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Abstract: In this work, the thermal stability, microstructure, and catalytic activity in oxidation reactions
of calcium silicate hydrates formed in the CaO-SiO2-Cr(NO3)3-H2O system under hydrothermal
conditions were examined in detail. Dry primary mixture with a molar ratio of CaO/SiO2 = 1.5 was
mixed with Cr(NO3)3 solution (c = 10 g Cr3+/dm3) to reach a solution/solid ratio of the suspension of
10.0:1. Hydrothermal synthesis was carried out in unstirred suspensions at 175 ◦C for 16 h. It was
determined that, after treatment, semicrystalline calcium silicate hydrates C-S-H(I) and/or C-S-H(II)
with incorporated Cr3+ ions (100 mg/g) were formed. The results of in situ X-ray diffraction and
simultaneous thermal analyses showed that the products were stable until 500 ◦C, while, at higher
temperatures, they recrystallized to calcium chromate (CaCrO4, 550 ◦C) and wollastonite (800–850 ◦C).
It was determined that both the surface area and the shape of the dominant pore changed during
calcination. Propanol oxidation experiments showed that synthetic semicrystalline calcium silicate
hydrates with intercalated chromium ions are able to exchange oxygen during the heterogeneous
oxidation process. The obtained results were confirmed by XRD, STA, FT-IR, TEM, SEM, and BET
methods, and by propanol oxidation experiments.

Keywords: calcium chromate; calcium silicate; BET analysis; thermal stability; microstructure;
calcium silicate hydrate; mesoporous; catalytic activity

1. Introduction

According to various sources, humanity is facing more than 15 environmental concerns, such as
air, water, and soil pollution, global warming, health issues, and others. One of the major contributors
to global air pollution (denoted by the contribution to ozone and chemical smog) and human health is
volatile organic compounds (VOCs, alkenes, alkanes, esters, alcohols, etc.) [1–3]. The main sources of
these compounds are the chemical and petroleum industry, pharmaceutical plants, etc. In addition,
a large variety of VOCs are generated from household products [4,5]. There are many technologies for
VOC neutralization: Biological degradation, adsorption, ozonation, thermal treatment, and oxidation.
Catalytic oxidation is one of the most common attractive ways to eliminate these compounds by
converting them to CO2 and H2O at a low temperature (200–500 ◦C). The conventional catalysts require
precious metals (Pt, Pd, Au), which are expensive; therefore, scientists are looking for new catalysts
based on transitional metals [6–9].

Nanomaterials 2020, 10, 1299; doi:10.3390/nano10071299 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0001-9552-3477
http://www.mdpi.com/2079-4991/10/7/1299?type=check_update&version=1
http://dx.doi.org/10.3390/nano10071299
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2020, 10, 1299 2 of 16

In order to create a cost-effective and efficient catalyst for VOC oxidation, scientists are investigating
such metals as Cr [10,11], Zn [12], Fe, Co [13–15], Cu [16,17], Mn [18], and others. One of the widely
studied metals is chromium, which not only possesses efficient redox properties but is also economically
attractive due to the low cost [19–21]. The application of chromium compounds for environmentally
friendly selective oxidation reactions in the liquid or gas phases depends on the adhesion to specific
catalyst supports. In addition, the nature of the catalyst support affects the performance, application,
and properties of catalysts [22,23]. There are a lot of requirements for catalyst supports, but the
high surface area and thermal stability are some of the most important ones. For this reason,
attention has been paid to mesoporous calcium silicates (xCaO·ySiO2) or calcium silicate hydrates
(xCaO·ySiO2·zH2O), which are a promising catalyst support [10,24]. These compounds not only have
the aforementioned properties but are also chemically stable and able to disperse metal particles on the
surface. In addition, calcium silicates and calcium silicate hydrates allow the retaining of the unique
properties of metal ions and promote catalytic activity [25,26].

Calcium silicate hydrates form in nature, by curing cement, and they can also be synthesized in
CaO-SiO2-H2O mixtures under hydrothermal conditions within the 100–350 ◦C temperature range [27].
Meanwhile, calcium silicates can be synthesized by calcining calcium silicate hydrates, or by solid
sintering of calcium- and silicon-containing materials [28,29]. Usually, the preparation of catalysts
supported with calcium silicates or calcium silicate hydrates involves three steps [30,31]: (1) Synthesis
of calcium silicates or calcium silicate hydrates; (2) adsorption of metal ions; (3) calcination at a selected
temperature (in order to achieve active metal oxides). In addition, it is possible to incorporate
metal ions into the structure of calcium silicates or calcium silicate hydrates during their synthesis.
Such compounds with incorporated metal ions can be used as catalysts for ethanol conversion to
butadiene, for the synthesis of bisphenol F, and for the oxidation of ketones and aldehydes [25,32,33].
Unfortunately, there is a lack of information about the influence of metals on the formation, thermal
stability, microstructure, and other properties of such materials. According to the literature, some metal
ions, such as sodium or potassium ions, have a positive effect on the reactivity of silicon-containing
compounds and promote the formation of calcium silicate hydrates [34]. Meanwhile, aluminum
ions affect the stability and morphology of tobermorite because, by increasing the aluminum content,
the form of crystals changes from plate-like to lath-like and then to needle-like [35]. Different results
were obtained by using aluminum oxide for the synthesis of dibasic calcium silicate hydrate α-C2SH at
200 ◦C because this additive retarded the formation of calcium silicate hydrates but stimulated the
crystallization of calcium silicate [28]. According to the literature, some cations, such as Al3+, B3+,
and Be2+, can change silicon in the silicon–oxygen tetrahedron, while others (Na+, K+, Fe2+, Mn2+,
Ti2+, Zr2+, etc.) intercalate outside it. These cations connect silicon–oxygen tetrahedrons to each other.
Thus, different cations change the composition, structure, and other properties of calcium silicate
hydrates and calcium silicates [36].

For these reasons, in the first part of this work, the thermal stability of compounds formed
in the CaO-SiO2-Cr(NO3)3-H2O system under hydrothermal conditions was examined in detail.
Meanwhile, in the second part, the microstructure and catalytic activity of synthetic and calcined
products were determined.

2. Materials and Methods

The synthesis of dibasic calcium silicate hydrate samples (C-S-H) with incorporated Cr3+ ions
was based on the hydrothermal method. The dry primary mixture of fine-grained SiO2·nH2O (Reaktiv,
Saint Petersburg, Russia, loss of ignition—16.9%) and calcium oxide (produced by burning Ca(OH)2

(Sigma Aldrich, Darmstadt, Germany) at 450 ◦C for 1 h; the quantity of free CaO was equal to 97.41%)
was mixed with CrN3O9·9H2O solution (Eurochemicals, Vilnius, Lithuania, concentration of Cr3+

ions 10 g/dm3) to reach a water-to-solid ratio of 10:1, with the CaO/SiO2 molar ratio of 1.5:1. Due to
the formation peculiarities of higher-basicity calcium silicates hydrates [27,28,30,37], hydrothermal
synthesis was carried out in unstirred suspensions under saturated steam pressure at 175 ◦C for 16 h.
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After hydrothermal treatment, the obtained products were filtered off, rinsed with ethanol, dried at
50 ◦C ± 5 for 24 h, and sieved (<80 µm).

The obtained products were calcined in a high-temperature furnace Nabertherm LH 15/13 at
550 ◦C for 24 h. The calcination temperature was reached within 48 h.

The mineralogical composition of products was determined by powder X-ray diffraction (XRD,
D8 Advance diffractometer, Bruker AXS, Karlsruhe, Germany). The operating conditions were as
follows: 0.02 mm Ni filter, Cu Kα radiation, tube voltage 40 kV, tube current 40 mA, detector Bruker
LynxEye. Diffraction patterns were recorded in a Bragg–Brentano geometry within the 2θ range of
3–70◦ at a scanning speed of 6◦/min.

The measurements of the thermal stability and phase transformation were prepared with:

(1) Linseis PT1000 instrument (Linseis, Selb, Germany). The operating conditions were: A heating
rate of 15 ◦C/min, temperature range of 30–1000 ◦C, nitrogen atmosphere, ceramic sample
handlers, and crucibles of Pt, and the sample mass was equal to ~13 mg.

(2) In-situ XRD analysis was made with a high-temperature camera MTC-hightemp (Bruker AXS,
Karlsruhe, Germany). The measurements were carried out with a step width of 0.02 2θ and
0.6 s/step at a heating rate of 50 ◦C/min after equilibration for 5 min at the desired temperature.

Fourier-transform infrared spectroscopy was carried out with the help of a Perkin Elmer FT–IR
Spectrum X system (PerkinElmer, Waltham, MA, USA). Specimens were prepared by mixing 1 mg of
the sample with 200 mg of KBr. Spectral analysis was performed in the range of 4000–400 cm−1 with
a spectral resolution of 1 cm−1.

The microstructure of the products was determined by using:

(1) Scanning electron microscopy was performed by using a JEOL JSM-7600F (JEOL, Tokyo, Japan)
instrument at an accelerating voltage of 10 kV, and a working distance of 8.6 mm.

(2) Transmission electron microscopy was performed by using a Tecnai G2 F20 X-TWIN instrument (FEI,
Eindhoven, The Netherlands) with a Schottky-type field-emission electron source. The accelerating
voltage was 200 kV.

The concentration of Cr3+ ions was determined by using a Perkin-Elmer Analyst 400 atomic
absorption spectrometer (Perkin Elmer, Waltham, MA, USA) with the following parameters: Wavelength
= 357.87 nm; hollow cathode lamp current (I) = 30 mA; the type of flame was C2H2–air; oxidant air =

10 L/min; acetylene = 2.5 L/min. All the tests were repeated three times. The concentration of nitrate
anions was determined by using a Flow Injection Analyst FIAlyzer-100 (FIA; FIAlab Instruments,
Seattle, WA, USA). FIAlyzer-100 system: FIAlyzer-100, integrated FIA LOB manifold, USB4000 UV/VIS
spectrometer, HL2000-LL visible tungsten lamp.

The surface area of the samples was measured with a BET surface area analyzer (nitrogen
adsorption porosimeter) Nova 2200 E-Series (Quantachrome Instruments, Boynton Beach, FL, USA).
Prior to analysis, the samples were degassed under vacuum at 100 ◦C. The specific surface area of the
samples was calculated with the BET equation by using the data of the lower part of the N2 adsorption
isotherm (0.05 < P/P0 < 0.35). The total pore volume, the pore size distribution, and the shape of pores
were calculated according to the corrected Kelvin equation and the scheme developed by Orr et al.
by using the entire N2 desorption isotherm at 77 K [38,39].

The catalyst activity in oxidation reactions was determined as follows. Propanol was used as
a volatile organic compound for catalytic oxidation experiments. In addition, 0.945–1.009 g of the
analyzed sample was placed inside a fixed-bed quartz reactor equipped with a coil preheater. A quartz
reactor was mounted inside a Nabertherm LH 15/13 furnace for maintaining the constant temperature,
while a K-type thermocouple inside the reactor was used for accurate temperature monitoring. The inlet
and the outlet of the reactor are equipped with special analysis points for the collection of gaseous flow
samples, as well as CO and CO2 concentration measurement probes connected directly to a TESTO
445 unit. Catalytic oxidation was performed with a constant 370 mL/min flow of air, which was
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saturated with 475–640 ppm of VOC. The concentrations of propanol in the gas stream were determined
with a Perkin Elmer Clarus 500 GC/MS system equipped with a COL-ELITE 5MS universal capillary
column, which is 30 m long and has a 0.25 mm internal diameter.

3. Results and Discussions

3.1. Synthesis of Calcium Silicate Hydrates with Incorporated Cr3+ Ions

The data of X-ray diffraction analysis showed that, during the hydrothermal treatment in the
CaO-SiO2-Cr(NO3)3-H2O mixture at 175 ◦C, semicrystalline calcium silicate hydrates C-S-H(I) and/or
C-S-H(II) (d-spacing—0.303; 0.280; 0.184; 0.167 nm) were formed in the products (Figure 1a) [38,39].
In addition, due to the carbonization when the products were dried in the air-conditioned chamber,
traces of calcite (PDF No. 04-012-0489) were detected in the XRD pattern [40]. It is worth mentioning
that chromium ions do not affect the mineral composition of the synthesis products because, under the
same conditions of synthesis in the pure system (CaO-SiO2-H2O), only C-S-H(I), C-S-H(II), and calcite
were formed [30].

Nanomaterials 2020, 10, x 4 of 16 

 

3. Results and Discussions 

3.1. Synthesis of Calcium Silicate Hydrates with Incorporated Cr3+ Ions 

The data of X-ray diffraction analysis showed that, during the hydrothermal treatment in the 

CaO-SiO2-Cr(NO3)3-H2O mixture at 175 °C, semicrystalline calcium silicate hydrates C-S-H(I) and/or 

C-S-H(II) (d-spacing — 0.303; 0.280; 0.184; 0.167 nm) were formed in the products (Figure 1a) [38,39]. 

In addition, due to the carbonization when the products were dried in the air-conditioned chamber, 

traces of calcite (PDF No. 04-012-0489) were detected in the XRD pattern [40]. It is worth mentioning 

that chromium ions do not affect the mineral composition of the synthesis products because, under 

the same conditions of synthesis in the pure system (CaO-SiO2-H2O), only C-S-H(I), C-S-H(II), and 

calcite were formed [30]. 

The results of atomic absorption spectroscopy showed that, after synthesis, the concentration of 

Cr3+ ions in the liquid medium decreased by more than 99.99%, i.e., from 10,000 mg/dm3 (before 

synthesis) to 0.041 mg/dm3 (after synthesis) (Supplementary Materials, Table S1). Meanwhile, the 

results of FIA analysis showed that more than 80% (from the primary amount of 17,308 mg/dm3) of 

the NO3– anions are present in the liquid medium (Supplementary Materials, Table S2). It should be 

noted that the XRD results did not show the formation of crystalline compounds containing Cr3+ or 

NO3− ions. Thus, it can be stated that all Cr3+ ions intercalated into the structure of calcium silicate 

hydrates or formed amorphous compounds, while NO3− anions only partially (−20%) participated in 

the process. These data are in good agreement with the results obtained in previous works [30,41], 

which determined that synthetic calcium silicate hydrates act as a chemo-sorbent, and their 

adsorption capacity is equal to 100 mg Cr3+/1 g CSH. 

  

(a) (b) 

  

(c) (d) 

Figure 1. XRD pattern (a), SEM image (b), STA curves (curve 1—TG; curve 2—DSC) (c), and FT-IR 

spectrum (d) of the synthesis products. Indexes: k–calcite, c–C-S-H(I)/C-S-H(II). 

-15

-10

-5

0

5

10

15

20

5 15 25 35 45 55 65

In
te

n
si

ty
, 

a.
 u

.

2θ, deg

k

c
c

c

kk

k - CaCO3

c - C-S-H

c

-12

-8

-4

0

4

8

-24

-20

-16

-12

-8

-4

0

40 240 440 640 840

H
ea

t 
fl

o
w

, 
m

V
/m

g

M
as

s,
 %

Temperature, °C

115
Endo

Exo

2

1

595
675

836

288

866

400100016002200280034004000
ν, cm-1

3
4

4
1

8
7

5

1
4

2
8

T
, 
%

9
7

5

2
5

1
2

4
9

2

1
6

4
4

2
4

2
7

Figure 1. XRD pattern (a), SEM image (b), STA curves (curve 1—TG; curve 2—DSC) (c), and FT-IR
spectrum (d) of the synthesis products. Indexes: k–calcite, c–C-S-H(I)/C-S-H(II).

The results of atomic absorption spectroscopy showed that, after synthesis, the concentration
of Cr3+ ions in the liquid medium decreased by more than 99.99%, i.e., from 10,000 mg/dm3 (before
synthesis) to 0.041 mg/dm3 (after synthesis) (Supplementary Materials, Table S1). Meanwhile, the results
of FIA analysis showed that more than 80% (from the primary amount of 17,308 mg/dm3) of the
NO3

– anions are present in the liquid medium (Supplementary Materials, Table S2). It should be
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noted that the XRD results did not show the formation of crystalline compounds containing Cr3+ or
NO3

− ions. Thus, it can be stated that all Cr3+ ions intercalated into the structure of calcium silicate
hydrates or formed amorphous compounds, while NO3

− anions only partially (−20%) participated in
the process. These data are in good agreement with the results obtained in previous works [30,41],
which determined that synthetic calcium silicate hydrates act as a chemo-sorbent, and their adsorption
capacity is equal to 100 mg Cr3+/1 g CSH.

In the SEM micrograph of the synthesis products (Figure 1b), only thin close-packed particles
(called foils or honeycomb) characteristic to C-S-H(I) and C-S-H(II) were observed [38,42]. In addition,
the existence of the above-mentioned compounds was confirmed by DSC data: The endothermic effect
at 116 ◦C can be assigned to the removal of adsorption/crystallization water in semicrystalline calcium
silicate hydrates, while the exothermic effect at 836 ◦C and the shoulder at 866 ◦C are characteristic of
the recrystallization process of C-S-H(I) and C-S-H(II), respectively (Figure 1c, curve 2). Furthermore,
the endothermic effects at 288 ◦C and 595 ◦C can be assigned to the dehydration or decomposition
of compounds containing Cr3+ and/or NO3

– ions, as well as to the formation of double metal oxides
(Figure 1c, curve 2) [43]. The small thermal effect at 675 ◦C corresponds to the decomposition of calcium
carbonate. The data of TGA showed that less than 0.5% of the above-mentioned compound is present
in the products (Figure 1c, curve 1).

The identification of the absorption bands in the FT-IR spectrum of the synthesis products
is complicated (Figure 1d). The adsorption band, which is present within the 400–700 cm−1

frequency range, is typical to semicrystalline C-S-H (δ(Si–O–Si) and δ(O–Si–O)) [44] and/or to ν(Cr–O)
vibrations [45]. In a higher frequency interval (800–1000 cm−1), the absorption bands can be assigned
to symmetrical νs(O-SiO-) vibrations in the C-S-H structure [46]. Furthermore, the adsorption
maximums at –1428 and –875 cm−1 correspond to ν(CO3

2−) and δ(C–O3
2−) or NO3

− group vibrations,
respectively [47]. Meanwhile, the adsorption band at 1644 cm−1 can be assigned to the vibration of
the OH− bonds in both C-S-H and compounds containing the Cr3+ ions structure. Finally, the broad
band within the 2500–4000 cm−1 range reflected the H-O-H bending vibration of water. It is worth
mentioning that the adsorption bands associated with the NO3

− group occur in the same frequency
interval as ν(CO3

2−) and OH− vibrations.

3.2. Thermal Stability of Synthesis Products

In order to determine the formation of the potentially catalytic active compounds, the synthesis
products were calcined in a high-temperature camera MTC-hightemp within the 25–1000 ◦C temperature
range (Figure 2). Calcination was carried out at a heating rate of 50 ◦C/min after equilibration for
5 min at the desired temperature. The results of in-situ XRD patterns showed that the synthesis
products are stable within the 25–550 ◦C temperature range (Figure 2). It should be noted that the DSC
curve showed two endothermic effects at 115 ◦C and 288 ◦C temperatures (Figure 1c). The difference
between the presently mentioned results may have been observed due to the dehydration and/or
decomposition of the amorphous phase, which cannot be identified in XRD patterns. By increasing
the calcination temperature (>550 ◦C), the formation of calcium chromate CaCrO4 (PDF 00-008-0458)
proceeded (Figure 2). According to the literature, this compound can be used for scintillation,
Raman scattering behavior, or as a catalyst, dielectric material, paint pigment, and lubricant, and for
wastewater treatment [48–51]. It was determined that calcium chromate remained stable until 1000 ◦C
(Figure 2). These data are in good agreement with DSC results (Figure 1c). In addition, when the
calcination temperature was increased to 800–850 ◦C, the formation of calcium silicate—wollastonite
(PDF 00-066-0271, Supplementary Materials, Figure S1)—was observed (Figure 2).

In order to obtain a calcined sample with calcium chromate and a high surface area, a synthetic
sample was calcined in the furnace Nabertherm LH 15/13 at 550 ◦C for 24 h. The calcination
temperature was reached within 48 h. It was determined that, after calcination, only one crystalline
compound—calcium chromate—was formed (Figure 3a). In addition, a broad basal reflection within
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the 25–37◦ 2θ range can be assigned to partially dehydrated semicrystalline calcium silicate hydrates.
It is worth mentioning that, under these conditions of calcination, the traces of calcite remained stable.Nanomaterials 2020, 10, x 6 of 16 

 

 

Figure 2. In-situ XRD patterns of synthesis products when the temperature of calcination is 25–1000 

°C. Indexes: c – C-S-H(I)/C-S-H(II); w—wollastonite; k—CaCO3; Cr—CaCrO4. 

In order to obtain a calcined sample with calcium chromate and a high surface area, a synthetic 

sample was calcined in the furnace Nabertherm LH 15/13 at 550 °C for 24 h. The calcination 

temperature was reached within 48 h. It was determined that, after calcination, only one crystalline 

compound—calcium chromate—was formed (Figure 3a). In addition, a broad basal reflection within 

the 25–37° 2θ range can be assigned to partially dehydrated semicrystalline calcium silicate hydrates. 

It is worth mentioning that, under these conditions of calcination, the traces of calcite remained stable. 

Figure 3. XRD pattern (a), SEM image (b), and FT-IR spectrum (c) of the calcined sample at 550 °C. 

Indexes: k—CaCO3; Cr—CaCrO4. 

  

(a) (b) 

 

(c) 

-15

-10

-5

0

5

10

15

20

25

5 15 25 35 45 55 65

In
te

n
si

ty
, 

a.
 u

.

2θ, deg

Cr

k Cr
Cr

Cr - CaCrO4

k - CaCO3

Cr Crk

400100016002200280034004000
ν, cm-1

3
4

4
6

6
6

7

1
4

3
5

T
, 

%

9
0

0

4
6

0

1
6

3
9

9
7

4

Figure 2. In-situ XRD patterns of synthesis products when the temperature of calcination is 25–1000 ◦C.
Indexes: c—C-S-H(I)/C-S-H(II); w—wollastonite; k—CaCO3; Cr—CaCrO4.
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Figure 3. XRD pattern (a), SEM image (b), and FT-IR spectrum (c) of the calcined sample at 550 ◦C.
Indexes: k—CaCO3; Cr—CaCrO4.

The results of SEM analysis are in good agreement with the data of XRD (Figure 3a) because small
crystals typical of CaCrO4 were observed (Figure 3b). In addition, in the FT-IR spectrum, the intensive
adsorption band at 900 cm–1 can be attributed to the vibrations of Cr+6–O bonds in CaCrO4 [45]
(Figure 3c). It should also be observed that, under these conditions of calcination, the dehydration of



Nanomaterials 2020, 10, 1299 7 of 16

the semicrystalline-type compounds proceeded partially because intensive bands characteristic of OH−

group vibrations in the FT-IR spectrum are visible (Figure 3c). These results are in good agreement
with TGA results because the mass changes of the synthetic product in the 550–900 ◦C temperature
range are equal to 4.14% (Figure 1c). In addition, similar results were presented in the literature [52].

3.3. Porosity of Synthetic and Calcined Products

It is known that one of the most important parameters of all catalysts and adsorbents is a high
surface area, which leads to successful application [38,53,54]. Thus, in order to determine the specific
surface area, nitrogen gas adsorption in combination with the Brunauer, Emmett, and Teller (BET)
equation was performed. Meanwhile, the shape of meso- and macro-pores and their distribution were
calculated by using the corrected Kelvin equation and the scheme as developed by Orr et al.

The nitrogen adsorption–desorption isotherms of the samples are presented in Figure 4. According
to the IUPAC classification [55], the adsorption isotherms of both samples can be classified as Type
IV whose characteristic feature is a hysteresis loop. According to the literature, this type of isotherm
should feature a plateau at high P/P0 values (>0.7), which indicates complete pore filling. In the
case of synthetic and calcined samples, the plateau was not present in the adsorption/desorption
isotherms (Figure 4). This phenomenon can be explained by unrestricted multilayer adsorption on
the surfaces of samples. Similar adsorption–desorption isotherms were obtained by Naderi [56],
and Babaee and Castel [57]. According to Rouquerol [58] and Sun [59], the Type IV isotherm is
characteristic of mesoporous materials (the pore diameter varies within the 2–50 nm range), where the
formation of a monolayer and a multilayer does not overlap; thus, the BET equation can be used for
the characterization of materials.
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Figure 4. Adsorption (1)–desorption (2) isotherms of synthetic (a) and calcined (b) samples.

Further analysis of the isotherms showed that the hysteresis loop of the synthetic product corresponds
to Type H1 and/or Type H3 (Figure 4a). The H1 hysteresis loop is characteristic of mesoporous materials
consisting of spherical particles or possessing well-defined cylindrical-like pore channels [55,60]. Usually,
materials with a H1 hysteresis loop have connected similarly sized pores. Meanwhile, the H3 hysteresis
loop is detected in materials consisting of plate-like particles and slit-like pores. This type of hysteresis
loop does not have limiting adsorption at high P/P0 and closes in the range of P/P0 0.4–0.45. Thus,
it possible that, in the synthetic product, both cylindrical-like and slit-like pores were formed (Figure 4).
These data are in good agreement with the SEM results (Figure 1b) and the literature data. According
to Liu et al. [31] and Zhang [61], during the hydrothermal synthesis of calcium silicates hydrates,
cylindrical-like, slit-like, or ink-bottle pores may be present in the products.

It was determined that, during calcination, the shape of the dominant pores changed from a mixture
of cylindrical-like and slit-like pores to well-defined cylindrical-like pores (Figure 4). The changes
may have occurred due to solid sintering reactions and the formation of new compounds (with a
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different crystal lattice) during calcination (Figure 2). According to the literature, the changes in the
pore shape have an influence on the surface area, the pore size distribution, and the physical-chemical
properties of the catalyst, adsorbents, and membranes. Feinberg et al. [60] determined that membranes
with slit-like pores have a higher selectivity than membranes with cylindrical-like pores. In addition,
the accessibility of the active sites of the catalyst, as well as the surfaces of adsorbents, depends on the
structure of the pores, their diameter, and the pore network.

The presently discussed results were confirmed by TEM data (Figure 5). The TEM micrograph of
the synthetic C-S-H sample with chrome ions showed an amorphous mass and needle-like crystallites
(Figure 5a). Presumably, cylindrical-like pores form in amorphous mass, while slit-like pores form
between needle-like crystallites. Meanwhile, in a calcined sample, compounds of the amorphous
structure (partially dehydrated C-S-H(I) and C-S-H(II)) and plate-like crystallite of CaCr2O4 [62] were
identified (Figure 5b).
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Figure 5. TEM micrographs of synthetic (a) and calcined (b) samples.

The BET method was used for the calculation of the surface area of the samples (Figure 6, Table 1),
which affects such properties of materials as their dissolution rate, adsorption capacity, etc. [63,64].
According to the literature [56,58], the BET method is valid if a straight line in the BET coordination
(1/[X((P0/P) − 1)]) − (P/P0) is obtained (Figure 6), and the value of the CBET constant is higher than 2
(in the ideal case, it is between 50 and 300). Calculations revealed that the values of the CBET constant
of synthetic and calcined samples are equal to 61.31 and 421.30, respectively. The higher value of
the CBET constant of the calcined sample can be explained by nitrogen adsorption on high-energy
surface sites (probably CaCr2O4 crystals) or the filling of micropores [55,65]. It was calculated that
the synthetic sample has a relatively large surface area of 105.14 m2/g (Table 1). It is worth noting
that the SBET value of synthetic calcium silicates hydrates usually varies within the 30–500 m2/g
range [66,67]. It was determined that, during calcination, at 550 ◦C, the value of the surface area
decreased to 68.92 m2/g (Table 1). The decreases in the surface area can be related to the changes in the
pore shape from cylindrical-like and slit-like pores (after synthesis) to well-defined cylindrical-like pores
(after calcination) (Figure 4). Although the value of the surface area decreased, it is still 2–20 times higher
compared to other calcium silicates: Wollastonite−2 m2/g, kilchoanite−6 m2/g, rankinite−11.7 m2/g,
and others [38,68,69]. Meanwhile, the surface area of the catalyst depends on the starting raw materials,
as well as on the synthesis conditions, and it can vary within the 13–1000 m2/g range [70].

The aforementioned analysis of adsorption isotherms and the visual inspection of the shape
of the pores (TEM, SEM) are fairly complicated; thus, in order to confirm the obtained results and
to calculate the dominating pore size, the cumulative pore volume, the corrected Kelvin equation,
and the scheme developed by Orr et al. were applied. The calculations were done by using models of
cylindrical-like and slit-like pores formed between parallel plates. The employed model is valid as long
as the difference between SBET and

∑
A is not significant, i.e., it does not exceed 10%. The calculations



Nanomaterials 2020, 10, 1299 9 of 16

of the dominant pore shape in the structure of synthetic samples showed a fairly significant difference
between the SBET and

∑
A values (Table 2). These results confirm the hysteresis loop classification as an

intermediate case between H1 and H3 (Figure 4a). In addition, it can be stated that both cylindrical-like
and slit-like pores were formed in the structure of the synthetic sample. Further calculations showed
that, during calcination, the shape of the pores changed to a well-defined cylindrical one because the
difference between the SBET and

∑
A values was equal to only 2.87% (Table 2).
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Figure 6. Isotherm of N2 adsorption at 77 K in BET plot of synthetic (a) and calcined (b) samples.

Table 1. Calculated parameters of synthetic and calcined samples by BET method.

Sample
BET Equation Constants Capacity of

Mono Layer Xm SBET, m2/g CBET
Constant

Reliability
Coefficient, R2Slope/S = tgα Intercept/I

Synthetic 32.76 0.51 0.030 104.76 65.56 0.995
Calcined 50.44 0.12 0.020 68.92 421.30 0.995

Table 2. Data of ΣA and ΣVP calculations of samples.

Sample SBET,
m2/g

Results Obtained by Using the Model of
Cylindrical Pores

Results Obtained by Using the Model of
Slit-Like Pores

ΣA,
m2/g

|SBET −

ΣA|, m2/g
|SBET −

ΣA|, %
ΣVP,

cm3/g
ΣA,

m2/g
|SBET −

ΣA|, m2/g
|SBET −

ΣA|, %
ΣVP,

cm3/g

Synthetic 105.14 134.46 29.32 27.89 0.320 84.46 20.68 19.67 0.278
Calcined 68.92 66.94 1.98 2.87 0.230 37.27 31.65 45.92 -

It was calculated that the value of the cumulative pore volume of the synthetic sample depends
on the employed model and is equal to 0.278 and 0.320 cm3/g (Table 2). Differential distributions of
the pore sizes showed that the synthetic sample is a mesoporous material because the pores with the
10–60 nm diameter are dominant (Figure 7a). It is worth mentioning that the employed model has a
significant influence on the distributions of the pore sizes (Figure 7a). Unfortunately, both types of
pores were present in the structure of the synthetic samples, and, as a result, the right distribution
is arguable.

It was determined that, during calcination, the cumulative pore volume of the sample decreased
to 0.230 cm3/g (Table 2). The obtained value is sufficient for the preparation of adsorbents or catalysts
because the cumulative pore volume of zeolites and aluminum oxide varies within the 0.2–0.4 cm3/g
range [70,71]. Meanwhile, the results of differential distributions of the pore sizes showed that the
calcined sample is a mesoporous material with dominant 10–30 nm pores (Figure 7b). In addition,
in the structure of the calcined sample, pores of a higher diameter (30–60 nm) are present.
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Figure 7. Differential distributions of pore sizes of synthetic (a) and calcined (b) samples. Here, curve 1
and curve 3 values were obtained by using the model of cylindrical-like pores, and curve 2 values were
obtained by using the model of slit-like pores.

3.4. Catalyst Activity in Oxidation Reactions

The catalytic activity of synthesized and calcined samples was measured during complete
oxidation of propanol in an air stream. The main product of complete oxidation is carbon dioxide; thus,
the main parameter for catalyst performance is the decrease in the concentration of the volatile organic
compound in relation to CO2 accumulation. As the initial concentration of propanol slightly varied,
all the measured concentration values were normalized and are presented as one gram of catalyst per
one gram of propanol in the ingoing stream. The decrease in the propanol concentration is presented as
conversion to percentage units, whereas the selectivity of the catalysts was evaluated by the amounts
of intermediates found in the outgoing flow. Experiments were performed within the temperature
range of 150–300 ◦C with the step of the temperature increasing by around 25 ◦C per hour.

It was determined that, at the beginning of the experiments (150 ◦C), by using synthetic and
calcined samples, the concentration of propanol in the outgoing stream decreased to 56.5% and to
51.8%, respectively (Figure 8). However, further analysis showed the absence of CO2 in the outgoing
stream, which indicates that propanol was adsorbed by samples but was not oxidized. The higher
adsorption of propanol by the synthetic sample can be explained by its higher surface area (105.14 m2/g)
than that of the calcined sample (68.92 m2/g) (Table 1).
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Figure 8. Degree of conversion (�) and accumulated CO2 concentration (�) during catalytic oxidation
of propanol in synthetic (1) and calcined (2) samples.

Propanol oxidation starts at a temperature of 175 ◦C because the CO2 concentration increases in
the outgoing stream. At this temperature, the differences between synthetic and calcined samples
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appear. The synthetic sample showed a higher catalytic activity than the calcined one because a
sharper increase in CO2 concentration was observed (Figure 8). Conversion and CO2 accumulation
curves coincide well, which indicates that, with the increase in temperature, the process switches from
adsorption toward catalytic oxidation.

By comparing the aforementioned curves, it can be stated that the synthetic sample reached
95% conversion at around 240 ◦C, which is a good result comparable to bulk, supported, and mixed
catalysts [53,54,72]. This indicates that semicrystalline calcium silicate hydrates with intercalated
chromium ions are able to exchange oxygen during the heterogeneous oxidation process. It should be
noted that chlorinated organics, as well as esters, are less destructible than alcohols. It was determined
that the calcined sample struggled with catalytic oxidation as the formation of carbon dioxide was
much slower—conversion of 95% was reached only at temperatures higher than 290 ◦C (Figure 8).
It can be concluded that the formation of calcium chromate has a negative effect on propanol oxidation
reactions; thus, the synthetic sample should be used at lower temperatures than 500 ◦C (in order to
avoid the formation of calcium chromate). Similar results are presented in the literature, specifically
that copper dichromate did not show high catalytic activity [72]. Evidently, both samples had high
adsorptive affinity for propanol, as the influence of adsorption on the overall process was observed at
temperatures as high as 275 ◦C. As the temperature was increased in the catalyst bed, sharp increases
in CO2 concentration, as well as sudden spikes in temperature due to the exothermal effect of the
oxidation reaction, were observed.

The CO probe and GC/MS monitoring of the outgoing gas stream showed the appearance of
incomplete catalytic oxidation product intermediates. Usually, carbon monoxide forms at the beginning
of catalytic oxidation reactions, and it is oxidized to CO2 faster by increasing the temperature. In this
case, the formation of CO could also be used for the determination of catalytic activity. The initial
formation of CO could be observed at lower temperatures only for the synthetic sample, where it
reached the maximum value of 161 mg/m3 at 200 ◦C and started decreasing afterward (Figure 9).
Meanwhile, the calcined sample reached the maximum concentration of CO (48 mg/m3) at a temperature
higher by 25◦, i.e., at 225 ◦C, and it was more than three times lower in comparison to the synthetic
sample. CO formation curves (Figure 9) showed that the lower formation of carbon monoxide during
oxidation on the calcined sample is caused by the lower overall activity, but not due to higher selectivity.
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Figure 9. Changes in the concentrations of pentanal (�) and CO (�) formed during propanol catalytic
oxidation in synthetic (1) and calcined (2) samples.

Both samples showed similar results for the formation of the second intermediate
compound—propanal—where they yielded similar amounts of this aldehyde, –175 mg/m3 for the
synthesized sample and 180 mg/m3 for the calcined sample (Figure 9). The formation of propanal
takes place up until catalytic oxidation takes over adsorption, and the maximum values are reached
at 175 ◦C for the synthesized sample and at 200 ◦C for the calcined sample. Although aldehydes are
harder to oxidize than alcohols, because of the relatively smaller amount of propanal in the stream,
its concentration still decreases fast as the temperature in the catalyst bed increases, and it can no longer
be detected at 250 ◦C. Propanal forms as a result of the interaction between propanol and the surface of
the catalyst, which means dehydrogenation of propanol takes place. Therefore, it is evident that the
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largest amount of propanal forms when the adsorption process is the strongest, and it is also attributed
to the apparent decrease in the propanol concentration before the start of catalytic oxidation reactions.

4. Conclusions

It was determined that, after 16 h of hydrothermal treatment at 175 ◦C, semicrystalline calcium
silicate hydrates C-S-H(I) and/or C-S-H(II) were formed in the products. The analysis of the liquid
medium showed that all Cr3+ ions intercalated into the structure of the synthesis products or formed
amorphous compounds, while NO3

– anions only partially (~20%) participated in the process.
It was determined that, during calcination at 550 ◦C, the formation of calcium chromate (CaCrO4)

proceeded, and it remained stable until 1000 ◦C. The formation of this compound was confirmed by
SEM and FT-IR analysis: In SEM micrographs, crystals characteristic of CaCrO4 were observed, while,
in the FT-IR spectrum, an intensive adsorption band at 900 cm–1 of Cr+6–O vibrations was identified.

It was determined that both synthetic and calcined (550 ◦C) samples are mesoporous materials
whose specific surface area (SBET) is equal to 104.76 and 68.92 m2/g, respectively. It was determined that
cylindrical-like and slit-like pores are present in the structure of the synthetic samples, while, during
calcination at a temperature of 550 ◦C, the shape of the pores changed to well-defined cylindrical-like
pores. These data were confirmed by SEM, as well as TEM results, and by calculations using the
corrected Kelvin equation and the Orr et al.-developed scheme.

It was determined that at temperatures lower than 175 ◦C, synthetic and calcined samples act as
adsorbents, while, at higher temperatures, catalytic oxidation proceeds. It was determined that the
synthetic sample reached 95% conversion at around 240 ◦C, which is a good result, while the calcined
sample reached this value only at temperatures higher than 290 ◦C. It can thus be concluded that
the formation of calcium chromate has a negative effect on propanol oxidation reactions; therefore,
the synthetic sample should be used at temperatures lower than 500 ◦C.
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