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Mathematical formulation 
and parametric analysis of in vitro 
cell models in microfluidic devices: 
application to different stages 
of glioblastoma evolution
Jacobo Ayensa‑Jiménez1,2, Marina Pérez‑Aliacar1,2, Teodora Randelovic1,2, 
Sara Oliván1,2, Luis Fernández1,2,3, José Antonio Sanz‑Herrera4, Ignacio Ochoa1,2,3, 
Mohamed H. Doweidar1,2,3 & Manuel Doblaré1,2,3*

In silico models and computer simulation are invaluable tools to better understand complex biological 
processes such as cancer evolution. However, the complexity of the biological environment, with 
many cell mechanisms in response to changing physical and chemical external stimuli, makes the 
associated mathematical models highly non‑linear and multiparametric. One of the main problems 
of these models is the determination of the parameters’ values, which are usually fitted for specific 
conditions, making the conclusions drawn difficult to generalise. We analyse here an important 
biological problem: the evolution of hypoxia‑driven migratory structures in Glioblastoma Multiforme 
(GBM), the most aggressive and lethal primary brain tumour. We establish a mathematical model 
considering the interaction of the tumour cells with oxygen concentration in what is called the go 
or grow paradigm. We reproduce in this work three different experiments, showing the main GBM 
structures (pseudopalisade and necrotic core formation), only changing the initial and boundary 
conditions. We prove that it is possible to obtain versatile mathematical tools which, together with a 
sound parametric analysis, allow to explain complex biological phenomena. We show the utility of this 
hybrid “biomimetic in vitro‑in silico” platform to help to elucidate the mechanisms involved in cancer 
processes, to better understand the role of the different phenomena, to test new scientific hypotheses 
and to design new data‑driven experiments.

Biological processes integrate different cell populations, extracellular matrix, chemotactic gradients and physi-
cal cues, all conforming an extremely complex, dynamic and multiply interactive  microenvironment1–5. Cells 
constantly adjust their function to accommodate the changing demands from the environment (e.g. oxygen and 
nutrients levels, substrate stiffness, drugs, etc.) with the objective of maintaining their intracellular and extracel-
lular medium within a narrow range of physiological properties (homeostasis)6. As cells receive chemical and/or 
physical external stimuli, they modify their shape, location, internal structure and genomic expression, as well as 
their capacity to proliferate, migrate, differentiate, produce extracellular matrix or other biochemical substances, 
changing, in turn, the surrounding medium as well as sending new signals to other  cells7–9. This two-way interac-
tion between cells and environment is crucial in physiological processes such as embryogenesis, organ develop-
ment, homeostasis, repair, and long-term evolution of tissues and organs among others, as well as in pathological 
processes such as atherosclerosis or  cancer10–13. Understanding these mechanisms and interactions is therefore 
key to develop novel therapeutic strategies aiming at promoting (blocking) desirable (undesirable)  events14.
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As a consequence of this complexity, in vivo research (both in humans or animals) is very difficult due to the 
impossibility of controlling and isolate effects, or analysing specific situations due to ethical reasons. A simpler 
alternative is using in vitro experiments. A good reproduction of the particular biological process in vitro helps 
to better control the variables involved, and therefore to better understand the underlying mechanisms and 
interactions in specific physiological or pathological situations, as well as to provide tools for testing new drugs 
in a reliable way, reducing animal experiments. However, the predictive power of currently available in vitro 
models is still poor. This seems to be one of the main reasons for the continuous drop in the number of new drugs 
appearing yearly, dumping billion-dollar  investments15,16. For example, despite structural three-dimensionality 
is one of the most important characteristics of biological  processes17, cells are mostly cultured in the traditional 
Petri dish (2D culture), where cell behaviour is dramatically different from the observed in real  tissues18. Recently, 
microfluidics has arisen as a powerful tool to recreate the complex microenvironment that governs tumour 
 dynamics19,20. This technique allows reproducing important features that are lost in 2D cultures, as well as testing 
drugs in a much more reliable and efficient  way21–25 .

Despite these more realistic and controlled conditions, it is still difficult, in in vitro experiments, to separate 
effects, check new scientific hypotheses, quantify the effect of each parameter or predict the outcome in what if 
situations. To overcome this limitation, a good possibility is combining the potential of new in vitro assays with 
the quantitative power and versatility of mathematical modelling and computational  techniques26,27, particularly 
in the study of  cancer28–30. Although mathematical modelling has demonstrated to be highly effective in many 
fields in Physics, Chemistry and Engineering, its ability to accurately represent reality in biological problems is 
still limited. The high dynamic complexity and non-linearity of the relations involved, the many highly-coupled 
interactions among different phenomena, the difficulty in identifying the initial state and the lack of data both for 
quantifying parameters and validating results, make the available models either too simple, or, on the contrary, 
too complex and cumbersome.

In many cases, models incorporate too many parameters, sometimes with unknown values or with a wide 
range of variation in literature (sometimes orders of magnitude) and with important hidden  correlations7,9,14. The 
parameters are fitted to the particular data available, leading many times to trivial conclusions, mostly embedded 
in the model assumptions. This prevents the model to be useful for the whole family of similar problems, and 
the conclusions, results and parameters, difficult to generalise. Despite these strong limitations, in silico models, 
grounded in new biological knowledge, and driven by rigorous experimental and clinical data, have become 
invaluable tools to integrate knowledge across different biological scales, to perform quantitative analyses, and 
to test hypotheses in a cheap and fast way.

In cancer modelling, in particular, several results have been derived from mathematical approaches, quan-
tifying, for example, the effect into tumour evolution of oxygen, biochemical molecules, ECM stiffness, or cell 
proliferation  rate31–33 . In this work, we focus on glioblastoma multiforme (GBM), the most aggressive and 
lethal among the primary glioma tumours, and also the most frequent, accounting for 17% of all primary brain 
 tumours34. Survival of patients with this type of tumour who undergo the first-line standard treatments (surgery 
followed by adjuvant chemotherapy and local radiation) has a median of 14 months since diagnosis and a 5-year 
survival rate of less than 10%35.

GBM progression is characterised by fast cell proliferation around blood vessels, eventually provoking their 
collapse, leading to hypoxia. Consequently, a necrotic core is formed around the vessel and the surviving cells 
migrate towards more oxygenated  regions36,37, restarting the process of proliferation and creating waves of 
migrating tumour cells, which are known as  pseudopalisades36 and appear in GBM histologies surrounding the 
necrotic core. This process of successive local hypoxia and cell migration has been proposed as one of the main 
driving forces of GBM invasion and  aggressiveness38. There have been some attempts to build mathematical 
models to describe how these tumours grow and respond to therapies, both for in vitro experiments, and for 
in vivo  models39–44. In  Rejniak44, significant aspects, such as the importance of the hypoxic environment in the 
formation of cellular  pseudopalisades45 and tumour vasculature (including angiogenesis and vessel cooption), 
the role of biophysical and biomechanical properties of the ECM in tumour cell invasion, or the role of micro-
environmental niches and sanctuaries in the emergence of acquired drug resistance in tumours were reviewed. 
Other works focus on analysing the effect of mechanical cues in GBM  evolution10,12.

In this paper, we address the problem of parameter analysis in the mathematical modelling of in vitro (micro-
fluidic) cell processes associated with different stages of GBM evolution. We introduce a general framework in 
which the main cell processes involved (cell proliferation, differentiation, migration), all in response to the level 
of biochemical cues such as oxygen concentration, are mathematically formulated. This leads to a mechanistic 
model with a high number of parameters. Then, an extensive analysis of these parameters is made, both, from 
literature, and by correlating the associated in silico results with those derived from a specific microfluidic 
at-home lab assay: the appearance of auto-induced necrotic core far from the blood vessels in high-density 
cell  regions46. We also analysed two additional configurations: local hypoxia inducing an oxygen gradient that 
forces GBM cells to migrate and proliferate with non symmetric (problem one) and symmetric (problem two) 
configurations. These processes are likely the responsible for cell fast migration from an occluded vessel and the 
subsequent pseudopalisade formation around another vessel, producing a new  occlusion36,45. These experiments 
model therefore important scenarios of brain cancer evolution. The objective of this work is to demonstrate the 
potential of these mathematical models, if a proper parametric analysis is conducted, to get results close to the 
experiments with one single set of parameters obtained by fitting one single family of experiments, using the 
other two for validation purposes.
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Methods
Experimental design. We refer to previous works in our  group45,46 for a further explanation of the details 
of the experimental design. Briefly, human glioblastoma U251-MG cell line, purchased from Sigma Aldrich, was 
cultured in high glucose Dulbecco’s modified Eagle’s medium (DMEM) (Lonza, BE12-614F), supplemented with 
10% foetal bovine serum (FBS) (Sigma, F7524), 2mM L-glutamine (Lonza, 17-605C) and penicillin/streptomy-
cin (Lonza, 17-602E). U251-MG cells were stably transduced with green fluorescent protein (GFP)-expressing 
lentiviral vector, kindly provided by Dr. Prats, University Paul Sabatier, Toulouse,  France47. Shortly, cells were 
incubated in 1:1 mixture of lentivirus suspension and Opti-MEM medium (Thermo, 31985062) supplemented 
with 5 μg/mL protamine sulfate (Sigma, P4505). After 24 h, the transduction medium was replaced with growth 
medium and the cells were routinely cultured for 2 weeks to remove the viral particles. Transduction efficiency 
was checked by fluorescence microscopy with more than 90% of the cells found to be EGFP-positive.

In order to form a 3D structure, oxygen impermeable microfluidic devices (BEOnChip Ltd.) consisting of a 
central chamber and two lateral microchannels were used (Fig. 1). They had different dimensions and were made 
of SU-8, polystyrene or cyclic olefin polymer (COP), using different fabrication  processes45,46. 3D distribution of 
cells was achieved within the central chamber, using collagen hydrogel. To prepare 100 µL of collagen hydrogel 
mixture with a 1.2 mg/mL final collagen concentration, 31.66 µL of 3.79 mg/mL collagen type I from rat tail 
(Corning, 354236), 0.79 µL of NaOH 1N (Sigma 655104), 10 µL of DMEM 5x (Sigma D5523), 7.55 µL of sterile 
distilled water and 50 µL of cell suspension were mixed on ice. The mixture was well resuspended and injected 
into the central chamber of the microfluidic device using a micropipette. The hydrogel droplet was placed on 
the top of the inlet to prevent evaporation. The devices were placed into an incubator (37◦ C, 5% CO2 ) for 15 
min to promote collagen gel polymerization. Afterwards, pre-warmed growth medium was perfused through 
the lateral channels, mimicking blood vessels, and refreshed every 24h.

Laser confocal and fluorescence images were acquired at different focal planes within each microdevice using 
a Nikon Eclipse Ti-E C1 confocal microscope. Images were analysed using Fiji software (http://fiji.sc/Fiji). Fluo-
rescence intensity was quantified, in accordance with the software instructions, by selecting a rectangular region 
across the central microchamber after creating the SUM projection image. In order to transform fluorescence 
intensity into cell concentration, the cell concentration is assumed proportional to the fluorescence intensity. 
The constant of proportionality is calculated assuming that the integral of the initial cell concentration along the 
chamber equals the total amount of cells.

In order to produce the necrotic core formation, a high density of cells ( 40× 106cells/mL ) was embedded 
in the collagen hydrogel and injected within the central microchamber. Growth medium was refreshed every 
day and the culture was maintained for 6 days. Nutrients and oxygen are not able to reach the central part of the 
device due to cell consumption close to the microchannels, thus causing cell death in the central region appear-
ing an autoinduced necrotic core (Fig. 2), mimicking the parts of the tumour far from functional blood  vessels46. 
Visualisation of the necrotic core was performed by calcein/propidium iodide (CAM/PI) staining. Stock solutions 
of 1 mg/mL CAM (Life Technologies, C1430) and 2 mg/mL PI (Sigma P4170) were diluted to 2 and 4 µg/mL , 
respectively, in phosphate-buffered saline (PBS) (Lonza BE17-516F). CAM/PI solution was perfused through 
the lateral microchannels and incubated for 15 min. CAM becomes fluorescent once it reaches the cytoplasm of 
viable cells and PI stains dead cells, with destroyed membrane.

To promote pseudopalisade formation, cells were seeded at a low density ( 4× 106 cells/mL ) within the cen-
tral microchamber and one lateral channel was blocked, while constant medium flow was perfused through the 
other lateral channel. As the region next to the sealed channel was hypoxic, cells migrated towards the perfused 
channel, rich in nutrients and oxygen (Fig. 3). In the control device, both lateral channels were left open and 
migration was not  observed45.

Finally, in the case of double pseudopalisade formation, cells were seeded again at low density 
( 4× 106 cells/mL ) within the central microchamber. In this case, the medium was perfused through both 

Figure 1.  Description of the microdevice. (A) Microfluidic devices. A1—SU-8 device, A2—polystyrene/
COP device. (B) Schematic view of the central region of the polystyrene/COP microdevice and necrotic core 
 formation46.

http://fiji.sc/Fiji
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lateral channels and refreshed every day during 21 days. Hypoxic conditions in the centre of the microchamber 
induced cell migration towards the perfused channels and invasion of both of them (see Fig. 4).

Mathematical methods. Model equations. Next, the mathematical model used here for modelling GBM 
evolution is presented. Even though the mathematical model can be defined for general multidimensional re-
gime, due to the typology of the experiments and for simplicity, the problem may be approximated as one-di-
mensional, disregarding differences along the direction parallel to the lateral channels. We consider two cell phe-
notypes (dead cells and alive cells) interacting in the microfluidic device with one chemical species, i.e. oxygen, 
acting as a regulator of cell processes. These assumptions come from previous experiments in our  group46 that 
showed that the distribution of other nutrients (glucose) is not responsible of changes in the cells configuration, 
being oxygen the main (and almost unique) stimulus for cell changes. The variable defining the number of cells 
for each population at each point and time is their respective concentration ui = Ci ( cellsmL  ), i = 1, 2 , where i = 1 
for alive cells and i = 2 for dead cells. Similarly, we call u0 = O2 the continuum field of oxygen concentration (in 
mmHg ). Thus, we shall denote by u = (u0, u1, u2)

T the vector of field variables with 3 rows. The master equation 
that regulates each variable evolution is the transport equation including source terms:

(1)
∂ui

∂t
+

∂fi

∂x
= si , i = 0, 1, 2.

Figure 2.  Necrotic core formation. U251 MG cells were seeded at a concentration of 40× 10
6 cells/mL within 

the central microchamber. Growth medium was perfused every day through the lateral channels. Viable cells 
were stained green with calcein AM and dead cells were labelled red with propidium iodide (modified from 
previous  work46). Scale bar is 400 µm.

Figure 3.  Pseudopalisade formation. U-251 MG cells at 4× 10
6 cells/mL were cultured within the microdevice. 

To mimic thrombotic conditions, medium flow was enabled to flow only through the right microchannel. Under 
unrestricted conditions, medium was refreshed once a day, through both lateral microchannels (modified from 
previous  work45). Scale bar is 400 µm.
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Figure 4.  Double pseudopalisade formation. EGFP transduced U251-MG cells were embedded within the 
central microchamber at a concentration of 4× 10

6 cells/mL. Growth medium was changed every day and the 
evolution of the cell culture over time was observed. Scale bar is 400 µm.
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with fi the flow term that will include diffusion and chemotaxis for cells and diffusion for oxygen and si the 
source term associated to production (proliferation) or loss (death of cells and consumption of oxygen). Note 
that Eq. (1) is, in general, nonlinear and should embed the coupling between the evolution of the different cell 
populations regulated by the oxygen concentration that may influence proliferation, migration and death, and 
oxygen consumption kinetics.

In our case, the cell flow term depends on the “random” movement of cells, only driven by differences in 
their concentration, that is, a diffusion term, and the chemotaxis induced by differences in oxygen concentration 
(oxygen gradient). For the oxygen pressure, only the diffusion was considered. Then,

where Di = Di(u) is the diffusion coefficient and Ki = Ki(u) the chemotaxis coefficient for population i. Recall 
that K0 = 0 . In Eq. (2), we have considered that both coefficients may depend, in general, on the local densities 
of each cell phenotype and the local concentration of oxygen.

Taking into account the two effects already mentioned for the source term of proliferation and differentiation 
in cell concentrations and consumption in oxygen, we can write:

where αj = αj(u) is the oxygen rate consumed by the cell population j, τii = τii(u) is the characteristic time 
of proliferation for population i and τij = τij(u) the characteristic time of differentiation from population i to 
population j, that, again, and in general, may depend on the chemical conditions, as well as the local densities 
of cells. Recall that the apoptotic or necrotic processes are included here as specific differentiation types to the 
specific phenotype of dead cells.

Equation (1) has to be complemented with the corresponding boundary conditions. We assume here the 
general case of Robin-like boundary conditions, that is:

In the previous equation, x∗ = 0, L , where L is the width of the chamber. Ii = Ii(x
∗, t) and Ji = Ji(x

∗, t) are 
functions characterising the boundary permeability to cell movement or oxygen flow through the boundary, 
and gi(x∗, t) and hi(x∗, t) functions defining the controlled value of cell or oxygen concentration and flux at the 
boundaries. Note that, if Ii = 1 and Ji = 0 , we have Dirichlet boundary conditions (cell population concentration 
prescribed at the boundary) and, if Ii = 0 and Ji = 1 , we have Neumann boundary conditions.

Finally, the initial conditions for oxygen and each cell population concentration have to be defined:

where u0i (x) is a known function.
In order to particularise the general equations presented for modelling the population and species evolution 

in the in vitro experiments made on GBM cells, it is necessary to choose a functional relationship between the 
coefficients of the model, that is, Di , i = 0, 1, 2 , Ki , τij , i, j = 1, 2 and αj , j = 1, 2 , and the field variables u.

Even though some papers consider  three48 or  four45 cell phenotypes, here, only two phenotype populations 
(alive and dead cells) have been considered, thus disregarding possible changes in phenotype along the duration 
of our experiments. This does not mean that all cells in the chamber equally proceed in terms of proliferation, 
migration or oxygen consumption, since all these processes depend as well on the particular conditions of the sur-
rounding environment, but that all cells respond equally when they are subjected to the same local environmental 
conditions. We consider with this assumption that cell adaptation requires longer periods under stressing condi-
tions to modify permanently their internal machinery. Another reason for this assumption is that, in absence 
of gene expression techniques, it is impossible to distinguish between differentiation into a different phenotype 
or a change in the cell behaviour as reaction to environmental changes, so, considering one single phenotype 
for alive cells results in fewer parameters and a better understanding of the role of the different phenomena and 
parameters, an easier calibration and less uncertainty.

In our microfluidic device, with a controlled production of the hydrogel, we can assume that it is homogene-
ous and remains with the same properties all along the experimental or, alternatively, that the potential changes 
in those properties do not affect significatively the cell properties nor the oxygen diffusivity. For alive cells, 
migration is split in oxygen mediated chemotaxis and pedesis. Dead cells are considered as an inert population 
( D2 = K2 =

1
τ21

= 1
τ22

= α2 = 0 ). Besides, growth and death rates are also assumed to be dependent on nutrients 
and oxygen environment. With all these assumptions, it is possible to consider a functional dependency for the 
following parameters:

(2)fi = −Di
∂ui

∂x
+ Kiui

∂u0

∂x
, i = 0, 1, 2.

(3)s0 =−

2
∑

j=1

αjuj

(4)si =
1

τii
ui −

2
∑

j=1,j �=i

1

τij
ui +

2
∑

j=1,j �=i

1

τji
uj , i = 1, 2.

(5)Ii(x
∗, t)

(

ui − gi(x
∗, t)

)

+ Ji(x
∗, t)

(

fi − hi(x
∗, t)

)

= 0, i = 0, 1, 2.

(6)ui(x, t = 0) = u0i (x), i = 0, 1, 2.
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Functions F are nonlinear corrections for cell growth, cell death and oxygen consumption kinetics, while 
� functions model how the different cell mechanisms are activated depending on the oxygen level, DO2 is the 
oxygen diffusion coefficient, Dn is the diffusion of the normoxic cell population coefficient, χ is the normoxic 
cell population chemotaxis coefficient, τg is the characteristic proliferation time, τd is the death characteristic 
time and α is the oxygen consumed per unit time and cell. Since cell populations adapt their behaviour to oxygen 
supply and space availability, two major corrections should be considered in the migration term:

• Cellular motility is only possible when the surrounding tissue is not cell  saturated49.
• Migration following the oxygen gradient happens only when the oxygen supply is below a critical threshold, 

activating the cell motility  mechanism50,51.

According to these two major assumptions, a rectified linear unit (ReLU) kind activation  function52 was here 
used to take into account each of the two phenomena, so the chemotaxis corrections may be written as:

with

where θ is a threshold parameter.
Here OH

2  is the hypoxia-induced migration activation threshold, representing the oxygen level below which 
cell migration is activated and Csat is the cell saturation concentration.

The proposed model is in line with the go or grow dichotomy established in GBM  literature53. Cell energetic 
resources are spent either in cell migration or in cell proliferation. However, cell proliferation also depends on 
other needs as nutrient supply or availability of space to grow and split. According to this, we propose a model 
combining logistic growth and the go or grow paradigm based on oxygen supply. We define the growth correc-
tions as:

with

and ρ is the logistic correction factor:

The function �gr is responsible of the go or grow dichotomy and the second is the logistic model for cell 
population growth.

Cell death is a natural process depending on many factors and agents and has an inherent stochastic  nature54. 
Anoxia is one fundamental cause of cell  death55. Here, a two-parameter sigmoid model is used, able to capture 
necrosis and apoptosis phenomena:

where θ is a threshold parameter and �θ is a sensitivity parameter. They can be seen as a pair of location-spread 
parameters summarising the stochastic behaviour of the considered phenomenon. With this notation:

(7)

D0 = DO2

D1 = Dn

K1 = χFchemo(C1)�chemo(O2)

1

τ11
=

1

τg
Fgr(C1,C2)�gr(O2)

1

τ12
=

1

τd
�ap(O2)

α1 = αFkin(O2)

(8)
Fchemo(C1) = φ−(C1;Csat)

�chemo(O2) = φ−(O2;O
H
2 )

(9)φ−(x; θ) =







1 if x ≤ 0
1− x

θ
if 0 ≤ x ≤ θ

0 if x > θ

(10)
�gr(O2) = φ+(O2;O

H
2 )

Fgr(C1,C2) = ρ(C1 + C2;Csat)

(11)φ+(x; θ) =







0 if x ≤ 0
x
θ
if 0 ≤ x ≤ θ

1 if x > θ

(12)ρ(x; θ) = 1−
x

θ

(13)σ−(x; θ ,�θ) =
1

2

(

1− tanh

(

x − θ

�θ

))
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with OA
2  and �OA

2  the location and spread parameters associated with the oxygen concentration inducing cell 
death.

Finally, oxygen consumption is a complex phenomenon related to the oxidative phosphorylation that occurs 
in the membrane of cellular  mitochondria56. Many authors have considered a zero-order consumption function, 
i.e. a constant consumption rate independent of oxygen concentration O2

57–59. A more realistic assumption is to 
describe the consumption function using the Michaelis–Menten model for enzyme  kinetics48,60. This model is a 
correction of the linear consumption and states that:

where K is a model parameter. This type of equation was observed for the oxygen consumption rate in the late 
1920s and early  1930s61. This equation describes more accurately the consumption at low oxygen concentrations 
and is compatible with previous constant consumption rate models, thus allowing the possibility of comparison 
with previous studies.

Using this notation and the one introduced in our mathematical formulation, we can write:

where O(T)
2  is the oxygen concentration at which the reaction rate is half of the rate in a fully oxygenated medium, 

therefore related to the oxidative phosphorylation kinetics, and the cell structure and morphology (size and 
number of mitochondria, etc.) and the diffusion process in the cytoplasm.

In the microfluidic device, the culture chamber is connected to the oxygen supplying channels by means of 
small cavities. The volume and the number of these cavities depend on the microfluidic device design and they 
are directly related with potential cell losses during the experiment. Actually, when cell populations arrive to the 
interface between these cavities, some of them may reach the channel and leave the culture. To take into account 
this phenomenon, we have considered Robin boundary conditions. In principle, since both sides have the same 
design (number and width of the interface microcavities) there is no reason for considering differences in cell 
losses (in percentage) between both sides. Therefore, as there is no cell supply through the lateral channels the 
boundary condition writes:

With regard to the dead cell population, homogeneous Neumann boundary conditions are considered since 
this population does not migrate neither by diffusion nor chemotaxis, so we have

Regarding the oxygen supply, we shall consider two possibilities, associated to two different conditions: when 
oxygen is supplied normally, Dirichlet boundary conditions are considered, that is, we shall assume that the 
oxygen concentration at the channels remains constant and known throughout the experiment, that is:

where O∗
2 is a known value.

On the other hand, when a channel is sealed, we assume that oxygen provision is negligible, so Neumann 
boundary conditions are considered:

Finally, we assume that, at time t = 0 , all cells are alive and the cell population concentration is known 
throughout the whole culture chamber. That is, C1(x, t = 0) = C0

1(x) is known (measured experimentally) and 
C2(x, t = 0) = 0 . Moreover, the oxygen profile is assumed to be constant along the chamber and equal to the 
concentration in the channels, due to the small characteristic time of oxygen diffusion within the hydrogel 
compared to the characteristic time of cell processes:

The differential equation (1) with boundary (5) and initial (6) conditions results in a nonlinear parabolic dif-
ferential equation in time, with only one space dimension. This equation was solved here numerically by means 
of a time-space integrator based on a piecewise nonlinear Galerkin approach which is second-order accurate 
in  space62, and compatible with this kind of nonlinear equations and boundary conditions. The domain length 
(associated with the microfluidic device) and mesh size used for the simulation of each experiment are sum-
marised in Table 1.

Results
Parametric analysis. In this section, we discuss the values used in literature for each of the parameters 
in our model (described in Methods section). We found that many of them are essentially unknown or with 
high ranges of variation. Our effort goes in the direction of discriminating which works define some of these 

(14)�ap(O2) = σ−(O2;O
A
2 ,�OA

2 )

(15)r(x;K) =
x

x + K

(16)Fkin(O2) = r(O2;O
(T)
2 )

(17)u1(x
∗, t)+ J1f1(x

∗, t) = 0

(18)u2(x
∗, t) = 0

(19)u0(x
∗, t) = O∗

2

(20)f0(x
∗, t) = 0

(21)u0(x, t = 0) = O∗
2
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parameters in similar conditions and trying to identify the most likely values within the intervals identified in 
the literature.

Bibliographic review. In the available literature it is difficult to identify the precise values of such parameters, 
due to the diversity of models and experimental conditions. Consequently, we include this review clarifying the 
process for the parameters definition or calculation, often after a reference-crossing process.

Cell diffusion coefficient ( Dn ). The cell diffusion coefficient is a parameter related to the undriven cellular 
motility. Cell motility is frequently evaluated in experimental works from a global point of view, that is, includ-
ing random motility and hypoxia-induced chemotaxis. In this work, however, both phenomena are taken into 
account separately so diffusion acts as a pure regularisation term while chemotaxis is the main driving force 
in cell migration. Therefore, only diffusion coefficients associated with healthy tissues in perfect oxygenation 
conditions will be taken into account.

According to Tija et al.63, this parameter depends on the substrate mechanical properties. For a standard col-
lagen ECM, similar to the culture hydrogel here used, a value of 1× 10−9 cm2/s is proposed. Martínez-González 
et al. propose in one of their  works48 a value of 6.6× 10−12 cm2/s , while in  another64 a value of 5× 10−10 cm2/s is 
assigned, one order of magnitude lower than the mean of the values reported by Rockne et al.65 ( 5× 10−9 cm2/s ). 
Wang et al.66 discuss this value for different locations in the brain, observing that glioma cells migrate quicker 
in white matter than in grey matter, highlighting also the important variation of this coefficient with the tumour 
stage and after chemotherapy and radiotherapy, ranging all values from 3× 10−7 cm2/s to 5× 10−5 cm2/s 
(median of 3× 10−6 cm2/s ). Hathout et al.67, use values from 5× 10−7 cm2/s to 2× 10−6 cm2/s during the 
tumour initial state.

Chemotaxis coefficient ( χ ). This coefficient is difficult to estimate when considering chemotaxis as an isolated 
 phenomenon68. Ford et al.69 define χ = χ0f (O2) with χ0 ranging from 1.5× 10−5 cm2/s to 7.5× 10−4 cm2/s 
depending on the complex affinity while several expressions are proposed for f. For example, a hyperbolic tangent 
dependence is presented, based on a probabilistic mechanobiological model for individual  bacteria70.

Many other works define the chemotaxis coefficient with respect to the normalised concentration O2
Ov
2
 where 

Ov
2 is the vessel oxygen supply pressure. Agosti et al.68 assume a value of 1.5× 10−4 cm2/(mM · s) for an oxygen 

concentration in vessels Ov
2 of 0.07mM71. Therefore, χ is of the order 2× 10−7 cm2/(mmHg · s) assuming an 

oxygen supply in vessels of 40− 60mmHg72, 73. With the same conversion between oxygen concentration and 
pressure, a value between 3× 10−10cm2/(mmHg · s) and 1× 10−9cm2/(mmHg · s) is adopted by Agosti et al. 
in their  work74. Finally, Bearer et al.75 propose a chemotaxis coefficient of 105 µm2/d , which gives an equivalent 
value of 2× 10−10cm2/(mmHg · s).

Hypoxia-induced migration activation threshold ( OH
2  ). In our model, hypoxia induced cell migration is 

relevant only when the oxygen pressure is under a certain threshold Oth
2  . According to previous works on GBM 

 simulation48,64, cells are considered under hypoxia conditions, when the oxygen pressure is under 7mmHg 
(approximately 12− 18% of the blood vessel oxygen pressure). Agosti et al. consider in one  work68 a threshold 
of 15− 50% of blood vessel oxygen pressure and  later74 a threshold of 30% is used. In the review  paper76, a ratio 
of 12− 25% between healthy and tumorous tissue oxygen pressure is considered.

Growth characteristic time ( τg ). This is also a very context-dependent parameter, since the cell metabolism 
highly varies between cell types and individuals. In addition, our proposed logistic model implies that the meas-
ured growth time in the particular experimental conditions depends on the cell concentration, and therefore 
could vary with considered values reported in literature. Nevertheless, some growth characteristic times reported 
in literature for logistic, exponential or Gompertz growth models are here discussed. Gerlee et al.77 consider a 
growth time of 16 h for a cell automaton model, based on a previous  work78. Other authors propose a value of 24 h
79,80 using an exponential model (so the growth characteristic time is underestimated). A logistic model is used by 
Agosti et al.68, with a characteristic time between 48 h and 2000 h , closer to the values obtained by Wang et al.66 
(with median 408 h ) and by Rockne et al.65 (mean of 450 h , using MRI techniques). In other works by Agosti 
et al. a value of 300 h is  proposed74 based on a Gompertz growth  model81. Among the 36 tumours simulated by 
Hathout et al.67 a range between 240 h and 1200 h was used. Finally, Martínez–González et al.64 propose values 
between 336 h and 576 h using a Fisher–Kolmogorov approximation, and  later48 values between 24 h and 48 h 
based on experimental  studies82–84 are considered.

In our work, based on the go or growth assumption, the growth characteristic time is infinite in absence of 
oxygen and decreases until the oxygen concentration exceeds the hypoxia threshold. Thus, our model captures 
this variability from hypoxic to normoxic media, where growth is accelerated and therefore characteristic times 
are smaller.

Cell concentration saturation ( Csat ). An important variability is found in the literature when referring to this 
parameter, with a range that covers several orders of magnitude. For example, Rockne et al.65, propose a value of 
1011 cell/cm3 whereas Hathout et al.67 use the value of 108 cell/cm3 according to previous experimental  works85.

Table 1.  Domain and mesh size for the different simulations.

Experiment Chamber length L [µm] Mesh size �x [µm]

Necrotic core formation 2000 3.0

Pseudopalisade formation 916 4.8

Double pseudopalisade formation 2897 12.0
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This parameter depends on the mechanical and structural properties of the medium and on nutrients supply 
so its variability is natural. In any case, it does not have a major impact in simulations for cell concentrations 
much lower than the saturation capacity.

Death characteristic time ( τd ). Even in the case where no cell-concentration dependence is considered, death 
characteristic time also varies between studies since it is directly measured, without considering, for example, 
oxygenation conditions, as for the growth characteristic time. In the automaton model from Gerlee et al.77, an 
average apoptosis probability of 0.18 is obtained, resulting in a death characteristic time of 72 h as proposed by 
Frieboes et al.80. In their works, Agosti et al. propose values between 160 h and 400 h68, and of 600 h74. Finally, Mar-
tínez–González et al.48,64 use two different phenotypes to model the tumour population (normoxic and hypoxic), 
but they assume that once the cell has arrived to hypoxic conditions, its death characteristic time is 48 h48 or 7 d64.

We model death with a sigmoid function, which integrates both death causes: apoptosis, that is mainly 
stochastically mediated and necrosis, induced by oxygen lack. This model explains better the variability found 
in literature, ranging from 72 h in anoxia to 600 h in normoxia, via the two parameters regulating cell switch, 
discussed below.

Anoxia-induced death location parameter ( OA
2  ). Even though in many mathematical models it is assumed 

that the hypoxia threshold, inducing migration or proliferation (and therefore the fundamental parameter 
explaining the go or grow dichotomy), and the anoxia threshold (as an indicator of necrosis) are the  same68,74; 
whereas other authors distinguish between both phenomena. Martínez-González et al.48,64 select a value of 
0.7mmHg for the anoxia level, as explained in previous  works86, corresponding to approximately 1− 2% of ves-
sel oxygen concentration ( 40− 60mmHg ). Vital-López et al.71, consider that with 15% of normal concentration 
( 12mmHg in  brain76), the death probability has a value of 50% , resulting in a value of 1.8mmHg.

Anoxia-induced death spread parameter ( �OA
2  ). This parameter illustrates the variability of the cell death 

phenomenon. High values of �O2 are related to very random death, that is, apoptosis mediated by other effects 
not considered in this model, whereas low values of �O2 are related to death dominated by necrosis, i.e. death 
only occurs when cells are under the anoxia threshold. Martínez-González et al.48,64 adopt a value of 0.1mmHg 
while Vital-López et al.71 consider a dimensionless slenderness parameter of s = 200 which turns into 3mmHg 
when considering our model, thus considering a higher variability in cell death rate.

Oxygen diffusion coefficient ( DO2 ). The oxygen diffusion coefficient is classically known to be around 
10−5 cm2/s at 37◦C . Daşu et al.87 propose a value of 2× 10−5 cm2/s according to previous  studies57,58 that 
assign an intermediate value between oxygen diffusion in water and  muscle88. Other  works77,89 use a value of 
1.8× 10−5 cm2/s . Recent computational patient-specific  studies74 assume a value of 10−5 cm2/s . It is important 
to note that, in the present work, hydrogels used in microfluidic devices try to reproduce soft human tissue, so 
similar values can be used.

Oxygen consumption rate ( α ). The maximum value of α is much  debated76,90–92 ranging from 2µL/(min · g)
76 to 55µL/(min · g)90. There are several possible explanations for this large range of values reported as explained 
by Daşu et al.87, such as the influence of the tissue metabolic characteristics in the consumption rate, the varia-
tions of the temperature and pressure conditions when measuring the oxygen volume or experimental reasons 
associated with the measuring method. The most often quoted value is 15mmHg/s for the maximum con-
sumption rate in healthy  tissue57,87,93. This consumption rate gives a maximum diffusion distance of 143µm
93, for a blood vessel with 40mmHg . Assuming that a healthy tissue has a concentration of 0.2Csat

64, we obtain 
7.5× 10−7 (mmHg cm3)/(cell s) . Assuming the same ambient cell concentration, using the value proposed by 
Agosti et al.68,74 we obtain 2.5× 10−7 (mmHg cm3)/(cell s) . The consumption selected for the automaton pre-
sented by Gerlee et al.77, based on studies on GBM  spheroids94, is fixed to 2.3× 10−16 mol/(cell s) , equivalent to 
1.4× 10−8 (mmHg cm2)/(cell s) assuming an oxygen background concentration of c0 = 1.7× 10−8 mol/cm2 . 
A value of 4× 10−17 mol/(cell s) is obtained from the data analysed by Griguer et  al.95 resulting in 
2.5× 10−9 (mmHg cm2)/(cell s).

Michaelis–Menten constant ( OT
2  ). According to Daşu et al.87, the O(T)

2  constant seems to have little influ-
ence on the diffusion at high O2 concentrations and therefore we use a value of O(T)

2 = 2.5mmHg , equal to the 

Table 2.  Range of variability of the parameters in the bibliography.

Minimal value Maximal value Units

Dn 6.6× 10−12 (Martínez-González et al.48) 5.0× 10−5 (Wang et al.66) cm2/s

Csat 1.0× 108 (Hatout et al.67) 1.0× 1011 (Rockne et al.65) cell/mL

χ 2.0× 10−10 (Bearer et al.75) 7.5× 10−4 (Ford et al.69) cm2/mmHg · s

τg 5.8× 104 (Gerlee et al.77) 7.2× 106 (Agosti et al.68) s

τd 1.7× 105 (Martínez-González et al.48) 2.2× 106 (Agosti et al.74) s

DO2 1.0× 10−5 (Agosti et al.74) 2.0× 10−5 (Daşu et al.87) cm2/s

α 2.5× 10−9 (Griguer et al.95) 7.5× 10−7 (Martínez-González et al.64) mmHg ·mL/cell · s

OT
2 2.5 (Daşu et al.87) 2.5 (Daşu et al.87) mmHg

OH
2 7.0 (Vaupel et al.76) 30 (Agosti et al.68) mmHg

OA
2 0.7 (Brown et al.86) 1.8 (Vital-López et al.71) mmHg

�OA
2 0.1 (Martínez-González et al.48) 3.0 (Vital-López et al.71) mmHg
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hypoxic threshold often used in the Alper and Howard-Flanders equation describing the oxygen enhancement 
 ratio96. This value has been chosen in recent simulation  models48,64.

In Table 2 all numerical parameters of the mathematical model are shown with their corresponding variation 
range extracted from the bibliography.

Model parameter fitting. The value of each parameter was initially chosen to stay within the ranges found in the 
bibliography (Table 2). In order to calibrate the specific value for each parameter, the formation of the necrotic 
core experiment (described in Methods section) was selected as case study. Robin boundary conditions were 
chosen allowing alive cells to escape from the device. In particular, the following values were chosen for the 
boundary conditions (5), according to the experimental results and the symmetry of the experiment, we select 
K1(x

∗ = 0, L, t) = 1 , g1(x∗ = 0, L, t) = h1(x
∗ = 0, L, t) = 0 and J1(x∗ = 0, L, t) = 1.0× 106 s/cm . Only the 

parameter J1 , explaining cell leakage at boundaries, was fitted to capture the corresponding results. For dead cells, 
homogeneous Neumann conditions were established, assuming no migration of dead cells through the bounda-
ries, that is, K2(x

∗ = 0, L, t) = 0 , h2(x∗ = 0, L, t) = 0 and J2(x∗ = 0, L, t) = 1.0 s/cm . With respect to oxygen 
concentration, Dirichlet boundary conditions were chosen, so oxygen pressure in the channels was assumed to 
remain constant throughout the whole experiment, since medium flow provision through the channels was suf-
ficiently frequent to keep that pressure without important variations despite oxygen diffusion and cell uptake. 
With that, we write K0(x

∗ = 0, L, t) = 1 , g0(x∗ = 0, L, t) = 7.0 mmHg and J0(x∗ = 0, L, t) = 0 . Finally, as ini-
tial conditions, we assume that the initial monitoring of the process starts after getting a uniform oxygen pres-
sure in the whole chamber, equivalent to the one present in the lateral channels, that is O2(t = 0) = 7mmHg.

A heuristic approach was followed to fit the simulated curves with the experimental results, in order to 
determine the model parameters. This approach tried to get the best fit of the necrotic core (central region) due 
to its biological relevance, giving less importance to the fitting around the boundaries since the cell distribution 
here is not representative of the in vivo situation. To quantify the quality of this fitting procedure, we defined 
two objective cost functions:

where uej  is the experimental measurement of the j phenotype ( j = 1 , alive cells, j = 2 , dead cells), uj the simu-
lated one and L the chip length.

After the fitting process for the different results got in the necrotic core experiment, we arrived to the value 
set for the parameters shown in Table 3, yieliding the results shown in Fig. 5. The fitting process provided values 
of T = 0.17 and D = 0.73, which reinforce the good agreement between the experimental and simulation results.

(22)
T =

1

Csat

√

√

√

√

1

2L

2
∑

j=1

5
∑

i=2

∫ L

0

(

uj(x, ti)− uej (x, ti)
)2

dx

D =
1

Csat
max
i=2,...,5

max
x∈[0;L]

|uj(x, ti)− uej (x, ti)|

Figure 5.  Cell concentration profiles for the defined value set. Dead and alive profiles (y-axis) along the length 
of the chip (x-axis) with the parameters shown in Table 2. Sim: Simulated profiles, Exp: Experimental profiles. At 
Day 1, both profiles coincide.
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As it may be observed, the computed results are qualitatively equal and quantitatively very similar to the 
experimental ones, although there are some significant discrepancies in the alive cell profile, mainly at the centre 
of the chamber and in the dead cell profile at the boundaries. These differences are unavoidable due to the effects 
and interactions missed in the model, such as the heterogeneous distribution of hydrogel, cells and oxygen in the 
initial state and boundary conditions, and to the highly non-linear character of the equations. As it can be seen 
in Table 2, the range of variation of the parameters in the bibliography is extremely wide in some cases, being 
therefore tricky to tune the value of the parameters to obtain better numerical results. All this makes essential 
to perform a sensitivity analysis to understand the quantitative impact of each parameter on the representative 
results and to assess the mathematical model robustness with respect to the parameter fitting.

Sensitivity analysis. This sensitivity analysis is performed subsequently, with the aim of defining a robust meth-
odology capable of providing a sufficiently accurate reproduction of different in vitro experiments, while avoid-
ing the common overfitting in biological problems.

Dn , DO2 , α , χ , τg and τd were the parameters studied. The threshold parameters were not considered in 
this analysis since they mainly affect the location and spread of the necrotic core. Each parameter, say θ , was 
individually perturbed as follows: if U is a uniform U([−1; 1]) random variable, we generated 100 samples of 
� = θ × 10U , that is, θ was perturbed but maintaining its magnitude order. The non-perturbed value of θ cor-
responds to the value obtained after the fitting procedure. Percentiles 5, 50 (median), and 95 were extracted from 
the resulting concentration profiles. All results are shown in Figs. 6, 7 and 8. According to the sensitivity analysis 
performed, a final range of variation for Dn , DO2 , α and χ was chosen (see Table 3), since they are the parameters 
with a higher impact on the computed results while presenting important variability in the bibliography. The 
interval bounds were selected to guarantee a value of T < 0.15 for the best simulation in each experiment. τg and 
τd do not have a variation range as their impact on the results is low.

For the simulations presented from here to the end of the paper, each parameter was considered as a random 
variable � with �i ∼ U[θ1i ; θ

2
i ] , with θ1i  and θ2i  in agreement with the previous discussion.

To estimate the correlation coefficients, a set of 100 simulations were performed varying the parameters 
within their order of magnitude (as done in the sensitivity analysis), and the sets that provide solutions with 
T < 0.2 were kept. Then, the Kendall correlation coefficient was computed, obtaining a value of τ = 0.9 for DO2 
and α and a value of τ = 0.2 for Dn and χ . The rest of the parameters are supposed to be mutually independent, 
and therefore uncorrelated.

A more in-depth analysis of this multiparametric correlation and its effects on the results is possible, but is 
out of the scope of this work. Here, the aim is to illustrate that, from the sensitivity analysis, it is possible to get 
a higher insight into the mathematical model that could be taken into account when performing Montecarlo 
simulations.

In silico replication of the in vitro experiments. We analyse the performance of the mathematical 
model presented in Methods section when using one single set of parameters (Table 3), applied to the three 
experiments described in Methods section: formation of a necrotic core in high concentrated cultures, pseudo-
palisade formation due to oxygen gradient and double pseudopalisade formation in a symmetric configuration. 
As there is an inherent uncertainty in the parameters identification, a run of 100 Montecarlo simulations was 
performed for varying values of the model parameters according to the ranges defined in Table 3 and the param-
eter correlations discussed in the previous section.

The cells boundary conditions remained the same in all the experiments except for the value of J, which 
depends on the cell leakage observed for each microfluidic device. In experiment 1, J = 1.0× 106 s/cm ; in 
experiment 2, J = 1.0× 109 cm/s ; and in experiment 3, J = 1.2× 107 cm/s . Regarding the oxygen boundary 
conditions, they were adapted to each experimental configuration: in the formation of the double pseudopalisade 
they were identical to those already explained for the necrotic core formation; whereas in the pseudopalisade 
formation, impermeability condition (no flux) was imposed at the sealed channel, while, again, the Dirichlet 
condition was imposed at the right channel. The value of the oxygen pressure, both at the right side and at the 
initial time for the whole chamber, was fixed to O∗

2 = 2mmHg instead of O∗
2 = 7mmHg as in the other experi-

ments. This is justified by the fact that in this experiment the medium was not renewed as in the previous cases, 
so the oxygenation was assumed to be lower.

The obtained results for each experiment together with the 90% confident band (between 5th and 95th per-
centile) of the simulations, are shown in Figs. 9, 10 and 11.

The figures show good agreement between the experimental and simulated results, which will be further 
explained in Discussion section. Moreover, considering the parameter variability improves the estimation of 
the dead cell profile (Fig. 9) .

Discussion
Glioblastoma is one of the deadliest tumour types, as it is very heterogeneous and resistant to  therapy97–99. 
Most research studies have been performed in 2D models, on Petri dishes, but these are not able to represent 
the real situation. Many 3D culture models are now being developed, such as spheroids, organoids, different 
scaffold-based models, etc., which better mimic cell-cell and cell-extracellular matrix  interactions100,101. With 
the development of microfluidics for biological applications, apart from including different components of the 
tumour microenvironment, we are also able to control the physico-chemical conditions, so microfluidic models 
are considered the most biomimetical in vitro models  nowadays102,103. Special devices have been developed 
for GBM research to study the behaviour of GBM cells and therapy response within a biomimetic and con-
trolled microenvironment. With them, realistic behavioural patterns have been obtained, similar to the ones 
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observed in  patients46,104–106. In our case, we were able to reproduce autoinduced necrotic core and pseudopalisade 
 formation45,46, some of the most important characteristics of GBM, in agreement with the GBM formation model 
of Brat et al.107, which identifies blood vessel occlusion and subsequent hypoxia-induced migration towards the 
functional blood vessel, following oxygen and nutrients gradient, as one of the main drivers of GBM invasion. 
From our models of pseudopalisades and necrotic core formation in GBM in vitro models, we set the following 
phenomena in the model mathematical equations:

• GBM cells migrate in an O2 pressure gradient following a chemotactic cue from lower to higher pressure 
values, and with a migration speed that depends on the specific local O2 pressure value.

• Very high cell concentrations prevent the arrival of sufficient oxygen to regions far from oxygen provisions 
sources, due to the oxygen uptake in the transition zones, thus resulting in an auto-induced necrotic core in 
those far regions. Lee et al.108 explained the importance of shortage of oxygen and nutrients in necrotic core 

Figure 6.  Sensitivity analysis (I). Model parameters related to cell migration. (a) Cell migration coefficient 
( Dn ) sensitivity analysis. (b) Chemotaxis coefficient ( χ ) sensitivity analysis. Figures show the cell concentration 
median and 90% confident interval (y-axis) along the length of the chip (x-axis).
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formation. Also, a similar process was observed in spheroid  cultures109,110, where the gradient depends on 
the spheroid diameter, observing the appearance of necrotic core in spheroids bigger than 500 µm.

• Regarding the parameters of the model, we have shown that:

– The variation of cell motility coefficient, Dn , has a limited impact on the results. The chemotaxis coef-
ficient, χ , has a more significant impact. Besides, the effect of both variations in the resulting cell profiles 
is similar. In other words, from a statistical point of view of parameter fitting, they are highly correlated.

– The oxygen diffusion, DO2 , and oxygen consumption, α , coefficients have a greater impact on the results 
and cause both qualitative and quantitative changes. Once again, their effect on the results is similar, 
showing statistical correlation from a parameter fitting point of view.

Figure 7.  Sensitivity analysis (II). Model parameters related to oxygen evolution. (a) Oxygen diffusion 
coefficient ( DO2

 ) sensitivity analysis. (b) Oxygen uptake coefficient ( α ) sensitivity analysis. Figures show the cell 
concentration median and 90% confident interval (y-axis) along the length of the chip (x-axis).
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– The effect of growth and death times, τg and τd respectively, have an obvious impact over the duration 
and speed of the phenomena involved. However, as the chamber is essentially under hypoxic conditions, 
the death time plays a major role on the density of the necrotic core (but not in its size).

• Cell adaptation may also have an important role in problems like the one described here but has not been 
considered so far in our work. This will be part of future developments, although it will require new and 
specific sets of experiments to capture the corresponding mathematical features and parameters.

Since the model parameters fitting was established under a heuristic basis according to our research experi-
ence, the values selected should be interpreted qualitatively as the ones which better describe the most relevant 
phenomena that take place in glioblastoma evolution in vitro, such as necrotic core formation. It is important 

Figure 8.  Sensitivity analysis (III). Model parameters related to cell growth and death. (a) Cell growth 
characteristic time ( τg ) sensitivity analysis. (b) Cell death characteristic time ( τd ) sensitivity analysis. Figures 
show the cell concentration median and 90% confident interval (y-axis) along the length of the chip (x-axis).
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to remark that a preliminary fitting approach based on a formal mathematical optimization did not provide 
the best fit in the evolution of the necrotic core (data not shown), demonstrating the difficulty of the problem.

Despite the parameter uncertainty, it has been possible to reproduce three different experiments with one 
single set of parameters. Therefore, it seems possible to extract fundamental biological conclusions such as:

• The initial cell density has a crucial influence on the necrotic core formation. The simulation results 
(and the experimental curves) related to the necrotic core and the double pseudopalisade experiments 
are essentially identical except for the fact that the former was obtained with an initial concentration of 
C0 = 40× 106 cells/mL and the latter with C0 = 4× 106 cells/mL . The corresponding results are however 
qualitatively very different: the necrotic core only appears when having very high cell concentrations. This 
conclusion may have important biological and therapeutic consequences.

• Cell migration depends strongly on the oxygen level and gradient. Suitable oxygenation conditions do not 
induce cell migration even for high oxygen gradients. Conversely, under a certain oxygenation level, the 
oxygen gradient is the main driving agent of cell migration. It has been  shown111,112 that hypoxic conditions 
lead to stabilization of hypoxia inducing factor (HIF) which regulates many important pathways important 
for tumour progression, such as invasion and angiogenesis.

Table 3.  Final parameter ranges. A star means that one of the bounds is out of the range found in 
bibliography.

Symbol Fitted value Simulation range Mean value Units

Dn 6.6× 10−10 5.0× 10−10 – 7.0× 10−10 6.0× 10−10 cm2/s

Csat 5.0× 107 5.0× 107(*) 5.0× 107(*) cell/mL

χ 7.5× 10−9 7.5× 10−9 – 15.0× 10−9 11.3× 10−9 cm2/mmHg s

τg 7.2× 105 7.2× 105 7.2× 105 s

τd 1.7× 105 1.7× 105 1.7× 105 s

DO2 1.0× 10−5 1.0× 10−5 – 2.0× 10−5 1.5× 10−5 cm2/s

α 1.0× 10−9 1.0× 10−9 – 3.0× 10−9(*) 2.0× 10−9 mmHgmL/cell s

OT
2 2.5 2.5 2.5 mmHg

OH
2 7 7 7 mmHg

OA
2 1.6 1.6 1.6 mmHg

�OA
2 0.1 0.1 0.1 mmHg

Figure 9.  Necrotic core simulation. Confidence band of the simulated profiles and experimental results (y-axis) 
along the length of the chip (x-axis) for the necrotic core formation experiment. Sim: Simulated profiles. Exp: 
Experimental profiles.
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The presented mathematical model is, therefore, able to capture some of the main features of some essential phe-
nomena occurring during GBM invasion. Moreover, except for the saturation parameter Csat (that is obviously 
very dependent on the experimental conditions) and for some values of the oxygen consumption α , the parameter 
variability is in agreement with that found in the scientific literature. Also, most of the general features observed 
are similar to the ones obtained in previous  experimental45,46 and  computational41,45,48,64,71 works.

However, the model also presents some limitations, some of the most important are the following:

• Small discrepancies between the experimental and computational results were found. One possible explana-
tion is that the accumulation of cells at the boundaries may obstruct the oxygen diffusion, provoking a non-
homogeneous O2 diffusion coefficient. This results in an over-estimation of the oxygen level in the central area 

Figure 10.  Pseudopalisade simulation. Confidence band of the simulated profiles and experimental results 
(y-axis) along the length of the chip (x-axis) for the pseudopalisade formation experiment. Sim: Simulated 
profiles. Exp: Experimental profiles.

Figure 11.  Double pseudopalisade simulation. Confidence band of the simulated profiles and experimental 
results (y-axis) along the length of the chip (x-axis). Sim: Simulated profiles. Exp: Experimental profiles.
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of the chamber, which could explain the over-estimation of alive cells, faster cell migration to the boundaries 
and over-estimation of dead cells.

• There is, in general but mainly in the results associated to the necrotic core experiment, a certain lag between 
the computational and the experimental responses of cells to oxygen variations. It seems that changes in the 
oxygen concentration are felt earlier in the simulations. This may be associated with a certain cell memory: 
the cell may need to accumulate some damage before undergoing significant changes in its behaviour. Our 
GBM model is not able to capture this kind of phenomena. Nonetheless, we have presented a framework 
where this limitation can be overcome if more phenotypes are considered as in other  works45,48,64. This strategy 
requires, however, a sound classification of the cell phenotypes, based on biological evidence, in a sufficient 
number of classes, which is difficult and would considerably increase the number of parameters.

Conclusions
From the results and discussion presented above, we enumerate the main findings and conclusions of the paper: 

1. Mathematical modelling and the corresponding computer simulation of complex cell processes, incorporat-
ing cell interactions, chemical and physical cues, require an extensive literature review and the analysis of the 
fundamental properties of the mathematical equations in simplified conditions, and an in-depth analysis of 
the model parameters, in order to understand the individual and combined effect of each combination of 
parameters, both qualitative and quantitatively, in the resulting variables.

2. One single type of experiment is not enough to guarantee a proper quantification and understanding of the 
effect of each model parameter. Some families of experiments have to be used to fit the parameters, while 
other families are required to validate and discard spurious parametric solutions. This strategy is fundamental 
to avoid overfitting and to prevent model-induced effects, result of the fitting procedure.

3. There is a huge variation in the range of many of the parameters found in the literature, sometimes with 
intervals covering several orders of magnitude, which makes it very difficult to get a reasonable accuracy 
when modelling experimental tests with the only use of values from bibliography. This can be a result of the 
high heterogeneity of GBM and of the high adaptive capacity of these  cells113,114.

4. With a proper parameter identification and analysis, if all the main mechanisms involved are properly con-
sidered, it is possible to get an accurate reproduction of experimental tests, provided the experiment is well 
controlled, the associated variables are accurately measured and the results are correctly interpreted.

5. A proper parameter sensitivity analysis is essential to discover hidden effects that cannot be explained by 
the model (e.g. presence of dead cells close to the lateral channels), disregard wrong value intervals (e. g. the 
range of the parameters was strongly reduced from Table 2 to Table 3) and identify the actual conditions in 
which the experiment is performed.

6. Adopting the presented model as a starting point, there is still room for future development. For instance, 
the measurement of the oxygen profile would allow us to improve the oxygen diffusion model, taking into 
account, for example, the oxygen flow obstruction that may be induced by high cell densities.

To summarise, the presented framework is general and allows the analysis of many coupled and highly non-linear 
physical mechanisms. The effort made in the parametric analysis allows to draw conclusions both qualitative (e.g. 
pseudopalisade and necrotic core formation) and quantitative (e.g. time scale for necrosis or speed of migration 
structures). This task is fundamental when working with complex multiparametric models. Nonetheless, this 
analysis is always conditioned by the choice of the mathematical approach, so the intrinsic model uncertainty 
is, to some extent, unavoidable. Working with models with so many parameters requires always enough experi-
mental data in sufficiently varied conditions. There, we have been able to work with three different families of 
experiments resulting in cell profiles along space and time. This extensive amount of information gives value to 
our work, which could lay the foundations for future works in the topic.

Finally, we can conclude that, even with all this, we are still far from getting sufficient knowledge of all the 
mechanisms involved in complex biological processes, as well as the interactions and quantification of the cor-
responding phenomenological parameters. Only in very specific and well-controlled conditions, and after an 
extensive analysis of the tests, model and associated parameters, it is possible to expect for accurate results if 
the initial conditions are well-measured and the main mechanisms and interactions are mathematically repre-
sented. Despite these drawbacks, mathematical models are today invaluable tools to better understand underly-
ing mechanisms and interactions, to establish trends, to test new hypotheses and to check “what if ” situations 
that are many times impossible to test experimentally due to the impossibility to isolate single effects, measure 
particular variables or simply for ethical reasons.

Code availability
The codes are written in Matlab software and are available under request to the authors.
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