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Abstract
Insects are exposed to a wide range of microorganisms (bacteria, fungi, parasites and viruses) and
have interconnected powerful immune reactions. Although insects lack an acquired immune system
they have well-developed innate immune defences that allow a general and rapid response to
infectious agents.

Over the last few decades we have observed a dramatic increase in the knowledge of insect innate
immunity, which relies on both humoral and cellular responses. However, innate reactions to
natural insect pathogens and insect-transmitted pathogens, such as parasites, still remain poorly
understood.

In this review, we briefly introduce the general immune system of insects and highlight our current
knowledge of these reactions focusing on the interactions of Trypanosoma rangeli with Rhodnius
prolixus, an important model for innate immunity investigation.

Introduction
The insect innate immune reactions
There are two types of innate immune reactions: (i) the
humoral response that is related to antimicrobial pep-
tides, lectins and the prophenoloxidase (PPO) cascade
and (ii) the cellular response which includes phagocyto-
sis, hemocytes aggregation and encapsulation of patho-
gens.

Innate immunity of insects relies on a limited variety of
receptors which recognize specific compounds that are on
the surface of microorganisms or are released by them.

The most well known pathogen-associated molecular pat-
terns (PAMPs) are microbial cell-wall components like
lipopolysaccharides (LPS) of Gram-negative bacteria,
lipoteichoic acid and peptidoglycans of Gram-positive
bacteria, β-1,3 glucans from fungi as well as glycosylphos-
phatidylinositol (GPI) from protozoan parasites [1,2].

The humoral immune system recognizes PAMPs by pat-
tern recognition receptors which are conserved in evolu-
tion to bind unique products of microbial metabolism
not produced by the host [1,2]. The humoral pattern rec-
ognition receptors such as LPS-binding proteins, pepti-
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doglycan recognition proteins (PGRPs), Gram-negative
binding proteins (GNBPs), β1,3-glucans recognition pro-
tein (βGRP), circulates in the hemolymph of insects [3,4].

In the hemocyte surface there are several proteins impli-
cated in the cellular immune response against invading
microbes by recognizing the PAMPs. The most well
known cellular receptors involved in recognition of path-
ogens in several insect species are croquemort (homo-
logue of the mammalian CD36 family), Down syndrome
cell-adhesion molecule (Dscam), peptidoglycan recogni-
tion protein (PGRP-LC), Eater (transmembrane protein)
and the Toll family members [3,4].

Humoral immunity
Drosophila melanogaster, a dipteran, has become an appro-
priate model for the investigation of immune pathways
and insect-microorganism interactions [4-6]. Apparently,
the main components of the core signaling processes are
conserved between insects [4]. The genome sequencing of
these insects allowed a comparative genomic analysis of
the gene families involved in the Drosophila defence reac-
tions [7]. The best-characterized insect humoral response
is the production of antimicrobial peptides (AMPs). These
peptides are small, cationic and with different structures.
They are released into the hemolymph during infection
[8]. The main source of AMPs is from the fat body, but sev-
eral epithelia and insect organs are also able to produce
these substances [9]. The most important AMPs are
defensins which act mainly against Gram-positive bacteria
[10]. However, cecropins that have a large spectrum are
more effective against Gram-negative bacteria [11]. There
are other AMPs like attacin, diptericin, drosocin and dro-
somycin, etc [5,12]. Most AMPs have simple and non-spe-
cific modes of antibiotic action, such as driving pathogen
membrane disruption by altering the membrane permea-
bilization or through an intracellular target [10-12].

Investigation in Drosophila demonstrated that production
of AMPs is related to two distinct pathways: Toll and IMD
pathways [3]. Recent studies suggested that these two
pathways respond respectively to Gram-positive or Gram-
negative bacteria and fungal infections in insects [5,12]. A
third pathway involved in immune reactions, especially in
mammals, is the JAK/STAT (Janus kinase/Signal trans-
ducer and activator of transcription) [13]. The JAK/STAT
signaling pathway takes place mainly in the fat body of
insects. The production of AMPs is a common result of
JAK/STAT, Toll and Imd pathway activity [14] (Figure 1).

The prophenoloxidase (PPO) cascade, which leads to
melanization and production of highly reactive and toxic
compounds (e.g. quinones), is another important
humoral immune reaction in insects. Also, there are sev-
eral papers reporting that phenoloxidase (PO) promotes
cellular defence reaction like phagocytosis [for review see

[15]]. Although in some cases, the melanization process is
not important for clearing an infection, it is relevant for
pathogen encapsulation [15]. Melanization depends on
tyrosine metabolism. The PPO activation cascade is com-
posed of several proteins, including PPO, serine proteases
and their zymogens, as well as proteinase inhibitors. The
PPO cascade is set off by the recognition of PAMPs that
leads to the activation of a serine protease cascade culmi-
nating in the limited proteolytic cleavage of PPO to pro-
duce active PO that catalyzes the oxidation of tyrosine to
dihydroxyphenylalanine (DOPA) which is subsequently
oxidized to form dopaquinone and dopamine quinone as
well as 5, 6-dihydroxyindole which have highly antibacte-
rial activities (Figure 2). These compounds are precursors
of the melanin polymer which is deposited on the surface
of encapsulated parasites, hemocyte nodules and wound
sites [13]. Besides the PPO activation cascade is regulated
by plasma serine protease inhibitors (including members
of the serpin superfamily) and active phenoloxidase (PO),
this process being directly inhibited by proteinaceous fac-
tors [15,16] (Figure 2). Such regulations are essential

Toll, IMD and JAK-STAT pathwaysFigure 1
Toll, IMD and JAK-STAT pathways. Insect tissues rec-
ognize pathogen-associated molecular patterns (PAMPs) by 
transmembrane receptors (DOME, Toll and PGRPs) in plas-
matic membrane (PM) that activate the three pathways. The 
JAK-STAT pathway is activated by the receptor DOME 
(domeless) that transduces the signal to JAK and the cytosolic 
STAT. The Toll pathway starts with activation of the recep-
tor Toll that signals to the cleavage of Dorsal-related immu-
nity factor (DIF) complex releasing DIF. The IMD pathway 
through peptidoglycan recognition proteins (PGRPs) acti-
vates IMD (immune deficiency) that regulates the proteolytic 
cleavage and activation of Relish. The transcription factors 
(STAT, DIF and Relish) translocate to the nucleus through 
the nuclear membrine activating the expression of its tran-
scriptional targets resulting in the production of antimicrobial 
peptides and other immune responses.
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because the products of PO activity are potentially toxic to
the host.

Finally, the mosquito Anopheles stephensi, a natural vector
of human malaria, limits parasite development with
inducible synthesis of nitric oxide (NO). Elevated expres-
sion of A. stephensi NO synthase (NOS) that is highly
homologous to other characterized NOS genes, occurs in
the midgut and carcass soon after invasion of the midgut
by Plasmodium [17]. Interestingly, in the hemolymph the
nitrite/nitrate ratios, and the products of NO synthesis are
higher in Plasmodium-infected mosquitoes and the treat-
ment with NOS inhibitor N-nitro-L-arginine methylester
significantly increases the number of parasites in infected
mosquitoes [17].

Cellular reactions
Insect cellular responses are mediated by circulating
hemocytes, and they include phagocytosis, hemocytes
aggregation and encapsulation. Insect phagocytosis refers

to the process by which hemocytes recognize, internalize
and destroy microorganismal invaders [18]. In Drosophila,
phagocytosis is performed mainly by plasmatocytes,
while hemocyte aggregation and encapsulation are carried
out by lamellocytes that attach, embrace and inactivate
the invading organisms, which then die by asphyxiation
or by free radical attack [19]. Frequently, there is a local
activation of the PPO cascade that cross-links the hemo-
cyte aggregates and microorganisms in a melanin enve-
lope.

Eicosanoid pathways
Eicosanoids are oxygenated metabolites of arachidonic
acid with a huge range of physiological functions in a
diversity of organisms. Among the important functions
ascribed to eicosanoids are the central role that they play
in the inflammatory and immune defence reactions in
mammals [20] and the mediation of cellular defence
responses to bacterial infections in insects [21]. In fact,
results from over 20 insect species representing 5 orders
indicated that eicosanoids mediate cellular immune reac-
tions to bacterial infections [22]. Stanley-Samuelson et al.
[23] demonstrated, for the first time, that eicosanoids reg-
ulate bacterial clearance from the insect's hemolymph.
Following this pioneering paper, much research has been
done on the relation of eicosanoids in regulating the
insect immune system, especially on the elimination of
inoculated bacteria from the hemolymph by nodule for-
mation, the major cellular immune response to bacterial
infections in insects [21-24]. The decrease of arachidonic
acid production due to dexamethasone effect on phos-
pholipase A2 (PLA2) activity reflects on the products of the
cyclooxygenase (COX) and lipoxygenase (LOX) path-
ways, diminishing both bacteria clearance [23] and nodu-
lation [24] in insects. After that, the recognition of the
biological significance of eicosanoids in signal transduc-
tion in insect immune responses rapidly increased [21]
with studies of insects infected with bacteria and fungi
[25-27], parasitoids [28], protozoa [29,30] and viruses
[31,32].

Miller and Stanley [33] have shown that eicosanoid bio-
synthesis inhibitors have a direct effect on Manduca sexta
hemocytes and Tunaz et al. [34] demonstrated that dex-
amethasone exerts its effect on insects by inhibiting PLA2.
Investigations made by Mandato et al. [25] showed that
eicosanoid biosynthesis inhibitors attenuated the PO
activity in Galleria mellonella challenged with bacteria, and
this inhibitory effect of dexamethasone was abolished by
the addition of arachidonic acid (Figure 3). So, many
models of insect species have been studied to expand and
generalize the hypothesis that eicosanoids mediate the
nodule formation in insect hemolymph during immune
responses to bacterial, fungal, parasitoid and viral infec-
tions.

A serine proteinase cascade is activated when different receptors recognize pathogen-associated molecular patterns (PAMPs)Figure 2
A serine proteinase cascade is activated when differ-
ent receptors recognize pathogen-associated molec-
ular patterns (PAMPs). These serine proteases hydrolyze 
and activate the prophenoloxidase-activating proteinase pre-
cursor (proPAP) to prophenoloxidase-activating proteinase 
(PAP) that can be inhibited by serpins (proteinase inhibitors). 
The enzyme PAP hydrolyses prophenoloxidase (PPO) releas-
ing phenoloxidase (PO). PO oxidizes tyrosine to dihydroxy-
phenylalanine (DOPA) and subsequently into quinones, the 
precursors of melanin, cytotoxic products and encapsulation 
of pathogens.
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Some invading microorganisms induce an immunologi-
cal depression to avoid the immune reactions of insects.
The entomopathogenic bacterium, Xenorhabdus nemat-
ophila, induces immunodepression in target insects by
(PLA2) activity inhibition causing lethal septicemia of the
infected hosts [35-37].

The Trypanosoma rangeli model
Trypanosomes are digenetic parasites that have insects as
vectors and infect human beings and other vertebrates as
hosts [38]. So far, only species of the genus Rhodnius have
presented infective forms of Trypanosoma rangeli in their
salivary glands [39]. In Latin America, this parasite has
two major lineages based on kinetoplast DNA (kDNA)

markers: one group presents three types of kDNA minicir-
cles (KP1, KP2 and KP3- T. rangeli KP1+), while the other
group has only KP2 and KP3 minicircles (T. rangeli KP1-)
[for review [40]]. T. rangeli is a harmless parasite for
humans and various wild and domestic animals, but it
can be pathogenic to the insect vector [40].

While the full biological cycle of Trypanosoma cruzi, the
causative agent of Chagas disease, takes place in the guts
of the triatomine vectors, and the infecting parasites are
eliminated with feces and urine to contaminate vertebrate
hosts [41-44], the T. rangeli life cycle in the vector is differ-
ent. The vector infection begins when parasitesare
ingested as trypomastigote forms. The parasites multiply

Phospholipids are hydrolyzed by phospholipase A2 liberating arachidonic acid and Lyso-PAF, regulators of insect's immune sys-temFigure 3
Phospholipids are hydrolyzed by phospholipase A2 liberating arachidonic acid and Lyso-PAF, regulators of 
insect's immune system. Arachidonic acid is the substrate for eicosanoid production, prostaglandins via cyclooxygenase and 
leukotrienes via lipoxygenase. Lyso-PAF is acetylated by PAF-acetyl transferase releasing PAF that can be degraded by PAF-
acetyl hydrolase that hydrolyses PAF regenerating Lyso-PAF. In the presence of dexamethasone the immune responses are 
inhibited due to the suppression of phospholipase A2 activity with lower production of eicosanoids and PAF. On the other 
hand when exogenous arachidonic acid is added there is enhancement of eicosanoid production and immune responses 
increase.
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as epimastigotes in the gut, and they are able to penetrate
through the gut epithelium [45] (Figure 4) invading the
hemocele. In the regular course of infection, a few days
after parasite ingestion, short epimastigote forms appear
in the insect hemolymph. Soon, they disappear to be
replaced by a massive colonization by long epimastigotes
[46]. The epimastigotes survive in the hemolymph and/or
inside the hemocytes. Then, they migrate and possibly by
recognition of carbohydrate moieties attach to salivary
glands [47], invade them and complete their development
into infective forms [48-50] (Figure 4).

Interestingly, Garcia et al. [50] described that T. rangeli
impairs R. prolixus salivary gland function, preventing full
expression of its antihemostatic machinery [51] prolong-
ing the duration of intradermal probing.

The Rhodnius prolixus model
Rhodnius belongs to the subfamily Triatominae of the
family Reduviidae that is made up of 140 species of tri-
atomines, several of which are vectors or potential vectors
of the hemoflagellate protozoan parasites T. cruzi and T.
rangeli. However, only species of the genus Rhodnius have
infective forms of T. rangeli in their salivary glands
[48,52].

Since the main characteristic of the T. rangeli life cycle is
the invasion of the insect hemocele it must overcome the
immune reactions of its vector. We will therefore use the
bloodsucking bug, Rhodnius prolixus, as a tool for provid-
ing insights into how insects defend themselves against
infection by bacteria and parasites such as T. rangeli. From
a practical point of view, R. prolixus has many advantages
as an insect model for research on parasite transmission.
These include simple maintenance and rearing in the lab-
oratory and feeding through an artificial membrane
device. This facilitates the infection with parasites and,
due the body size, they are easily handled and manipu-
lated [42,53]. Besides that, R. prolixus is frequently used
for physiological studies [54,55] and, more recently, for
biochemical and immunological investigations [44]. Nev-
ertheless, there is a great lack of molecular data about the
R. prolixus immune system, and the majority of studies
focused in the cellular response or in the effects of the vec-
tor immune defences in the parasite development (and
vice versa). However, the sequencing of its complete
genome (670 MBp) [56] will facilitate the application of
advanced molecular biology to enhance ongoing research
for exploration of biomedical significance of this insect.

Trypanosoma rangeli infection and Rhodnius 
prolixus immune reactions
Knowledge on the Rhodnius immune system and its acti-
vation in response to microorganism infections has grown
in recent years. The first defences against microbiological
infections are the structural barriers outside or inside the
body (for example, exoskeleton and the perimicrovillar
membrane in the midgut [55,57-59].

The establishment of T. rangeli infection in both gut and
hemocele of the insect vector is possibly regulated by a
range of biochemical and physiological processes. The
first environment for the transformation and develop-
ment of T. rangeli is in the gut. There the parasites are con-
fronted with anterior and posterior midgut components
and products of blood digestion. These included bacteria
[60,61], hemolytic factors [62] and lectins [46,63], all of
which may modulate the infection of T. rangeli in the vec-
tor gut.

Once in the hemocele, T. rangeli must overcome the
robust insect vector's defence system including lysozymes
and trypanolytic activities [46], PPO activation [64],
phagocytosis and hemocyte microaggregate formations
[29,30,65-67], agglutination [46,63], superoxide and
nitric oxide production [68] and a trypanolytic protein
which acts specifically against the T. rangeli KP1-strains
[40]. All these activities seem to act as biological barriers
raising difficulties for the development and transmission
of the parasite in the vector.

Scheme of biological cycle of Trypanosoma rangeli within its insect vectorFigure 4
Scheme of biological cycle of Trypanosoma rangeli 
within its insect vector. The insect feeds on blood 
infected with trypomastigote forms which differentiate to 
epimastigotes in the midgut (white arrows) where they mul-
tiply (1). Some epimastigotes invade the hemolymph through 
the gut epithelium (red arrow). Long and short forms of epi-
mastigotes can entry into the hemocytes and multiply or rep-
licate in the plasma (2). Some parasites invade the salivary 
glands (blue arrow) and differentiate to trypomastigotes 
which will be transmitted when the insect-vector feeds on 
another host (3).
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Humoral reactions and T. rangeli infection
Although Lopez et al. [69] showed that defensin was
induced both in the hemolymph and midgut of R. prolixus
by inoculation of Escherichia coli and Microccocus luteus,
there are some data on the inactivation of the R. prolixus
humoral immune system by parasite infection. Mello et al.
[46] demonstrated that, after systemic inoculation of T.
rangeli short epimastigotes into the hemocele of R. pro-
lixus, the parasite produces a high intensity of infection
through successive division during the extracellular devel-
opment, with a concomitant increased levels in the lys-
ozyme activity in the hemolymph. They also showed that
T. rangeli infection induced neither trypanolytic nor pep-
tide antibacterial activities, but a galactose-binding lectin
from R. prolixus hemolymph, which enhanced the activa-
tion of clump formation by T. rangeli in R. prolixus hemo-
cyte monolayers. An increase in clump size and hemocyte
aggregation was also described [70]. This purified lectin
also affected in vitro the motility and survival of T. rangeli
culture short forms, but not the long forms [70], which are
predominant in the hemolymph two days after inocula-
tion [46].

Another important biological event of T. rangeli interfer-
ence in the insect immune reactions is its ability to acti-
vate the PPO system of R. prolixus. Gregorio and Ratcliffe
[71,72] demonstrated that Triatoma infestans, but not R.
prolixus, presents a very active PPO system when activated
by laminarin and lipopolysaccharides. For both species of
insects, neither T. rangeli from culture nor parasite lysates
were able to trigger PPO activation in vitro. However, the
presence of the parasite in R. prolixus hemolymph assays
reduced the level of PPO activation by laminarin. These
authors suggest that the susceptibility of R. prolixus to T.
rangeli hemolymph infection may, at least in part, be
explained by the suppression of the inset immune defence
system i.e. inhibition of the PPO cascade in the presence
of this parasite.

Interestingly, Gomes et al. [73] clearly demonstrated using
in vitro experiments that the activation of the PPO path-
way occurred when the hemolymph was incubated with
fat body homogenates and short epimastigote forms of T.
rangeli. The same authors using in vivo experiments
showed that short, but not long, epimastigote forms acti-
vated directly the formation of melanin [73]. In addition,
the PPO-activating pathway was suppressed when insects,
which had been fed on blood containing either short or
long epimastigotes, were challenged by thoracic inocula-
tion of the short forms. This indicates that the reduction
of the PO activity was a result of parasite ingestion. The
PPO pathway is activated when glycosylphosphatidyli-
nositol (GPI) anchors, specifically glycoinositolphos-
pholipids (GIPLs) and GPI-mucins purified from T.
rangeli epimastigotes, are inoculated in the insect [74].

One factor that can be important for killing T. rangeli is
nitric oxide and nitrite/nitrate radicals, products of NO
synthase (NOS) activity. Whitten et al. [68] described
experiments to demonstrate whether or not nitric oxide
and superoxide production could operate during T. rangeli
infection in R. prolixus. These authors followed the inocu-
lation of two strains and two developmental forms of T.
rangeli after 24 h. When the H14 strain was inoculated, the
parasites failed to multiply and invade the salivary glands
whilst the Choachi strain rapidly multiplied in the hemo-
lymph to invade salivary glands. However, in insects inoc-
ulated with H14 strain, the levels of PPO and superoxide
generated by R. prolixus were significantly higher than
Choachi strain, and nitrite and nitrate levels were also
much higher with H14 inoculations. Usually, short forms
of epimastigotes stimulated greater superoxide and PPO
reactions than long epimastigotes in both parasite strains
in the hemolymph of R. prolixus. Furthermore, when the
NADPH oxidase inhibitor, N-ethylmaleimide, or the
inhibitor of the inducible nitric oxide synthase, S-methyl-
isothiourea sulfamide, are injected into R. prolixus, they
resulted in higher insect mortality after T. rangeli infection
of either strains compared with those untreated controls
[68]. Whitten et al. [75] demonstrated that the most pro-
nounced reactions to crude LPS occurred in the R. prolixus
fat body and hemocytes, while tissues of the digestive tract
were most responsive to infections by T. cruzi and T. ran-
geli. This suggests that the NO-mediated immune
responses in this insect are pathogen specific and inde-
pendently modified both at the transcriptional and NO
synthase gene expression.

It is interesting to note that in a screening of R. prolixus
genes activated after T. cruzi infection by sequencing of
subtractive libraries, no genes related to the humoral
immune response were found to be transcriptionally
upregulated [76]. These results suggest that the R. prolixus
immune responses to parasites are not mediated by AMPs,
and could be centered in hemocytes nodulation, encapsu-
lation and phagocytosis. The comparison between the
responses against bacteria and T. cruzi also showed that R.
prolixus activates different mechanisms of defence
depending on the pathogen [77]. In this way, it is possible
that the regulation of immune related genes in R. prolixus
differs significantly after T. cruzi or T. rangeli infection.

Hemocyte microaggregation and phagocytosis and T. 
rangeli infection: role of eicosanoids and PAF pathways
The circulating hemocytes are essential for the insect
immunity. In R. prolixus seven morphological hemocyte
types were identified by phase-contrast microscopy: pro-
hemocytes, granulocytes, plasmatocytes, cystocytes, oeno-
cytes and adipohemocytes and giant cells [78]. Some
cellular immune reactions have been studied in T. rangeli-
triatomine interactions. Garcia et al. [29], demonstrated
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for the first time that eicosanoid biosynthesis inhibitors
applied to R. prolixus strongly affect hemocyte microaggre-
gation, one of the cellular immune reactions. The main
data found by these authors were: (i) insects that had pre-
viously been fed on blood containing biosynthesis inhib-
itors of PLA2 (dexamethasone) and COX (indomethacin)
and non-selective LOX inhibitor (nordihydroguaiaretic
acid, NDGA) showed a significant increase in the number
of free epimastigote forms of T. rangeli in the hemolymph
and, consequently, increased lethality; and (ii) the para-
site infection in insects treated with these compounds led
to less hemocyte microaggregation and attenuated the
activation of PPO system in the hemolymph.

Garcia et al. [29] suggest that arachidonic acid was not
available in insects treated with dexamethasone. Indeed,
the application of arachidonic acid significantly enhanced
both hemocyte microaggregation and PO activity in the
hemolymph of insects previously treated with dexameth-
asone and challenged with parasites. It also reduced the
number of parasites in the circulation and the mortality of
insects. The effects of indomethacin and NDGA were con-
sidered relevant because they indicated the influence of
multiple eicosanoid metabolites in immune reactions of
R. prolixus infected with T. rangeli. Furthermore, hemocelic
inoculation of epimastigotes of T. rangeli into larvae of R.
prolixus previously fed with blood containing the same
parasite, demonstrated a reduced number of hemocyte
microaggregates, enhanced the number of parasites in the
hemolymph as well as increased the mortality of these
insects. All these effects were counteracted by combined
injection of R. prolixus with T. rangeli and arachidonic acid
[30]. These results suggest that the arachidonic acid path-
way can be a mediator of hemocyte microaggregation
reactions in the hemolymph of insects inoculated with T.
rangeli and that oral infection with this protozoan inhibits
the release of arachidonic acid (Figure 3).

One interesting novelty of this parasite-vector interaction
was revealed by Machado et al. [79]. They demonstrated
that hemocelic injection of short T. rangeli epimastigotes
in R. prolixus that were previously fed with blood contain-
ing WEB 2086 [a strong platelet-activating factor (2-
acetyl-1-hexadecyl-sn-glycero-3-phosphocholine (PAF)
antagonist] resulted in reduced hemocyte microaggrega-
tion, attenuated PPO activation in the hemolymph as well
as increased the parasitemia and insect mortality. Never-
theless, simultaneous application of PAF did not counter-
act hemocytes microaggregation and PO activity.

It was demonstrated that physalin B, a natural secosteroi-
dal chemical from Physalis angulata, induces immunode-
pression in R. prolixus [80-82] and strongly blocks
hemocyte phagocytosis and microaggregate formations in
R. prolixus [80]. The inhibition induced by physalin B was

counteracted for both phagocytosis and microaggregation
of hemocytes by arachidonic acid or PAF applied by
hemocelic injection. Physalin B did not alter hemocyte
PLA2 activities but it significantly enhanced PAF-acetyl
hydrolase (PAF-AH) activity in the cell free hemolymph
and hemocytes. Theses findings reinforce the importance
of PAF and arachidonic acid pathways in cellular immune
reactions in R. prolixus (Figure 3).

The most exciting outcome in the investigation of T. ran-
geli in triatomines is the PAF influence on the hemocyte
nodulation [79] and phagocytic responses of R. prolixus
hemocytes against Saccharomyces cerevisiae [66,67]. These
authors evaluated the effects of PAF and eicosanoids in
the phagocytosis in hemocyte monolayers (the main cell
type implicated in this process is plasmatocytes) of R. pro-
lixus against the yeast S. cerevisiae. The experiments dem-
onstrated that the phagocytosis of yeast cells by Rhodnius
hemocytes is very efficient in both controls and cells
treated with PAF or arachidonic acid. However, phagocy-
tosis of yeast particles is significantly diminished when
the specific inhibitor of PLA2, dexamethasone, is applied
to the hemocytes. By contrast, dexamethasone pre-treated
hemocyte monolayers exhibit a drastic enhancement in
the quantity of yeast cell-hemocyte internalizations when
the cells are treated with arachidonic acid. Phagocytosis
decreases expressively in hemocyte monolayers treated
with WEB 2086, a specific PAF receptor antagonist. Never-
theless, a decrease of phagocytosis with WEB 2086 is also
counteracted by the treatment with PAF [66,67]. The
authors suggest that these data on phagocytosis of yeast
cells by hemocytes are related to the activation of PAF
receptors and provides a novel insight into the cell signal-
ing pathway of non-self recognition related to cellular
immune reactions in the insect-parasite relationship.

Finally, Figueiredo et al. [66] demonstrated that hemocyte
phagocytosis was significantly reduced by oral infection
with T. rangeli. These authors demonstrated that hemo-
cyte phagocytosis inhibition caused by the parasite infec-
tion was rescued by exogenous arachidonic acid or PAF
applied by hemocelic injection. They also observed an
attenuation of PLA2 activities in R. prolixus hemocytes
(cytosolic PLA2: cPLA2, secreted PLA2: sPLA2 and Ca++-
independent PLA2: iPLA2) and an increase of sPLA2 in cell-
free hemolymph. At the same time, the PAF-AH activity in
the cell-free hemolymph enhanced considerably. These
data suggest that T. rangeli infection depresses eicosanoids
and insect PAF analogous (iPAF) pathways giving support
to the role of PLA2 in the modulation of arachidonic acid
and iPAF biosynthesis and of PAF-acetylhydrolase (PAF-
AH) by reducing the concentration of iPAF in R. prolixus
[67]. The relationship between the expression of the genes
of PLA2 and PAF-AH as well as general cellular responses
and signal transduction pathways is poorly understood in
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(page number not for citation purposes)



Parasites & Vectors 2009, 2:33 http://www.parasitesandvectors.com/content/2/1/33
hemipterans. In this way, it is difficult to interpret the T.
rangeli immunosuppression in terms of regulation of cel-
lular signal transduction cascades. The data above suggest
an inhibition of the NF-κB pathway, one well known
effect of physalin treatment in mammal cells [82]. This is
in agreement with the inhibition of the humoral immune
response, but more detailed studies on the molecular
mechanisms are needed to clarify this point.

All these finding illustrate the ability of T. rangeli to mod-
ulate the cellular immune responses of R. prolixus to favor
its own multiplication in the hemolymph.

Conclusion
Interventions to study the triatomine vector biology may
be useful to develop new concepts and means to block
parasite transmission, both of which are urgent and nec-
essary. The recent investigations into R. prolixus immune
reactions relating to T. rangeli development have estab-
lished a new conceptual hypothesis: a fine modulation of
insect factors can interfere with parasite development and
this is important for the establishment of infection, being
an attractive target for intervention (Fig. 5).

Despite the progress in understanding the complexity of
the insect immune responses, our knowledge of this
theme in hemipteran vectors remains far from complete.
Much work is still needed to understand the successful
transmission of protozoans as the result of the immune

modulation, as caused by T. rangeli infection in R. prolixus.
It is necessary to understand humoral and hemocytes-sur-
face receptors and regulators and intracellular signaling
molecules to permit the development of new immu-
nomodulatory drugs, designed to control vector insect's
populations.

Finally, another point to be considered is that for triatom-
ines the limited use of molecular biology technology has
permitted only a fragmented view of the immune defence
system in this important Chagas disease vector. Moreover,
advances in Rhodnius genomics and functional genomics
in the near future will lead to a rapid development of this
field. The study of genes involved in immune reactions
will reinforce the need to better understand the defence
responses related to parasite-vector interactions.
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