research communications

Received 27 November 2015 Accepted 13 January 2016

University, Russia

Keywords: crystal structure; dithiocarbamate; sodium salt; two-dimensional polymeric structure

CCDC reference: 1447132 Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

CrossMark

Muzzaffar A. Bhat,^a Shalini Jain,^a Sanjay K. Srivastava,^a Ray J. Butcher^{b*} and Jan Wikaira^c

^aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ^cDepartment of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. *Correspondence e-mail: rbutcher99@yahoo.com

In the title compound, $[Na(C_7H_{14}NOS_2)(H_2O)_2]_n$, the Na^I cation is coordinated by five O atoms [Na - O = 2.3142 (11) - 2.4677 (10) Å] from three agua and two N-butyl-N-(2-hydroxyethyl)dithiocarbamate (L) ligands and one S atom [Na-S = 3.0074 (6) Å] from a third L ligand in a highly distorted octahedral geometry. Two aqua ligands related by an inversion center bridge two Na^I cations, and each L ligand coordinates three Na^I cations, leading to a layered arrangement aligned parallel to the *bc* plane. Intermolecular $O-H \cdots S$ hydrogen bonds are observed in the inner part of each polymeric layer; these are packed along the a axis and held together by weak van der Waals forces.

1. Chemical context

Dithiocarbamates have recently drawn more attention due to their application in group-transfer radical cyclization reactions (Grainger & Innocenti, 2007) and as ligands for chelating metals (Greenwood & Earnshaw, 1997). In recent years, their applications have not only become apparent as pesticides and fungicides, but they have also been widely used as vulcanization accelerators in the rubber industry (Svetlik et al., 1955). Dithiocarbamates are also of biological importance due to their anticancer, antibacterial, antituberculosis and antifungal properties (Li et al., 2015; Sim et al., 2014; Chauhan et al., 2012; Byrne et al., 2007). Their anti-oxidant properties make them even more valuable compounds. As part of our investigations on organotindithio complexes (Srivastava et al., 2007), we herein report the synthesis and structure of the title compound.

2. Structural commentary

The title compound is a two-dimensional polymer with formula $[Na(\mu_3-C_7H_{14}NOS_2)(\mu_2-H_2O)(H_2O)]$. Within this

Figure 1

A portion of the title crystal structure showing the coordination environment for the Na^I cation and the atomic labels [symmetry codes: (A) 1 - x, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (B) 1 - x, -y, 1 - z]. Displacement ellipsoids are drawn at the 30% probability level.

polymer, each Na^I ion exhibits a distorted octahedral geometry (Fig. 1) made up from coordination by the S atom of one *N*-butyl-*N*-(2-hydroxyethyl)dithiocarbamate (*L*) anion, two hydroxy O atoms from two *L* ligands and three aqua ligands, of which two aqua ligands form bridging units between two Na^I cations. The dithiocarbamate anion acts as a triply bridging ligand, where one S atom coordinates one sodium atom and the O_{hydroxy} atom coordinates two sodium atoms (Fig. 2). The aforementioned feature of multiple coordination modes leads to the formation of polymeric layers parallel to the *bc* plane with the hydrophobic butyl arms protruding up and down. In the *L* ligand, while the two S atoms are not chemically equivalent as only one is involved in bonding to the Na cation, the C–S bond lengths are identical at 1.726 (1) Å.

Figure 2

Diagram showing the triply bridging nature of the dithiocarbamate anion [symmetry codes: (A) 1 - x, -y, 1 - z; (B) 1 - x, $y + \frac{1}{2}, \frac{1}{2} - z$].

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1 O \cdots S1^{i} \\ O1 W - H1 W1 \cdots S2 \\ O1 W - H1 W2 \cdots S2^{ii} \\ O2 W - H2 W2 \cdots S1^{ii} \end{array}$	0.82 (2) 0.82 (2) 0.85 (3) 0.78 (2)	2.41 (2) 2.48 (2) 2.42 (3) 2.48 (2)	3.2227 (10) 3.2933 (10) 3.2605 (10) 3.2624 (11)	167.6 (19) 168 (2) 171 (2) 173 (2)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

3. Supramolecular features

Intermolecular $O-H \cdots S$ hydrogen bonds (Table 1) are observed in the inner part of each polymeric layer (Fig. 3). The layers are further packed along the *a* axis and held together by weak van der Waals forces.

4. Database survey

In a recent publication, Howie *et al.* (2008) reported a structurally similar compound where the butyl substituent was replaced by a propyl substituent. The crystal structures of other sodium salts of dithiocarbamates, $Na[S_2CN(C_2H_5)_2]$ - $3H_2O$ (Colapietro *et al.*, 1968), $Na[S_2CN(CH_2)_4]$ · $2H_2O$ (Albertsson *et al.*, 1980; Ymén, 1982), $Na[S_2CN(C_3H_7)_2]$ · $5H_2O$ (Ymén, 1983) and $Na[S_2CN(CH_3)_2]$ · $2H_2O$ (Oskarsson & Ymén, 1983), $Na[S_2CN(CH_2)_5]$ · $2H_2O$ (Mafud & Gambardella,

Figure 3

A portion of the crystal packing showing the O-H···S hydrogen bonds (dashed lines) in the inner part of the polymeric layer [symmetry codes: (A) 1 - x, 1 - y, 1 - z; (B) 1 - x, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (C) 1 - x, -y, 1 - z; (D) x, $\frac{3}{2} - y$, $\frac{1}{2} + z$; (E) x, 1 + y, z; (F) x, $\frac{1}{2} - y$, $\frac{1}{2} + x$].

research communications

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$[Na(C_7H_{14}NOS_2)(H_2O)_2]$
M_r	251.33
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	15.6223 (3), 5.8379 (1), 14.7114 (3)
β (°)	101.868 (2)
$V(Å^3)$	1313.02 (4)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	3.90
Crystal size (mm)	$0.39 \times 0.31 \times 0.24$
Data collection	
Diffractometer	Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction	Multi-scan (CrysAlis PRO; Agilent, 2012)
T_{\min}, T_{\max}	0.660, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5973, 2731, 2617
R _{int}	0.019
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.631
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.080, 1.05
No. of reflections	2731
No. of parameters	149
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m A}^{-3})$	0.29, -0.39

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXTL (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

2011), Na[S₂CN(C₈H₅NS)]·3H₂O (Téllez *et al.*, 2004) have been reported. All these structures are polymeric in nature and contain the μ (H₂O)₂Na₂ unit.

5. Synthesis and crystallization

The title compound was prepared by the reaction of *N*-butyl *N*-hydroxyethyl amine (0.01 mol), carbon disulfide (0.01 mol) and sodium hydroxide (0.01 mol) in dry diethyl ether and was stirred for 4 h at 253 K. The crude product was recrystallized from isopropyl alcohol. It was then dissolved in a hexane:diethyl ether (1:1 ν/ν) mixture and put in a deep freezer overnight. Square transparent crystals suitable for X ray analysis were obtained in 80% yield (m.p.: 430 K). Analysis calculated for C₇H₁₈NO₃S₂ (%) S, 29.78; found: S, 29.84.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound H atoms were idealized with C—H distances of 0.99 Å for CH₂ and 0.98 Å for CH₃ groups with atomic displacement parameters of $U_{iso}(H) =$ $1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. The water and hydroxyl H atoms were freely refined.

Acknowledgements

RJB acknowledges NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research and the Department of Chemistry, University of Canterbury, New Zealand, for access to their diffractometer during the visit in 2014.

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Albertsson, J., Oskarsson, Å., Ståhl, K., Svensson, C. & Ymén, I. (1980). Acta Cryst. B**36**, 3072–3078.
- Byrne, S. T., Gu, P., Zhou, J., Denkin, S. M., Chong, C., Sullivan, D., Liu, J. O. & Zhang, Y. (2007). *Antimicrob. Agents Chemother.* 51, 4495–4497.
- Chauhan, K., Sharma, M., Singh, P., Kumar, V., Shukla, P. K., Siddiqi, M. I. & Chauhan, P. M. S. (2012). *MedChemComm*, 3, 1104–1110.
- Colapietro, M., Domenicano, A. & Vaciago, A. (1968). Chem. Commun. pp. 572–573.
- Grainger, R. S. & Innocenti, P. (2007). Heteroat. Chem. 18, 568-571.
- Greenwood, N. N. & Earnshaw, A. (1997). In *Chemistry of the elements*, 2nd ed. London: Butterworth–Heinemann.
- Howie, R. A., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). *CrystEngComm*, 10, 1626–1637.
- Li, R.-D., Wang, H.-L., Li, Y.-B., Wang, Z.-Q., Wang, X., Wang, Y.-T., Ge, Z.-M. & Li, R.-T. (2015). *Eur. J. Med. Chem.* **93**, 381–391.
- Mafud, A. C. & Gambardella, M. T. P. (2011). Acta Cryst. E67, m942.
- Oskarsson, Å. & Ymén, I. (1983). Acta Cryst. C39, 66-68.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. B. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236.
- Srivastava, S. K., Pandey, H. & Sharma, R. (2007). *Ind. J. Chem. Sect. A*, **46**, 1105–1108.
- Svetlik, J. F., Railsback, H. E., Biard, C. C. & Louthan, R. P. (1955). *Ind. Eng. Chem.* 47, 352–356.
- Téllez, F., Cruz, A., López-Sandoval, H., Ramos-García, I., Gayosso, M., Castillo-Sierra, R. N., Paz-Michel, B., Nöth, H., Flores-Parra, A. & Contreras, R. (2004). *Eur. J. Org. Chem.* pp. 4203–4214.
- Ymén, I. (1982). Acta Cryst. B38, 2671-2674.
- Ymén, I. (1983). Acta Cryst. C39, 874-877.

supporting information

Acta Cryst. (2016). E72, 196-198 [doi:10.1107/S2056989016000657]

Poly[μ_2 -aqua-aqua[μ_3 -N-butyl-N-(2-hydroxyethyl)dithiocarbamato- $\kappa^3 O, O'$:S]sodium]

Muzzaffar A. Bhat, Shalini Jain, Sanjay K. Srivastava, Ray J. Butcher and Jan Wikaira

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Poly[μ_2 -aqua-aqua[μ_3 -N-butyl-N-(2-hydroxyethyl)dithiocarbamato- $\kappa^3 O, O'$:S]sodium]

Crystal data [Na(C₇H₁₄NOS₂)(H₂O)₂] $M_r = 251.33$ Monoclinic, $P2_1/c$ a = 15.6223 (3) Å b = 5.8379 (1) Å c = 14.7114 (3) Å $\beta = 101.868$ (2)° V = 1313.02 (4) Å³ Z = 4

Data collection

Agilent SuperNova Dual Source
diffractometer with an Atlas detector
Radiation source: sealed X-ray tube
Detector resolution: 10.6501 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
$T_{\min} = 0.660, \ T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.080$ S = 1.052731 reflections 149 parameters 0 restraints Hydrogen site location: mixed F(000) = 536 $D_x = 1.271 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4003 reflections $\theta = 3.1-76.6^{\circ}$ $\mu = 3.90 \text{ mm}^{-1}$ T = 120 KChunk, colorless $0.39 \times 0.31 \times 0.24 \text{ mm}$

5973 measured reflections 2731 independent reflections 2617 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 76.4^\circ, \ \theta_{min} = 2.9^\circ$ $h = -19 \rightarrow 17$ $k = -7 \rightarrow 4$ $l = -18 \rightarrow 17$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0516P)^2 + 0.3898P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.29 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.39 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2014* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0041 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Na1	0.44835 (3)	0.26004 (8)	0.45654 (3)	0.01595 (14)
S1	0.76058 (2)	0.34854 (5)	0.14289 (2)	0.01645 (11)
S2	0.60961 (2)	0.50629 (5)	0.22351 (2)	0.01569 (11)
01	0.59309 (6)	0.09872 (16)	0.47496 (6)	0.0155 (2)
H1O	0.6306 (14)	0.125 (4)	0.5218 (15)	0.035 (5)*
O1W	0.50061 (6)	0.58495 (17)	0.39025 (6)	0.0172 (2)
H1W1	0.5325 (15)	0.551 (4)	0.3542 (15)	0.039 (6)*
H1W2	0.4670 (16)	0.686 (4)	0.3609 (16)	0.046 (6)*
O2W	0.30199 (7)	0.34773 (19)	0.44462 (7)	0.0220 (2)
H2W1	0.2792 (15)	0.233 (4)	0.4121 (16)	0.041 (6)*
H2W2	0.2843 (15)	0.462 (4)	0.4197 (15)	0.036 (6)*
N1	0.73937 (7)	0.23989 (18)	0.31192 (7)	0.0149 (2)
C1	0.70580 (8)	0.3542 (2)	0.23350 (8)	0.0138 (2)
C2	0.70139 (8)	0.2560 (2)	0.39489 (8)	0.0154 (3)
H2A	0.6735	0.4079	0.3964	0.019*
H2B	0.7485	0.2424	0.4510	0.019*
C3	0.63355 (8)	0.0692 (2)	0.39629 (8)	0.0167 (3)
H3A	0.5884	0.0758	0.3383	0.020*
H3B	0.6621	-0.0828	0.3996	0.020*
C4	0.82101 (9)	0.1072 (2)	0.32374 (9)	0.0197 (3)
H4A	0.8270	0.0440	0.2629	0.024*
H4B	0.8184	-0.0229	0.3662	0.024*
C5	0.90068 (9)	0.2546 (3)	0.36299 (10)	0.0269 (3)
H5A	0.9006	0.3906	0.3228	0.032*
H5B	0.8963	0.3091	0.4256	0.032*
C6	0.98645 (11)	0.1266 (4)	0.36977 (15)	0.0465 (5)
H6A	0.9929	0.0811	0.3067	0.056*
H6B	0.9852	-0.0147	0.4067	0.056*
C7	1.06488 (12)	0.2721 (5)	0.41491 (19)	0.0658 (8)
H7A	1.1185	0.1809	0.4213	0.099*
H7B	1.0576	0.3224	0.4764	0.099*
H7C	1.0689	0.4063	0.3760	0.099*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0155 (3)	0.0175 (3)	0.0152 (2)	-0.00088 (18)	0.00403 (19)	0.00032 (18)
S 1	0.01710 (17)	0.02187 (18)	0.01177 (17)	0.00208 (11)	0.00623 (12)	0.00148 (10)
S2	0.01414 (17)	0.02106 (18)	0.01238 (17)	0.00310 (10)	0.00394 (11)	0.00173 (10)

supporting information

01	0.0133 (4)	0.0226 (5)	0.0114 (4)	-0.0007 (3)	0.0044 (3)	0.0013 (3)
O1W	0.0175 (4)	0.0200 (5)	0.0152 (4)	0.0025 (4)	0.0061 (4)	0.0011 (4)
O2W	0.0203 (5)	0.0190 (5)	0.0257 (5)	0.0024 (4)	0.0024 (4)	-0.0033 (4)
N1	0.0121 (5)	0.0214 (5)	0.0118 (5)	0.0007 (4)	0.0040 (4)	0.0013 (4)
C1	0.0136 (6)	0.0157 (6)	0.0118 (5)	-0.0035 (4)	0.0020 (4)	-0.0014 (4)
C2	0.0141 (6)	0.0226 (6)	0.0100 (5)	-0.0014 (5)	0.0036 (4)	0.0014 (4)
C3	0.0174 (6)	0.0211 (6)	0.0130 (6)	-0.0013 (5)	0.0062 (4)	-0.0006 (5)
C4	0.0166 (6)	0.0260 (6)	0.0167 (6)	0.0060 (5)	0.0038 (5)	0.0034 (5)
C5	0.0143 (7)	0.0410 (9)	0.0250 (7)	0.0026 (6)	0.0027 (5)	-0.0022 (6)
C6	0.0172 (8)	0.0670 (13)	0.0528 (11)	0.0100 (8)	0.0015 (7)	-0.0184 (10)
C7	0.0139 (8)	0.0942 (19)	0.0856 (18)	0.0041 (10)	0.0015 (9)	-0.0321 (15)

Geometric parameters (Å, °)

Na1—O2W	2.3142 (11)	N1—C1	1.3425 (16)	
Nal—O1W	2.3544 (11)	N1—C2	1.4658 (15)	
Na1—O1W ⁱ	2.4074 (11)	N1—C4	1.4717 (16)	
Nal—Ol	2.4128 (10)	C2—C3	1.5237 (17)	
Nal—Ol ⁱⁱ	2.4677 (10)	C2—H2A	0.9900	
Na1—S2 ⁱⁱⁱ	3.0074 (6)	C2—H2B	0.9900	
Na1—Na1 ⁱ	3.3527 (10)	С3—НЗА	0.9900	
Na1—Na1 ⁱⁱ	3.5509 (10)	С3—Н3В	0.9900	
Na1—H2W1	2.59 (2)	C4—C5	1.525 (2)	
S1—C1	1.7261 (13)	C4—H4A	0.9900	
S2—C1	1.7256 (13)	C4—H4B	0.9900	
S2—Na1 ^{iv}	3.0073 (6)	C5—C6	1.519 (2)	
O1—C3	1.4386 (14)	С5—Н5А	0.9900	
O1—Na1 ⁱⁱ	2.4677 (10)	С5—Н5В	0.9900	
01—H10	0.82 (2)	C6—C7	1.526 (3)	
O1W—Na1 ⁱ	2.4074 (10)	C6—H6A	0.9900	
O1W—H1W1	0.82 (2)	C6—H6B	0.9900	
O1W—H1W2	0.85 (3)	C7—H7A	0.9800	
O2W—H2W1	0.86 (2)	С7—Н7В	0.9800	
O2W—H2W2	0.78 (2)	С7—Н7С	0.9800	
O2W—Na1—O1W	102.22 (4)	Na1 ⁱ —O1W—H1W2	105.5 (16)	
O2W—Na1—O1W ⁱ	96.88 (4)	H1W1—O1W—H1W2	103 (2)	
O1W—Na1—O1W ⁱ	90.49 (4)	Na1—O2W—H2W1	99.2 (15)	
O2W—Na1—O1	169.54 (4)	Na1—O2W—H2W2	118.2 (16)	
01W—Na1—O1	87.95 (4)	H2W1—O2W—H2W2	110 (2)	
O1W ⁱ —Na1—O1	85.37 (4)	C1—N1—C2	122.02 (10)	
O2W—Na1—O1 ⁱⁱ	83.15 (4)	C1—N1—C4	122.61 (11)	
O1W—Na1—O1 ⁱⁱ	174.49 (4)	C2—N1—C4	115.15 (10)	
O1W ⁱ —Na1—O1 ⁱⁱ	90.05 (4)	N1—C1—S2	120.56 (9)	
O1—Na1—O1 ⁱⁱ	86.64 (3)	N1—C1—S1	119.09 (9)	
O2W-Na1-S2 ⁱⁱⁱ	85.90 (3)	S2—C1—S1	120.36 (7)	
O1W—Na1—S2 ⁱⁱⁱ	95.69 (3)	N1—C2—C3	111.54 (10)	
O1W ⁱ —Na1—S2 ⁱⁱⁱ	172.54 (3)	N1—C2—H2A	109.3	

O1—Na1—S2 ⁱⁱⁱ	90.69 (3)	C3—C2—H2A	109.3
O1 ⁱⁱ —Na1—S2 ⁱⁱⁱ	83.39 (3)	N1—C2—H2B	109.3
O2W-Na1-Na1 ⁱ	103.57 (4)	C3—C2—H2B	109.3
O1W—Na1—Na1 ⁱ	45.89 (3)	H2A—C2—H2B	108.0
O1W ⁱ —Na1—Na1 ⁱ	44.60 (3)	O1—C3—C2	110.32 (10)
O1—Na1—Na1 ⁱ	85.23 (3)	O1—C3—H3A	109.6
O1 ⁱⁱ —Na1—Na1 ⁱ	134.40 (3)	С2—С3—НЗА	109.6
S2 ⁱⁱⁱ —Na1—Na1 ⁱ	141.41 (3)	O1—C3—H3B	109.6
O2W—Na1—Na1 ⁱⁱ	125.82 (4)	С2—С3—Н3В	109.6
O1W—Na1—Na1 ⁱⁱ	131.86 (3)	НЗА—СЗ—НЗВ	108.1
O1W ⁱ —Na1—Na1 ⁱⁱ	86.89 (3)	N1—C4—C5	111.56 (12)
O1—Na1—Na1 ⁱⁱ	43.93 (2)	N1—C4—H4A	109.3
O1 ⁱⁱ —Na1—Na1 ⁱⁱ	42.71 (2)	C5—C4—H4A	109.3
S2 ⁱⁱⁱ —Na1—Na1 ⁱⁱ	85.882 (19)	N1—C4—H4B	109.3
Na1 ⁱ —Na1—Na1 ⁱⁱ	115.45 (3)	C5—C4—H4B	109.3
O2W—Na1—H2W1	19.0 (5)	H4A—C4—H4B	108.0
O1W—Na1—H2W1	111.5 (5)	C6—C5—C4	112.80 (14)
O1W ⁱ —Na1—H2W1	112.5 (5)	C6—C5—H5A	109.0
O1—Na1—H2W1	152.6 (6)	C4—C5—H5A	109.0
O1 ⁱⁱ —Na1—H2W1	73.3 (5)	C6—C5—H5B	109.0
S2 ⁱⁱⁱ —Na1—H2W1	69.0 (5)	C4—C5—H5B	109.0
Na1 ⁱ —Na1—H2W1	122.2 (5)	H5A—C5—H5B	107.8
Na1 ⁱⁱ —Na1—H2W1	113.8 (5)	C5—C6—C7	111.93 (18)
C1—S2—Na1 ^{iv}	115.32 (4)	С5—С6—Н6А	109.2
C3—O1—Na1	120.87 (7)	C7—C6—H6A	109.2
C3—O1—Na1 ⁱⁱ	115.00 (8)	С5—С6—Н6В	109.2
Na1—O1—Na1 ⁱⁱ	93.36 (3)	С7—С6—Н6В	109.2
C3—O1—H1O	109.9 (14)	H6A—C6—H6B	107.9
Na1—O1—H1O	120.7 (14)	С6—С7—Н7А	109.5
Na1 ⁱⁱ —O1—H1O	91.1 (15)	C6—C7—H7B	109.5
Na1—O1W—Na1 ⁱ	89.50 (4)	H7A—C7—H7B	109.5
Na1—O1W—H1W1	112.5 (16)	С6—С7—Н7С	109.5
Na1 ⁱ —O1W—H1W1	124.5 (15)	H7A—C7—H7C	109.5
Na1—O1W—H1W2	122.7 (16)	H7B—C7—H7C	109.5
C2—N1—C1—S2	-5.92 (16)	Na1—O1—C3—C2	102.88 (10)
C4—N1—C1—S2	179.80 (9)	Na1 ⁱⁱ —O1—C3—C2	-146.38 (8)
C2-N1-C1-S1	173.66 (9)	N1-C2-C3-O1	-176.02 (9)
C4—N1—C1—S1	-0.62 (16)	C1—N1—C4—C5	89.35 (15)
Na1 ^{iv} —S2—C1—N1	178.00 (8)	C2—N1—C4—C5	-85.29 (13)
Na1 ^{iv} —S2—C1—S1	-1.57 (9)	N1-C4-C5-C6	-176.06 (13)
C1—N1—C2—C3	91.65 (14)	C4—C5—C6—C7	-176.34 (18)
C4—N1—C2—C3	-93.68 (13)		

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+1, y-1/2, -z+1/2; (iv) -x+1, y+1/2, -z+1/2.

D—H···A $H \cdots A$ D—H···A *D*—Н $D \cdots A$ 01—H1*O*…S1^v 0.82(2) 2.41 (2) 3.2227 (10) 167.6 (19) O1*W*—H1*W*1···S2 0.82(2) 2.48 (2) 3.2933 (10) 168 (2) O1W—H1W2··· $S2^{iv}$ 0.85 (3) 2.42 (3) 3.2605 (10) 171 (2) $O2W\!\!-\!\!H2W\!2\!\cdots\!S1^{iv}$ 0.78 (2) 2.48 (2) 3.2624 (11) 173 (2)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (iv) -x+1, y+1/2, -z+1/2; (v) x, -y+1/2, z+1/2.