentary to lifestyle activity types is intuitive.
Lifestyle activities typically require more wrist involvement (i.e., ironing, trash removal)
than other physical activity types. This means more variability in physical activities as we
move from sedentary to lifestyle activities, which can increase the confusion in recognizing
physical activity types, as reflected in the confusion matrices shown in Figures S7–S9.

The results of the models built to recognize physical activity intensity showed rela-
tively high performance for all age groups, but lower than the performance of recognizing
physical activity types, as shown in Figure 3. The highest performance was for the young
and middle age groups alternatively and then the old age group for all activity intensities.
Additionally, the highest performance was for low, moderate, then light intensities for
all age groups. As mentioned above, it is hard to interpret the drop in the performance
from young to old age groups. Performance metrics and confusion for labeling physical
activity intensities showed a consistent, although slight, reduction in older aged groups
(see Figure 3 and Figures S10–S12). If this error was scaled to free-living conditions over a
typical day (16 h), older adults would be expected to have 2% (~19 min) more mislabeling
of PA intensity compared to a younger group.

Models built to recognize individual physical activities showed lower performance
than recognizing physical activity type. The highest F1-Score was 0.8 for recognizing
computer work activity in the middle age group and the lowest was 0.318 for recognizing
walking at RPE 1 activity in the old age group. The overall deterioration in the recognition
performance in individual activities compared to other recognition tasks is intuitive, due to
the high number of classes and the data imbalance. Summing these activities into categories
such as the physical activity types or physical activity intensities can help in enhancing the
recognition performance metric, as observed in Figures 2 and 3. In general, there were no
consistent differences among age groups.

The scaled impurity-based feature importance ranking generated from the XGBoost
algorithm show how relevant these features are to the problem in hand and help in
better understanding the model. We listed the top 15 features out of 49 features for both
the physical activity type and intensity recognition tasks generated from the XGBoost
models. By examining the feature importance for the physical activity types, there is a
consistency in the ranking of these features across age groups within each one of the activity
types. For example, variability in vector magnitude features such as sdvm and cv_vm were
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important in predicting sedentary physical activities, whereas wrist-specific features such
as wrist_sd_z and sd_angle are more relevant for recognizing lifestyle activity types. The
feature importance rankings for low intensity activities were similar to sedentary PA type,
where the VM features such as sdvm and cv_vm were dominant. Feature rankings for
predicting light and moderate intensities were similar with high importance for moment-
based variables. Similarly, there is a consistency in the feature importance ranking across
the age groups suggesting that the features are robust regarding potential movement
difference with increasing age. Interestingly, the amplitude of the accelerometer axis (i.e.,
mean VM), which is commonly used to gauge intensity did not have a major role in model
prediction. Being aware of the important features for the recognition problem in hand can
help researchers continue improving model accuracy with less computational costs.

Comparing relevant literature results is an intricate endeavor, because of the differ-
ences in the data collection environment and the variables that govern the study. There
are numerous differences between studies, which include: sample size, the demographic
characteristics of participants, the number and diversity of the physical activities tested,
type of accelerometer, body position, statistical and machine learning algorithms applied,
the extracted statistical features, the window size and the metrics measured to evaluate the
overall performance. However, some important comparisons can be made. For example,
Ellis et al. [49] built random forest models on data collected from the dominant wrist to
predict physical activity type and estimate energy expenditure. The models were devel-
oped and tested on 40 (average age 35.8 years) participants. They obtained an average F1
score of 0.75 on 8 daily activities. Additionally, they obtained an RMSE value of 1.0 METs,
which is similar to our young age group. Staudenmayer et al. [8] also used random forest
to estimate energy expenditure and metabolic intensity of 19 physical activities from wrist
accelerometer data. The models derived from a small young sample of 20 (24.1 years) esti-
mated RMSE at 1.21 METs. When compared to others using machine learning approaches,
the results from the current work are comparable within the young age group, but better
in middle and old age groups. Despite the differences mentioned above, we compared
our work with others who processed data collected from a triaxial accelerometer placed
on the wrist position to recognize physical activity type, recognize individual activities or
estimate energy expenditure, as shown in the Supplemental Table S2.

Studies that examined the hallmark measures of physical activity have used publicly
available data that contain activity labels, but not measures of metabolic intensity or energy
expenditure (e.g., Opportunity (multiple body positions, 3 participants) [50], PAMAP2
(chest, arm and ankle positions, 9 participants) [51], UCI daily and sports dataset (hip
position, 30 participants) [52], Skoda Mini Checkpoint (multiple body positions, 1 par-
ticipant) [53], WISDM (hip position, 29 participants) [54], and Daphnet Freezing of Gait
Dataset (legs and hip positions, 10 participants) [52]). They are also limited by a small
number of participants, the age range being mostly <40 years, a low number and diversity
of activity types and, most importantly, lacking sufficient data from the wrist position.
Given these substantial differences, the models presented here show relatively higher
performance than others. Additionally, the current models may generalize better due to
the high diversity of activities, wide age span, gender and racial diversity and the larger
number of participants enrolled.

A limitation of the current study is that data were collected in controlled lab settings,
which is appropriate and a first step in evaluating positional differences [55]. Collecting
data in free-living settings is more reflective of the numerous transitions between activity
types, but it is challenged by labeling the activity type. Another limitation is the consid-
eration of window size, which was based on previous studies that extracted time- and
frequency-domain features. This window size may not reflect the most appropriate size for
all tasks and age groups. Additional simulation work should evaluate different window
sizes for optimizing performance.
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5. Conclusions

In this study, we tested the hypothesis that the performance of machine learning
models in estimating activity types, activity intensity and energy expenditure would
vary across age groups. Overall results suggest data features derived from wrist worn
accelerometers and analyzed using machine learning models lead to high-to-moderate
accuracy across all age groups. In conclusion, a generalized approach to processing wrist
accelerometry data, without consideration of a person’s age, is sufficient for estimating
physical activity.

Supplementary Materials: References [56,57] are cited in the supplementary materials. The fol-
lowing are available online at https://www.mdpi.com/article/10.3390/s21103352/s1, Figure S1:
The receiver operating characteristic–area under the curve of recognizing physical activity type.
Each value is the mean and standard deviation of the 5-fold nested cross validation, Figure S2: The
balanced accuracy of recognizing physical activity type. Each value is the mean and standard devia-
tion of the 5-fold nested cross validation, Figure S3: The accuracy of recognizing physical activity
type. Each value is the mean and standard deviation of the 5-fold nested cross validation, Figure S4:
The receiver operating characteristic–area under the curve of recognizing physical activity intensity.
Each value is the mean and standard deviation of the 5-fold nested cross validation, Figure S5: The
balanced accuracy of recognizing physical activity intensity. Each value is the mean and standard de-
viation of the 5-fold nested cross validation, Figure S6: The accuracy of recognizing physical activity
intensity. Each value is the mean and standard deviation of the 5-fold nested cross validation, Figure
S7: Confusion matrix of recognizing physical activity type for young age group, Figure S8: Confusion
matrix of recognizing physical activity type for middle age group, Figure S9: Confusion matrix of
recognizing physical activity type for old age group, Figure S10: Confusion matrix of recognizing
physical activity intensity for young age group, Figure S11: Confusion matrix of recognizing physical
activity intensity for middle age group, Figure S12: Confusion matrix of recognizing physical activity
intensity for old age group, Figure S13: Feature importance for recognizing sedentary activities across
age groups, Figure S14: Feature importance for recognizing locomotion activities across age groups,
Figure S15: Feature importance for recognizing lifestyle activities across age groups, Figure S16:
Feature importance for recognizing low intensity across age groups, Figure S17: Feature importance
for recognizing light intensity across age groups, Figure S18: Feature importance for recognizing
moderate intensity across age groups, Table S1: List of the performed physical activities, their type,
and intensity, Table S2: Comparison with relevant work in the literature. The listed studies collected
data from the wrist position for physical activity type classification. Classification performance is
accuracy unless otherwise mentioned. For the purpose of comparison, we calculated the average
accuracy for the physical activity type classification. N is the number of participants; Num is number;
ML is machine learning; RMSE is the root mean square error; RF is random forest; SVM is support
vector machine; and RLR is regularized logistic regression.
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