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Abstract

Background: Tarebia granifera (Lamarck, 1822) is originally from South-East Asia, but has been introduced and become
invasive in many tropical and subtropical parts of the world. In South Africa, T. granifera is rapidly invading an increasing
number of coastal lakes and estuaries, often reaching very high population densities and dominating shallow water benthic
invertebrate assemblages. An assessment of the feeding dynamics of T. granifera has raised questions about potential
ecological impacts, specifically in terms of its dietary overlap with native gastropods.

Methodology/Principal Findings: A stable isotope mixing model was used together with gut content analysis to estimate
the diet of T. granifera and native gastropod populations in three different coastal lakes. Population density, available
biomass of food and salinity were measured along transects placed over T. granifera patches. An index of isotopic (stable
isotopes) dietary overlap (IDO, %) aided in interpreting interactions between gastropods. The diet of T. granifera was
variable, including contributions from microphytobenthos, filamentous algae (Cladophora sp.), detritus and sedimentary
organic matter. IDO was significant (.60%) between T. granifera and each of the following gastropods: Haminoea natalensis
(Krauss, 1848), Bulinus natalensis (Küster, 1841) and Melanoides tuberculata (Müller, 1774). However, food did not appear to
be limiting. Salinity influenced gastropod spatial overlap. Tarebia granifera may only displace native gastropods, such as
Assiminea cf. ovata (Krauss, 1848), under salinity conditions below 20. Ecosystem-level impacts are also discussed.

Conclusion/Significance: The generalist diet of T. granifera may certainly contribute to its successful establishment.
However, although competition for resources may take place under certain salinity conditions and if food is limiting, there
appear to be other mechanisms at work, through which T. granifera displaces native gastropods. Complementary stable
isotope and gut content analysis can provide helpful ecological insights, contributing to monitoring efforts and guiding
further invasive species research.
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Introduction

Alien invasive species (AIS) can cause disruptions to ecosystems.

However, quantifying their impacts is problematic due to the

complexity of ecological interactions [1,2]. Stable isotope analysis

is a powerful quantitative tool for detecting and tracking changes

in trophic structure and ecosystem processes (energy flows) caused

by abiotic and biotic interactions [3]. The combination of stable

isotopes with other techniques is very useful for assessing

interactions between several organisms and contributes towards

a better understanding of how an ecosystem can be affected by

native and non-native species [4,5]. Stable isotope analysis

provides a time-integrated view of ecological processes, whereas

gut content analysis reveals snapshots of feeding activity [6]. Stable

isotope and gut content analyses are complementary, provide

insight into diets and trophic dynamics in ecosystems [7,8] and

have successfully been used in several studies addressing the

impacts of AIS on aquatic ecosystems [8–12]. Although compa-

rable studies on gastropods are lacking, numerous studies have

been published on invasive gastropods such as Pomacea canaliculata

(Lamarck, 1822) (prosobranch, Ampullariidae) [13–15] and

Potamopyrgus antipodarum (Gray, 1843) (prosobranch, Hydrobiidae)

[16,17], some of which involved stable isotope techniques [18,19].

Tarebia granifera (Lamarck, 1822) (prosobranch, Thiaridae) is a

non-native invasive gastropod originally from South-East Asia.

This AIS is reported from many tropical and sub-tropical areas of

North and South America and Africa [20–24]. Tarebia granifera was

accidentally introduced in South Africa, probably in the 1990s via

the aquarium trade [24]. This is reported as one of the most recent

introductions of non-native gastropod into South African natural

environments, where it has quickly become invasive and

widespread, particularly in the KwaZulu-Natal and Mpumalanga

provinces [24,25]. Tarebia granifera is parthenogenetic and ovovi-

viparous, giving birth to live juveniles and often reaching

population densities of over 1000 ind. m22 [26]. Tarebia granifera

has been successfully used as a biological control of schistosomiasis
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in the Caribbean, since it is able to displace host native gastropods

[27–29]. In South Africa, T. granifera is rapidly invading an

increasing number of coastal lakes and estuaries, so there is

concern about potential ecological disturbances due to the

displacement of native invertebrates [24,25,30]. Tarebia granifera

can have a very high feeding impact and may out-compete native

gastropods for food resources [31]. However, the mechanisms

through which T. granifera may compete with native invertebrates

are not yet clear, and questions about its diet still need to be

addressed [31].

This study aims to: (1) use gut content and stable isotope

analyses to estimate the diets of T. granifera and other dominant

gastropod populations; and (2) estimate dietary niche overlap

between invasive T. granifera and native gastropods. The

framework of this field-based study also assesses spatial overlap

between gastropods as well as availability of food in the form of

benthic microalgae. The potential of T. granifera to affect trophic

dynamics, and compete with native gastropods for food resources,

is discussed in light of the findings.

Materials and Methods

Ethics Statement
All necessary permits were obtained from the iSimangaliso

Wetland Park Authority for the described field studies at each

location, under a Research Agreement for the project titled

‘‘Climate Change and the Management of KZN estuaries: St

Lucia Estuary’’.

Study site
Sampling was conducted at three different coastal lakes which

were all invaded by Tarebia granifera over the last decade (Fig. 1).

The St. Lucia Estuary was sampled in June 2007, October 2009

and February 2010. It is the largest estuarine lake in Africa, with a

surface area of about 325 km2 and average depth of 0.9 m [32].

The sample site, Catalina Bay, is a large limestone flat covered by

shallow water and is located on the eastern shores of South Lake

(28u139S, 032u299E). Vegetation found by the shore included

Cyperus laevigatus, Juncus kraussii and Salicornia spp.. Throughout the

sampling period, Catalina Bay experienced significant changes in

salinity and water level. These were underlined by an unusual

mouth breaching event, caused by extreme wave action in the

Indian Ocean during March 2007, which resulted in six months of

open mouth conditions [33]. Prior to this, the estuary had been

completely isolated from the ocean for almost five years.

Tarebia granifera has persisted in the St. Lucia Estuary at least

since 2005, but its invasion is restricted to freshwater seepage areas

along the eastern shores of the South Lake, where it tends to

dominate benthic assemblages. Shallow water benthic assemblages

are otherwise dominated by the native gastropods Assiminea cf.

ovata and Haminoea natalensis. Assiminea cf. ovata (Krauss, 1848)

(previously known as A. bifasciata) (prosobranch, Assimineidae) is a

small (shell height <5 mm) native gastropod with a very wide

salinity tolerance that can be found in river mouths, estuaries and

lagoons on the east coast of South Africa and Mozambique [34].

Assiminea cf. ovata is thus well adapted to the hydrological dynamics

of the St. Lucia Estuary [35,36]. Haminoea natalensis (Krauss, 1848)

(opistobranch, Haminoeidae) occurs from Port St Johns (Eastern

Cape) to southern Mozambique [37] and periodically dominates

the benthic assemblage along the shallow saline shores of South

Lake (pers. obs.).

Lake Sibaya’s south-east basin (27u259S, 032u419E) was sampled

in November 2009 (Fig. 1). This freshwater lake has a surface area

of 60 to 77 km2 and an average depth of 13 m [38]. It was

connected to the ocean in the past and has a number of originally

marine and estuarine species uniquely adapted to freshwater

conditions [39]. The profile of the littoral zone is steep and, at the

time of the study, the level of the lake was low according to

previous records [40]. The substrate was composed of white sand

and vegetation at the water edge included Phragmites sp., Typha

latifolia and Cyperus sp.. Submerged macrophytes, such as

Potamogeton spp. were dominant close to shore. Tarebia granifera

dominated the benthic community in the relatively small shallow

terrace, where shelter from wave action was provided by

vegetation. It is unclear when T. granifera was introduced, but its

invasion has spread at least along the entire eastern shallow shores

of Lake Sibaya. The native Bulinus natalensis (Küster, 1841)

(pulmonate, Planorbidae) was mostly found on submerged

macrophytes. Bulinus natalensis occurs on the lowlands of

KwaZulu-Natal, South Africa [41].

Kosi Lakes’ Lake Nhlange (26u579S, 032u499E) was sampled in

November 2008 (Fig. 1). The lake has a surface area of 30.7 to

37 km2 and an average depth of 7.2 m [42]. Lake Nhlange

Figure 1. Study area. The Kosi Lakes, Lake Sibaya and the St. Lucia
Estuary are Ramsar Wetlands of International Importance within the
iSimangaliso Wetland Park, a UNESCO World Heritage Site in Maputa-
land, northern KwaZulu-Natal, South Africa. Sites sampled are marked
as dots on the map.
doi:10.1371/journal.pone.0031897.g001
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experiences freshwater conditions, despite being part of a system

that is connected to the Indian Ocean [42]. The substrate was

composed of clear white sand and marginal vegetation included

Phragmites sp, Cyperus sp. and Juncus kraussii. Submerged macro-

phytes Ceratophyllum demersum and Nymphaea spp. were found at the

water’s edge. The benthic assemblage in the sampling area was

once again dominated by T. granifera, with a few Melanoides

tuberculata individuals also found occasionally. Tarebia granifera was

found at boat launching areas where it was noticed only in recent

years. Melanoides tuberculata (Müller, 1774) (prosobranch, Thiaridae)

is composed of a great variety of lineages or morphs which are

conchologically and genetically distinct [22]. Melanoides tuberculata

has a worldwide natural distribution, including tropical Africa,

Asia and Oceania. An alien morph of M. tuberculata from south-

east Asia has invaded Africa [43–45]. Although it is assumed that

the M. tuberculata in this study is native, this remains to be

confirmed.

Transects
Tarebia granifera populations tended to be concentrated in dense

patches. To assess spatial overlap between T. granifera and other

gastropods, 4 point transects were placed parallel to the shore line

and across patches of T. granifera. Transects were selected where T.

granifera overlapped with a single native gastropod species.

Transect lengths varied depending on the area covered by the

T. granifera patch. Points were placed at even spaces so that points 1

and 4 were at the edge of the T. granifera patch and points 2 and 3

were within the patch. Samples were collected in triplicate with a

Zabalocki-type Ekman grab (sampling area 0.0236 m2) and fixed

in 10% formalin. In the laboratory, gastropods were counted and

densities (ind. m22) were calculated. Shell heights (SH) were

measured with Vernier calipers. Salinity was measured with a YSI

6920 multiprobe.

To estimate microphytobenthos (MPB) biomass, duplicate

sediment cores were collected (upper cm only) with a Perspex

corer (internal diameter: 20 mm) at every point along transects.

Chlorophyll a and phaeopigments were extracted in 90% acetone

at 4uC over a 48 h period and then measured using a 10-AU

Turner Designs fluorometer fitted with a narrow-band, non-

acidification system [46]. Chlorophyll a and phaeopigment

concentrations are added and reported as pigment concentration

(mg. m22) [47].

Gastropod gut content analysis
Twenty individuals from each species were randomly collected

along each transect (see above) and immediately preserved in 10%

formalin to prevent further digestion [48]. The digestive tract was

later removed and the gut contents were extracted with a fine

pipette under a dissecting microscope (406 magnification). Gut

contents were then viewed under an inverted microscope (4006
magnification) and classified based on gross morphology [49]. The

following classes were used: microalgae, detritus, filamentous

algae, and sand particles.

Stable isotope samples
Gastropods and their potential food sources were collected and

stored separately, first in a cooler box and later in a freezer at

220uC, before being processed and analysed.

Gastropods were collected at random along each transect (see

above). Muscle tissue from the foot of individual snails was

dissected and pooled to create representative composites. Five

replicates were prepared for each species, containing either 2 or 10

individuals each (depending on size).

Potential types of food sources for gastropods were sampled in

triplicate along each transect. Reeds, sedges, grasses and

macrophytes as well as filamentous algae (Cladophora sp.) and

detritus (DTR) were collected and thoroughly cleaned in distilled

water to remove sediment particles and organisms. These samples

were then independently homogenized and freeze dried with a

mortar and pestle and liquid nitrogen. Sediment cores were

collected with a Perspex corer (diameter 7 cm). The upper cm

layer of sediment was suspended in a 2 L container of filtered

water and stirred, so that microphytobenthos (MPB) stayed in

suspension while sediment and sedimentary organic matter (SOM)

settled to the bottom. The sediment was rinsed thoroughly with

distilled water, treated with 1 M hydrochloric acid (HCl) for 24 h

to remove carbonates, rinsed with distilled water, and then

homogenized and freeze-dried as described above. The superna-

tant containing MPB was collected on a pre-combusted GF/F

filter. MPB samples were treated with excess 2% HCl over 2 h,

rinsed with distilled water, dried in an air-circulating oven at 60uC
for 24 h and wrapped in tin foil prior to being sent for isotopic

analysis. All other samples were weighted to appropriate quantities

for analysis (568 mm tin capsules with approximately 1 mg

sample or 20 mg sample in Eppendorf microcentrifuge tubes in

the case of sediment).

Stable isotope analysis
Carbon and nitrogen stable isotope ratios and C/N values were

measured at the Stable Light Isotope Unit of the Department of

Archaeology, University of Cape Town, South Africa. A Flash EA

1112 series elemental analyzer (Thermo Finnigan, Italy) was used

with a Delta Plus XP IRMS (isotope ratio mass spectrometer)

(Thermo electron, Germany) and a Conflo III gas control unit

(Thermo Finnigan, Germany). Isotopic ratios were expressed as d
values (%) relative to the Vienna PeeDee Belemnite standard for

carbon and to atmospheric N2 standard for nitrogen according to:

dX~ Rsample=Rstandard

� �
{1

� �
|1000

Where X is 13C or 15N and R is the corresponding ratio of 13C/12C

or 15N/14N. A lipid normalization procedure was not followed

[50], since a mathematical normalization (e.g. [51]) did not

significantly affect the major outcomes of these analyses.

Highest average trophic position (TP) of gastropods was

calculated with the following equation (adapted in [4]):

TP~
1z(d15Nconsumer{d15Nbase)

Dn

where d15Nconsumer is the average d15N signature measured

directly from a gastropod species, d15Nbase is the average d15N

signature of the most d15N depleted food source, and Dn is the

assumed average enrichment in d15N per trophic level (Dn = 2).

Data analysis
The Bayesian isotopic mixing model SIAR v 4.0 (Stable Isotope

Analysis in R, [52]) was used to generate probability function

distributions, showing the most feasible solutions to the contribu-

tion of different types of potential food sources to the diet of

gastropods, with 95%, 75% and 25% credible intervals.

Fractionation correction values of 0.4% d13C and 2% d15N were

assumed [53]. Preliminary analyses were run with the aim to

determine the appropriate number of sources in the mixing models

[54,55]. Based on results from gut content analyses and mixing

model trial runs, a narrower set of sources was selected for each

Diet of Alien Invasive Tarebia granifera
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gastropod species, which provided a better resolution of results

[56].Sources that were not found in the gut content analysis and/

or had minor contributions (,5%) in the trial mixing models were

omitted from the final mixing models. Isotopic dietary overlap

(IDO, %) between species j and k was then calculated with the

following equation based on Schoener’s Index [57,58]:

IDOjk ~
Xn

1

min pij pik

" #
|100

where p is the SIAR mean contribution of source i resulting from

the final mixing models run for subjects j and k respectively, and n

is the total number of different resources used by both j and k. IDO

values have an absolute limit of 100%, which indicates complete

overlap, and values exceeding 60% were considered to indicate

significant dietary overlap [57].

Normality and equality of variance of stable isotope data were

confirmed, and analysis of variance (ANOVA) was used for

comparisons between locations and times. Pearson correlation was

used to assess relationships between availability of food, gastropod

abundance and diet. A t-test was used to compare trophic position

between T. granifera and native gastropods. A linear regression was

used to assess the relationship between gut content and stable

isotope results. Analyses were done with the statistical package

SPSS version 19 for Windows.

Results

Spatial overlap and resource availability
Tarebia granifera exhibited a patchy distribution and tended to be

concentrated in shallow water (depth ,1 m). Transects revealed

spatial overlap between T. granifera and Haminoea natalensis (Fig. 2A),

Assiminea cf. ovata (Fig. 3A and 4A), Bulinus natalensis (Fig. 5A) and

Melanoides tuberculata (Fig. 6A) at respective sampling sites in the

three lakes of Maputaland (Fig. 1). Tarebia granifera was found

together with native gastropods in a total of 10 of the 20 transect

points sampled. Of the 10 transect points where these gastropods

were found together, 7 were at the edge of the T. granifera patch

(transect points 1 and 4). Haminoea natalensis was the only native

gastropod not to be found in the middle (transect points 2 and 3) of

a T. granifera patch.

Gastropod densities as well as available microphytobenthic

(MPB) biomass varied within transects (Fig. 2A–6A; Table

S1).Generally, native gastropods had lower population densities

when compared to T. granifera (Table S1). However, Assiminea cf.

ovata was found in densities greater than T. granifera at Catalina Bay

in 2009 (Table S1). MPB biomass was available as a food source to

gastropods at all sites, although its biomass was variable (Table

S1). MPB biomass was not significantly correlated with gastropod

densities (Table 1), despite being positively correlated with

gastropod MPB diets (Table 1). Native gastropod MPB diet was

strongly positively correlated with T. granifera MPB diet; however,

it was negatively correlated with T. granifera density (Table 1).

Gastropod diets
Gut content analysis revealed that microalgae and detritus were

ingested by all gastropods (Table 2). Filamentous algae were also

found in the guts of most gastropods (Table 2): their occurrence

was 89.17% in T. granifera and 92% in native gastropods. Sand

particles were only found in the guts of H. natalensis, B. natalensis,

and in smaller amounts in T. granifera adults (shell height $10 mm)

and M. tuberculata (Table 2). Distinctive remains of meiofauna were

not found in gut contents. Macrophytes and fringing vegetation

such as reeds, sedges and grasses, were excluded as potential food

sources as their presence was not detected in the gut.

Statistical analyses revealed that T. granifera d13C and d15N

signatures differed significantly between locations and between

Figure 2. Gastropods, food sources and diets in Catalina Bay, 2007. (A) Four-point 6 m transect showing gastropod densities and
microphytobenthic (MPB) biomass (as chl-a concentration). (B) Carbon and nitrogen stable isotope signatures of gastropods (number in brackets:
trophic position) and their potential food sources; such as detritus (DTR) and sedimentary organic matter (SOM). SIAR boxplots show the proportional
contribution (%) of different food sources to the diet of (C) Tarebia granifera and (D) Haminoea natalensis. Samples were collected in a freshwater
seepage area of Catalina Bay in June 2007. Salinity ranged from 16 to 32. The water level of the South Lake rose due to the March 2007 mouth breach,
after which the freshwater ponds associated with seepage areas along the eastern shores were flooded by seawater.
doi:10.1371/journal.pone.0031897.g002
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Figure 3. Gastropods, food sources and diets in Catalina Bay, 2009. (A) Four-point 6 m transect showing gastropod densities and
microphytobenthic (MPB) biomass (as chl-a concentration). (B) Carbon and nitrogen stable isotope signatures of gastropods (number in brackets:
trophic position) and their potential food sources, such as detritus (DTR) and sedimentary organic matter (SOM). SIAR boxplots show the proportional
contribution (%) of different sources to the diet of (C) Tarebia granifera, (D) Assiminea cf. ovata. Samples were collected in a freshwater seepage area
of Catalina Bay in October 2009. Salinity ranged from 1 to 10. The water level at South Lake was once again low, thereby allowing the formation of
fresh and brackish water ponds along the eastern shores.
doi:10.1371/journal.pone.0031897.g003

Figure 4. Gastropods, food sources and diets in Catalina Bay, 2010. (A) Four-point 10 m transect showing gastropod densities and
microphytobenthic (MPB) biomass (as chl-a concentration). (B) Carbon and nitrogen stable isotope signatures of gastropods (number in brackets:
trophic position) and their potential food sources, such as detritus (DTR) and sedimentary organic matter (SOM). SIAR boxplots show the proportional
contribution (%) of different sources to the diet of (C) Tarebia granifera (shell height <13 mm), (D) T. granifera juveniles (shell height #5 mm) and (E)
Assiminea cf. ovata. Samples were collected in a freshwater seepage area of Catalina Bay in February 2010. Salinity was 0.15–0.8. Although the salinity
of the South Lake ranged between 47 and 56, its water level continued to decrease and larger freshwater ponds were formed in seepage areas along
the eastern shores.
doi:10.1371/journal.pone.0031897.g004
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times at Catalina Bay (Table 3, Fig. 2B–6B). The d13C signature of

food source types also differed significantly between locations and

between times (Table 4, Fig. 2B–6B). The d15N signature of food

source types did not differ significantly between locations (Table 4),

although it differed significantly over time at Catalina Bay

(Table 4). There was no significant difference between the trophic

position of T. granifera and that of native gastropods (t-test, df = 8,

t = 0.406, p.0.05).

Stable isotope mixing model results indicated the largest

proportional contributions of food sources to the diets of

gastropods (Fig. 2C–6C, Table S1). At Catalina Bay, in 2007

microphytobenthos (MPB) made the greatest contribution to the

diet of T. granifera (13–74% of total); in 2009 it was MPB (2–53%),

detritus (4–46%) and sedimentary organic matter (SOM) (0–47%);

and in 2010 Cladophora sp. (0–61%) and SOM (0–58%). At Lake

Sibaya, MPB (4–54%) and SOM (1–55%) made the greatest

contribution to the diet of T. granifera; but at Lake Nhlange it was

MPB (0–57%) and detritus (0–505) (Fig. 2C–6C, Table S1).

Cladophora sp. (43–93%) made the greatest contribution to the diet

of T. granifera juveniles at Catalina Bay in 2010 (Fig. 4D, Table S1).

Haminoea natalensis fed on MPB (29–95%) (Fig. 2D, Table S1).

Assiminea cf. ovata fed on MPB in 2009 (25–93%) and Cladophora sp.

in 2010 (53–98%) (Fig. 3D, Fig. 4E, Table S1). At Lake Sibaya, the

native B. natalensis appeared to feed on a combination of all

available food sources (Fig. 5D, Table S1). At Lake Nhlange, M.

tuberculata diet consisted for the most part of MPB (0–55%), detritus

(DTR) (0–50%) and SOM (4–63%) (Fig. 6D, Table S1).

Assuming that the microalgae found in the gut content analysis

correspond to the mixing model MPB food source, detritus to

DTR and filamentous algae to Cladophora sp.; there was a

significant correlation between gut contents and diet estimated

from stable isotope mixing models (n = 31, r2 = 0.69, p = 0.139).

Isotopic (stable isotope) dietary overlap (IDO) was significant

(over 60%) between T. granifera and native gastropods in most cases

(Table 5). The IDO between T. granifera adults and A. cf. ovata was

not significant (below 60%) at Catalina Bay in 2010 (Table 5). The

IDO between T. granifera adults and juveniles was also not

significant (Table 5). However, the IDO of 95% between T.

granifera juveniles (shell height #5 mm) and A. cf. ovata was the

highest recorded in the study (Table 5).

Discussion

According to the competitive exclusion principle, species with

identical ecological niche compete with each other for resources

and, if these are limiting, there is a tendency towards the exclusion

of the weaker competitor or the development of resource

partitioning or niche differentiation [59–61]. Although recent

research indicates that competition involving invasive species only

rarely causes local extinction [62], there is still a need to better

understand the mechanisms of competitive interactions and how

the ecosystem is affected.

This study focuses only on situations where spatial overlap

existed between the invasive gastropod Tarebia granifera and

another single native gastropod species. Yet the spatial distribution

of T. granifera can simultaneously overlap with that of several

species at a time [26]. However, this study does not address the

greater complexity of interactions between multiple gastropod

species in the same area.

Tarebia granifera invaded the shallow waters (less than 2 m depth)

of Kosi Bay’s Lake Nhlange, Lake Sibaya and the eastern shores of

the South Lake of the St. Lucia Estuary (Fig. 1). The T. granifera

populations tend to form dense patches (often .1000 ind. m22) of

varying dimensions. Tarebia granifera patches such as the ones

sampled in this study are often found in very shallow embayments

with clear sandy substrate where particulate organic matter settles

or where there is freshwater seepage. In contrast, the native species

in this study have much lower population densities and their

distribution is more extensive and much less patchy [26]. E.g.

Assiminea cf. natalensis at the St. Lucia Estuary is a historically

Figure 5. Gastropods, food types and diets in Lake Sibaya, 2009. (A) Four-point 3 m transect showing gastropod densities and
microphytobenthic (MPB) biomass (as chl-a concentration). (B) Carbon and nitrogen stable isotope signatures of gastropods (number in brackets:
trophic position) and their potential food sources, such as detritus (DTR) and sedimentary organic matter (SOM). SIAR boxplots show the proportional
contribution (%) of different sources to the diet of (C) Tarebia granifera and (D) Bulinus natalensis. Samples were collected in November 2009. This lake
has no connection to the sea and contains pure freshwater.
doi:10.1371/journal.pone.0031897.g005
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dominant species found throughout the system [35]. Tarebia

granifera also appears to be displacing native gastropods from

certain areas in the iSimangaliso Wetland Park (Fig. 1), whereas

the native species do not appear to be mutually exclusive.

Tarebia granifera has previously been classified as both detritivore

and grazer [31,63]. This study shows that T. granifera has a

generalist diet which includes a wide variety of food sources.

Tarebia granifera is established in all major coastal lakes of

Maputaland (Fig. 1), where in particular cases its diet was either

largely composed of a single or a combination of general food

sources (Fig. 2C–6C, Table S1). Native gastropods A. cf. ovata and

Haminoea natalensis tended to favor a single food source in Catalina

Bay, whereas Bulinus natalensis and Melanoides tuberculata had a more

varied diet in Lake Sibaya and Lake Nhlange respectively.

Figure 6. Gastropods, food sources and diets in Lake Nhlange, 2008. (A) Four-point 3 m transect showing gastropod densities and
microphytobenthic (MPB) biomass (as chl-a concentration). (B) Carbon and nitrogen stable isotope signatures of gastropods (number in brackets:
trophic position) and their potential food sources, such as detritus (DTR) and sedimentary organic matter (SOM). SIAR boxplots show the proportional
contribution (%) of different sources to the diet of (C) Tarebia granifera and (D) Melanoides tuberculata. Samples were collected at Lake Nhlange in
Kosi Bay, in November 2008. At the time, the site was dominated by freshwater conditions.
doi:10.1371/journal.pone.0031897.g006

Table 1. Correlations between microphytobenthic biomass and gastropod densities and diets.

MPB T. granifera density Native density T. granifera MPB diet Native MPB diet

MPB r 1 20.211 20.021 0.615 0.49

p ns ns ,0.001 ,0.05

T. granifera density r 20.211 1 20.232 0.036 20.330

p ns ns ns ,0.05

Native density r 20.021 20.232 1 20.114 0.354

p ns ns ns ,0.05

T. granifera MPB diet r 0.615 0.036 20.114 1 0.649

p ,0.001 ns ns ,0.001

Native MPB diet r 0.409 20.330 0.354 0.649 1

p ,0.05 ,0.05 ,0.05 ,0.001

Pearson correlations (r is the correlation coefficient; n = 60 for every case) between microphytobenthic (MPB) biomass, Tarebia granifera, native gastropod densities and
corresponding contribution of MPB to their diets. Diets were estimated by a stable isotope mixing model. Samples were collected at three coastal lakes in Maputaland.
Native gastropods were Haminoea natalensis, Assiminea cf. ovata, Bulinus natalensis and Melanoides tuberculata.
doi:10.1371/journal.pone.0031897.t001
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Microphytobenthos (MPB) featured in the diet of all gastropods

and its proportional contribution was always positively correlated

with its available biomass in the environment (Table 1). Although

T. granifera in high densities had the potential to consume MPB

until it became limiting [31], there were other food sources

available to gastropods, such as detritus (DTR), the filamentous

algae Cladophora sp. and sedimentary organic matter (SOM) (Table

S1).

Autochthonous primary production (represented by MPB,

Cladophora sp. and SOM) contributed on average 78% of gastropod

diets. d13C signatures were significantly more enriched at Catalina

Bay, when compared with Lake Nhlange and Lake Sibaya, which

is expected because of the influence of salt water at that site [64].

Detritus (DTR) is the only food source that could represent an

allochthonous contribution in the form of terrestrial plant matter,

and it only contributed on average up to 20% of gastropod diets.

Although terrestrial primary production can support secondary

production of aquatic mollusks (since most species, including T.

granifera, have the ability to feed on [65] and digest terrestrial plant

matter via cellulase activity [66]), aquatic primary production was

more important for the gastropods at the coastal lakes in this study.

Animal contributions, in the form of decaying matter which would

not be easily recognized in a gut content analysis, can also be

represented in the DTR signature which would explain its wide

variation in d13C. Decaying animal matter and/or meiofaunal

organisms can make a small but significant contribution to the diet

of T. granifera. Melanoides tuberculata, which in this study exhibited a

diet identical to that of T. granifera, is capable of assimilating animal

matter [53]. This opens the possibility that T. granifera may also

feed on dead gastropods, which would be beneficial to its survival

at very high densities and under unfavorable environmental

conditions. Detritus and sedimentary organic matter may account

for the high organic carbon content (up to 60%) not accounted for

by the gut fluorescence technique in T. granifera [31]. However,

although as many samples as possible were collected and broadly

classified, due to logistical limitations not all potential food sources

may have been considered in this study.

Table 2. Gastropod gut content analyses in three coastal lakes of Maputaland.

Gut contents

Location and year Species Microalgae Detritus Filamentous algae Sand particles

CB 2007 Tarebia granifera 100 100 90 25

Haminoea natalensis 100 100 100 90

CB 2009 T. granifera 100 100 75 15

Assiminea cf. ovata 100 100 90 0

CB 2010 T. granifera 100 100 100 30

T. granifera juveniles 100 100 100 0

A. cf. ovata 100 100 100 0

LS 2009 T. granifera 100 100 80 5

Bulinus natalensis 100 100 85 100

LN 2008 T. granifera 100 100 90 10

Melanoides tuberculata 100 100 85 15

Gut contents were classified based on gross morphology. Data are presented as percentage occurrence in the guts of gastropods (n = 20). Samples were collected at
Catalina Bay (CB) in the St. Lucia Estuary, Lake Sibaya (LS) and Lake Nhlange (LN) in Kosi Lakes.
doi:10.1371/journal.pone.0031897.t002

Table 3. Statistical analyses of stable isotope signatures of
Tarebia granifera.

Dependant variable Source df MS F p

d13C Location 2 136.126 118.7 ,0.001

Error 22 1.147

Time 2 4.324 34.538 ,0.001

Error 12 0.125

d15N Location 2 4.052 5.07 ,0.05

Error 22 0.799

Time 2 5.074 44.337 ,0.001

Error 12 0.114

ANOVA for d13C and d15N of T. granifera from Catalina Bay, Lake Sibaya and Lake
Nhlange (different locations in Maputaland), and from 2007, 2009 and 2010 at
Catalina Bay (different times).
doi:10.1371/journal.pone.0031897.t003

Table 4. Statistical analyses of stable isotope signatures of
gastropod food source types.

Dependant
variable Source df MS F p

d13C Food6Location 6 17.079 4.381 ,0.05

Error 48 3.899

Food6Time 6 16.138 5.519 ,0.05

Error 24 2.924

d15N Food6Location 6 4.659 1.477 ns

Error 48 3.155

Food6Time 6 8.881 6.356 ,0.001

Error 24 1.397

Two-way ANOVA for d13C and d15N, including microphytobenthos, detritus,
Cladophora sp. and sedimentary organic matter (different food source types)
collected at Catalina Bay, Lake Sibaya and Lake Nhlange (different locations in
Maputaland), and collected in 2007, 2009 and 2010 at Catalina Bay (different
times).
doi:10.1371/journal.pone.0031897.t004
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Assiminea cf. ovata has an affinity for MPB, as do other assimineid

species [67]. However, the increase in abundance of T. granifera at

St Lucia from 2009 to 2010 may have influenced a dietary shift in

A. cf. ovata, which started to feed less on MPB and more on

Cladophora sp. (Fig. 3D, 4E and Table S1). This is not surprising, as

dietary shifts in native species tend to be caused by non-native

species, as they disrupt trophic connections [1]. If resource

partitioning between T. granifera and A. cf. ovata took place, it was

effective in reducing IDO from 62% in 2009 to 50% in 2010.

However, it is very likely that dietary shifts occured in response to

changing environmental conditions, which affected food availabil-

ity and quality at Catalina Bay.

Due to its remarkable salinity tolerance, T. granifera managed to

survive the unusual 2007 mouth breaching event when seawater

entered the St. Lucia Estuary and flooded the freshwater seepage

areas of Catalina Bay (Fig. 1) [30]. Assiminea cf. ovata was abundant

in most of the seepage areas only in 2008, while the salinity level

was high (around 30) [26]. When fresh water conditions became

re-established in the seepage areas in 2009, T. granifera increased in

numbers and spread until 2010, when it once again dominated

benthic assemblages whilst evidently displacing A. cf. ovata [26].

Along the eastern shores of South Lake (Fig. 1), A. cf. ovata

continued to be abundant in areas with high salinity and was even

found in a few freshwater seepage areas where T. granifera was not

present (e.g. Dead Tree Bay: 28u992.830S, 32u27953.760E). At least

over the last six years, A. cf. ovata and H. natalensis have consistently

been found together in shallow-water habitats on the western

shores of South Lake (Fig. 1), where there are fewer freshwater

seepage areas, with only one being found to harbor T. granifera, i.e.

Makakatana Bay (28u14910.870S, 32u25911.610E). In contrast to

T. granifera, H. natalensis does not appear to displace A. c.f. ovata.

Salinity is indeed one of the most important factors influencing

the distribution of gastropods in coastal lakes of Maputaland [26].

Although there was a significant IDO between T. granifera and H.

natalensis, there was very little spatial overlap between the two,

since H. natalensis preferred the saltier conditions outside the

seepage area. High salinity conditions were also associated with A.

cf. ovata [26]. When salinity dropped below 20, T. granifera

expanded its range and density. Assiminea cf. ovata was recorded in

the St. Lucia Estuary at low salinities, but only when T. granifera

was either absent or present in relatively low densities. This

suggests that T. granifera may displace A. cf. ovata only under

specific salinity conditions. This also supports the theory that

vulnerable native species can resist invasion by non-native species

under certain conditions [68].

Interestingly, at Catalina Bay in 2010, it was observed that both

A. cf. ovata and T. granifera juveniles tended to concentrate in

extremely shallow areas (depth ,0.1 metre), whereas T. granifera

adults tended to concentrate in adjacent deeper waters (depth

.0.1 metre). In this environment, where water level fluctuation is

commonplace, it is conceiveable that smaller snails would continue

to feed in extremely shallow areas, whereas larger snails tend to

move away and/or burrow to avoid dessication. This behavior

reduces the potential for competitive interactions involving T.

granifera adults and can be interpreted in terms of spatial niche

differentiation. However, the spatial overlap between A. cf. ovata

and T. granifera juveniles remains unchanged and becomes

effectively greater than that between A. cf. ovata and T. granifera

adults. Tarebia granifera juveniles are often numerous, have fast

growth rates and may even grow faster and larger in the presence

of other snails [24,31,69]. They are voracious feeders and may

have greater impacts on food stocks than adults [31,70]. It is

therefore suggested that T. granifera juveniles played a role in the

displacement of A. cf. ovata. A high degree of spatial overlap

between T. granifera adults and juveniles has been recorded [26],

however, there is also evidence of an ontogenetic dietary shift in T.

granifera, since SOM was only used by adults and IDO was not

significant (Table 5, Table S1, Fig. 4C–D). Resource partitioning

certainly minimizes potential competition between T. granifera

adults and juveniles.

Food resource use within populations at the microhabitat scale

can be a significant factor in gastropod interactions [71]. Some of

the large variations in isotopic signatures recorded for gastropods

in this study may be due to individual variation, which in turn may

be primarily affected by habitat heterogeneity and resource

availability [71]. This adds to the complexity of addressing dietary

overlap and potential competition for food resources between

gastropods.

Tarebia granifera and B. natalensis appear to have very similar and

overlapping diets (Table S1, Table 5). Thiarids and sympatric

pulmonates can have similar diets [72]. The lack of competitive

exclusion may be explained by selective ingestion and behavioral

differences [73], as well as selection of different micro-habitats,

such as macrophyte fronds where B. natalensis positions itself close

to the water surface [74], thus avoiding physical interactions with

T. granifera which tend to stay on the substrate. However, in the

Caribbean, T. granifera is known to displace Biomphalaria glabrata

(Say, 1818) (pulmonate, Planorbidae), which like B. natalensis is

associated with submerged vegetation rather than the substrate.

Further empirical studies are thus needed to address interactions

Table 5. Isotopic (stable isotopes) dietary overlap between gastropods in three coastal lakes of Maputaland.

Gastropod species Location and year Salinity IDO (%)

Tarebia graniferaa and Haminoea natalensis CB 2007 16–32 75

T. granifera and Assiminea cf. ovata CB 2009 1–10 62

T. granifera and A. cf. ovata CB 2010 0.15–0.8 50

T. granifera juvenilesa and A. cf. ovata CB 2010 0.15–0.8 95

T. granifera and T. granifera juveniles CB 2010 0.15–0.8 49

T. granifera and Bulinus natalensis LS 2009 0.18–0.45 87

T. granifera and Melanoides tuberculata LN 2008 0.91–1.45 85

aT. granifera = shell height $10 mm; T. granifera juveniles = shell height #5 mm; all other gastropods were adults.
Locations are Catalina Bay (CB) in the St. Lucia Estuary, Lake Sibaya (LS) and Lake Nhlange (LN) in Kosi Lakes. Isotopic dietary overlap (IDO, %) values over 60% indicate
significant overlap and a value of 100% indicates absolute overlap.
doi:10.1371/journal.pone.0031897.t005
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between T. granifera and B. natalensis which may involve chemical

cues rather than competition for food [27,75].

Tarebia granifera has been widely reported to out-compete M.

tuberculata for food resources and space and there is concern that

other native thiarids, such as Thiara amarula (Linnaeus, 1758) may

also be negatively affected [24]. As expected, the diets of these

gastropods are similar and IDO is significant (Table 5, Table S1),

suggesting that T. granifera and M. tuberculata can compete for

resources. Yet, there is spatial overlap between these species in

Lake Nhlange. This apparent competitive co-existence [76] may

be explained by the generalist diet of both species together with

adequate availability of resources.

At Catalina Bay and Lake Nhlange, there was no indication that

food resources were limiting. The lowest available MPB biomass

was recorded on the eastern shores of Lake Sibaya in a sheltered

bay (table S1). A larger proportion of the eastern shore of Lake

Sibaya is comprised of exposed sandy terraces that are even poorer

in nutrients in comparison to sheltered bays, which tend to

accumulate organic deposits [77]. Tarebia granifera is currently the

only recorded gastropod species dominating the benthic assem-

blage in open terraces of Lake Sibaya [26]. The unusually small

size of the T. granifera individuals at Lake Sibaya’s open terraces

may be explained by lower food availability and quality [26]. This

suggests that food resources are limiting in large areas of Lake

Sibaya and this may have played a role in the apparent

displacement of the historically abundant native gastropods M.

tuberculata and Bellamya capillata (prosobranch, Viviparidae) [34,78],

by T. granifera. However, both M. tuberculata and B. capillata may

still persist in parts of Lake Sibaya that have not been surveyed

and particularly at depths greater that 5 m where less T. granifera

can be found.

In the St. Lucia Estuary, there appears to be a relatively high

concentration of dissolved nutrients despite the drought conditions

[79,80]. Nutrient input is likely to come from fecal matter of

ungulates, waterfowl and particularly hippopotami that frequent

freshwater seepage areas and play a part in shaping them [81,82].

Nutrient input and concentrations are also affected by water level

fluctuations which can be extremely variable at Catalina Bay. This

may explain the d15N signature variation and enrichment observed

at Catalina Bay in 2010. Nutrient enrichment certainly led to the

increase in abundance of Cladophora sp., which featured prominently

in gastropod diets at Catalina Bay only in 2010. Nutrient

enrichment can have overriding effects on several system processes

[83], initially favoring both native and non-native species. However,

T. granifera appear to have a greater and faster growth per unit

resource consumption, coupled with earlier onset of reproduction,

which contributes to their invasion success [84,85].

Although in the same trophic level, and thus probably

performing a similar ecosystem function, T. granifera differs from

the native benthic invertebrates of Maputaland in many ways.

Besides having different physiology, behavior and life history, T.

granifera can also differ from other species in terms of its elemental

turnover rate [86] and biomass accrual. Tarebia granifera popula-

tions attain extremely high densities due to their high partheno-

genetic reproduction rate. Large amounts of carbon are therefore

sequestered by T. granifera. The average size of individuals within

gastropod species is naturally a factor in determining the biomass

of the different populations. When compared to native gastropod

species, such as B. capillata at Lake Sibaya, the estimated per capita

biomass of T. granifera can be on average ten times lower

(unpublished data). At Catalina Bay, the average per capita

biomass of T. granifera is about double that of A. cf. ovata

(unpublished data). However, the biomass of T. granifera popula-

tions is often much greater than that of potentially vulnerable

native gastropods in the same trophic level. Therefore, the

invasion of sites such as Catalina Bay by T. granifera results in

the sequestration of a lot more carbon than usual in benthic

primary consumers. This might not be an issue in terms of

reducing the availability of nutrients to native gastropods, since

there seem to be a great abundance of nutrient resources at

Catalina Bay. At sites like Lake Sibaya, the invasion of T. granifera

may not result in the sequestration of such high magnitudes of

carbon, but because nutrients can be limiting, T. granifera can at

least affect their availability to native gastropods and interfere with

vital nutrient cycling dynamics in complex ways [31,87–89].This

study did not focus on higher trophic level interactions. Indeed,

there is a general lack of multiple trophic level studies that may

reveal more complex ecological responses [90]. However, snails

like T. granifera do not seem to be successfully predated upon by

native species in iSimangaliso, although they can be attacked by

birds, fish and invertebrates, such as crabs and leeches. Trematode

parasites are also absent in T. granifera [26]. Predators and parasites

could regulate populations of alien gastropods [45]. The lack of

successful predation and parasitism is thus likely to facilitate the

establishment and spread of T. granifera in South Africa.

Supporting Information

Table S1 Available microphytobenthos biomass and gastropod

densities and diets in three coastal lakes of Maputaland. The

contributions of microphytobenthos (MPB), detritus (DTR),

Cladophora sp. and sedimentary organic matter (SOM) to the diets

of gastropods were calculated with the SIAR (stable isotope

analysis in R) mixing model using Carbon (d13C) and Nitrogen

(d15N) signatures. Gastropod shell height (range) was recorded.

Available MPB biomass is presented as pigment concentration.
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