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A B S T R A C T

Background: Abnormal expression of the orphan nuclear receptor Nurr1 is a critical factor in the etiology of mul-
tiple cancers. However, its potential role in gastric cancer (GC) remains elusive. In this study, we have demon-
strated that the expression of Nurr1 was elevated and had an oncogenic function in GC.
Methods: Nurr1 expression was analyzed in clinical specimens and the GEO database. Functions of Nurr1 in
GC cells were analyzed using Nurr1 knockdown and overexpression. Various cell and molecular biological
methods were used to explore the potential mechanisms of Nurr1 upregulation and its role in promoting GC.
Findings: Overexpression of Nurr1 was directly related to the poor prognosis of GC patients. What’s more,
Nurr1 was induced by Helicobacter pylori (H. pylori) via the PI3K/AKT-Sp1 pathway. Sp1 enhanced Nurr1
expression by binding to its promoter to activate the transcription. Upregulated Nurr1 then directly targeted
CDK4 by binding to its promoter region to increase its expression, thereby facilitated GC cells proliferation
both in vitro and in vivo.
Interpretation: We identified Nurr1 as a driving oncogenic factor in GC. In addition, Nurr1 could be used as a
potential therapeutic target for the diagnosis and treatment of H. pylori-associated GC.
Funding: This work was supported by the National Natural Science Foundation of China (Nos 81801983,
81871620, 81971901, 81772151 and 81571960), and the Department of Science and Technology of Shandong
Province (2018CXGC1208).
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Keywords:

Gastric cancer
PI3K/AKT/Sp1
Proliferation
CDK4
Helicobacter pylori
y/Key Laboratory for Experi-
, School of Basic Medical Sci-
hina.
jihui@sdu.edu.cn (J. Jia).

V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction

Gastric cancer (GC) is one of the most common malignancy and the
third leading cause of cancer-related death worldwide [1]. The develop-
ment of the intestinal type of GC involves the following steps: chronic
superficial gastritis, atrophic gastritis, with or without intestinal meta-
plasia, hyperplasia, and then adenocarcinoma [2,3]. Late diagnoses at an
advanced stage of the disease are considered as the primary reason for
poor disease-free survival rates [4,5]. Therefore, identifying key molecu-
lar targets and mechanisms that can help in designing novel therapeutic
approaches for GC is a critical research challenge.

The human nuclear receptor family is a group of proteins func-
tioning as transcription factors to regulate specific gene expression
and to mediate multiple physiological and pathological effects associ-
ated with cancers [6-8]. Nurr1, an orphan nuclear receptor, belongs
to NR4A family and is also known as NR4A2. It has been reported that
Nurr1 plays a major role in the maintenance of dopaminergic neu-
rons and is associated with familial Parkinson’s disease [9�11]. Struc-
turally, Nurr1 cannot bind to the ligands as it’s binding domain is
occupied by hydrophobic amino acids [12,13]. Therefore, it is also
called as an orphan nuclear receptor. Numerous studies have proven
that the stimulation from growth factors, inflammation, cytokines,
peptides, and hormones can induce the expression of Nurr1 [14,15].
Nurr1 can function as monomers and bind to NBRE or as homodimers
binding to NURRE or as heterodimers with retinoid X receptor bind-
ing to DR5 response elements to induce gene expression [16,17].
Moreover, Nurr1 also plays an oncogenic role in multiple cancers.
Nurr1 is overexpressed in prostate cancer stem/progenitor-like cells,
which is strongly associated with poor prognosis and tumor progres-
sion [18]. Nurr1 is activated by I-BOP and stimulates cell proliferation
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Research in context

Evidence before this study

Orphan nuclear receptor Nurr1 has been shown to regulate specific
gene expression andmediatemultiple physiological and pathologi-
cal effects especially in cancers. Gastric cancer is one of the most
common malignancy and considered as the third leading cause of
cancer-related death worldwide. Helicobacter pylori infection is
one of the major causes for the occurrence of gastric cancer. Infec-
tion of Helicobacter pylori induces inflammation in the gastric
mucosa and leads to tissue damage. Persistent infection promotes
progression from chronic gastritis to gastric cancer. However, not
much information is available on the effects of Nurr1 expression in
Helicobacter pylori-associated gastric carcinogenesis.

Added value of this study

In this study, we found that Nurr1 was overexpressed in gastric
cancer, and it facilitated the proliferation of gastric cancer cells
both in vitro and in vivo. We also provided evidence that Nurr1
directly promoted CDK4 expression to facilitate gastric cancer
cells proliferation. In addition, Nurr1 expression induced by Heli-
cobacter pylori was dependent on the PI3K/AKT-Sp1 signaling
pathway, where Sp1 directly activated Nurr1 expression at the
transcription level.

Implications of all the available evidence

We identified Nurr1 as a driving oncogenic factor in gastric can-
cer and provided evidence that Nurr1 might be a potential thera-
peutic target for the treatment of Helicobacter pylori-associated
gastric cancer.
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through cyclinD1 in lung cancer [19]. However, the role of Nurr1 in
GC has not been fully elucidated.

Helicobacter pylori (H. pylori) infection is closely linked with GC
[20�23]. H. pylori infection induces inflammation in the gastric
mucosa and causes tissue damage. Persistent infection promotes pro-
gression from chronic gastritis to GC [24�26]. Many important sig-
naling pathways including NF-kB, STAT1, and PI3K are triggered by
H. pylori [27�29]. For example, PI3K/AKT pathway is activated by H.
pylori downregulating IL-17RB expression and impairing the host
defense in gastric epithelial cells [30]. Although there have been
many studies on the pathogenic effects of H. pylori, the mechanisms
through which GC is initiated require further exploration.

In this study, we found that Nurr1 was overexpressed in GC facili-
tating the proliferation of GC cells both in vitro and in vivo. We pro-
vided the first evidence that Nurr1 directly promoted CDK4
expression to promote GC cells proliferation. In addition, Nurr1
expression induced by H. pylori was dependent on the PI3K/AKT-Sp1
signaling pathway. Sp1 transcriptionally activated Nurr1 expression.
In conclusion, we identified that Nurr1 as a driving oncogene and
might be a potential therapeutic target of GC.
2. Materials and methods

2.1. Cell culture

Authenticated human cell lines (AGS, BGC-823, SGC-7901, GES-1)
were obtained from the Zhongqiaoxinzhou Biotech (Shanghai,
China). BGC-823, GES-1, and SGC-7901 cells were cultured in RPMI-
1640 (Gibco, Carlsbad, CA, USA) containing 10% fetal bovine serum
(Gibco, Carlsbad, CA, USA). AGS cells were cultured in F12-medium
containing 12% fetal bovine serum. BGC-823 cells stably expressing
Nurr1 and CDK4 shRNA were selected using 2mg/ml puromycin
(Gibco, Carlsbad, CA, USA). All cells were cultured in a humidified
incubator at 37 °C with 5% CO2.

2.2. Transfection

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) was used for
siRNA transfection. Sequences for these siRNAs are listed in Supple-
mentary Table 1. Roche Transfection Reagent (Roche, Switzerland)
was used for the transfection of Nurr1 plasmid (GeneChem, Shanghai,
China) according to the provided protocols.

2.3. H. pylori cultures and H. pylori-infected mouse model

H. pylori strains 26695,11637 and SSI were grown in Brucella
broth supplemented with 5% fetal bovine serum at 37 °C in a micro-
aerophilic environment. Gastric epithelial cells were infected by H.
pylori with different concentration and collected at different time
points. In our mouse model, 48 C57BL/6 mice (6 weeks old, male)
were divided into 3 groups. Control group (Group1) which contained
12 mice was given distilled water without H. pylori strains or MNU.
Groups 2 and 3 were given distilled water added MNU (30 ppm) for
70 days. Then, group 3 was inoculated with the SS1 strain (1£ 109

colony-forming U/ml) every other day, for a total of three times. All
mice were killed at 350 days for further study. This study was
reviewed and approved by the Ethics Committee of Shandong Uni-
versity School of Medicine (Jinan, China).

2.4. Luciferase assay

Human CDK4 promoter fragment was cloned into the pGL3 basic
reporter vector (Promega, USA). Three human Nurr1 promoter frag-
ments were synthesized (SYE Biotech, Shandong, China). Nurr1 and
Sp1 binding sites for mutated CDK4 and Nurr1 promoters were gen-
erated by KODPlus-Mutagenesis kit (Toyobo, Japan) based on the WT
plasmid. Constructed dual-luciferase reporter plasmids were trans-
fected into GC cells using Roche Transfection Reagent (Roche, Basel,
Switzerland) according to the manufacturer’s instructions. Luciferase
reporter activity was measured with the Dual-Luciferase Assay Sys-
tem (Promega).

2.5. Patient samples and clinical tissue specimens

Thirty-seven GC and AG tissues were obtained from Qilu Hospital
(Shandong, China). Eighty-seven AG tissues consisting of fifty-eight
H. pylori-positive and twenty-nine H. pylori-negative were obtained
from Jinan Central Hospital (Shandong, China). Those tissues were
stored in RNAlater at �80 °C for RNA extraction. Seven GC specimens
and matching adjacent control samples were obtained from Qilu Hos-
pital (Shandong, China) and kept in liquid nitrogen for protein extrac-
tion. Fifty-one AG and eighteen GC samples were obtained from Jinan
Central Hospital between 2015 and 2018 and stored in formalin for
IHC. All samples were confirmed according to histological analysis.
The study was approved by the Ethics Committee of Shandong Uni-
versity School of Medicine (Jinan, China).

2.6. RNA extraction and RT-PCR

Total RNA was extracted using Trizol reagent (Invitrogen, Carls-
bad, CA, USA) according to manufacturer’s instructions. The mRNAs
were reverse transcribed to cDNA using RT reagent Kit gDNA Eraser
(Takara, Japan). cDNAs were then used for qRT-PCR analysis using
SYBR Green (TaKaRa). Primer sequences are listed in Supplementary
Table 2.
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2.7. Tumor xenograft model

Thymus-null BALB/c nude mice (6 weeks old, male) were pur-
chased from Mu Tu Biological (Nanjing, China). BGC-823 cells were
transduced with lenti-Nurr1 shRNA, lenti-CDK4 shRNA or a lenti-
negative control. Stable BGC-823 cells (3£ 105) were subcutaneously
injected into the right or left flanks of nude mice. Tumor growth was
examined every two days, and the mice were sacrificed after 2�3
weeks. This study was reviewed and approved by the Ethics Commit-
tee of Shandong University School of Medicine (Jinan, China).

2.8. ChIP

Chromatin immunoprecipitation (ChIP) was performed using the
SimpleChIP� Enzymatic Chromatin IP Kit (Cell Signaling, Danvers,
MA, USA) to detect the binding of corresponding proteins to DNA.
Five ug antibodies of Nurr1 (Abcam) and Sp1 (Abcam) were used to
immunoprecipitate chromatin fragments. Primer sequences are listed
in Supplementary Table 3.

2.9. Colony formation and CCK8 assay

Cells (500/well) with different treatments were seeded in 6-well
plates and cultivated for 1�2 weeks. Methanol was used to fix the
cells followed by staining with Giemsa. The number of colonies with
more than 100 cells were counted and each set of experiment was
repeated three times. For CCK8 analysis approximately 1200 cells/-
well with different treatments were seeded in 96-well plates in tripli-
cates and cultured for 24 h, 48 h, or 72 h. CCK8 reagent (Med Chem
Express, USA) was added to condition medium for 3 h and absor-
bance was recorded using spectrophotometer at 450 nm.

2.10. Western blotting

Total protein was extracted from cells using protein lysis buffer
supplemented with phosphatase and protease inhibitors. Equal
amounts of lysates were separated on SDS-PAGE and transferred
onto PVDF membranes. The PVDF membranes were blocked with 5%
nonfat milk for 2 h and subsequently incubated with primary anti-
bodies overnight at 4 °C. Then the PVDF membranes were incubated
with corresponding secondary antibodies. Millipore ECL reagent was
used to detect signals. Antibodies used in the study are shown in Sup-
plementary Table 4.

2.11. IHC

FFPE (formalin-fixed, paraffin-embedded) sections on glass slides
from mouse or patient samples were subjected to deparaffination
and dehydration. Samples were then subjected to epitope retrieval
and H2O2 treatment followed by blocking in goat serum for 30min.
Next, the samples were incubated with specific primary antibodies
overnight at 4 °C. On the following day, the sections were incubated
with corresponding secondary antibodies and detected using a DAB
staining kit (Vector Laboratories, Burlingame, CA, USA). The IHC score
was evaluated by ImageJ. The intensity of positive staining was
scored as follows: 0 (no staining); 1(light brown); 2 (moderate
brown) and 3 (dark brown). A scale from 0 to 3 was used to score the
proportion of positively stained cells: 0 (0%), 1 (<25%), 2 (25�75%)
and 3 (>75%). The results that reported as the expression score were
the multiply of above two scores.

2.12. Statistical analysis

All experimental data were presented as the mean (§SEM). All
experiments were repeated at least three times. Two-tailed Student’s
t-tests or Mann Whitney U tests were used to compare the means
between two groups. Linear regression was performed for correlation
analysis of the mRNA data. Repeated measures analysis of variance
was used to analyze cell growth ability between two groups. Graph-
Pad PRISM version 8 and SPSS version 23.0 were used for statistical
analyses. P value < 0.05 was considered as statistically significant.

3. Results

3.1. Nurr1 is elevated in GC and increased Nurr1 level predicts poor
prognosis

To uncover the potential function of nuclear receptors in GC, we
first performed gene expression analysis on three atrophic gastritis
(AG) and three GC samples. We found that the expression was upre-
gulated for nine genes and downregulated for four genes in GC speci-
mens with respect to the AG specimens (Fig. 1a). Among the nine
upregulated genes, the change of Nurr1 expression was most obvious
(Fig. 1a and Supplementary Fig. 1a). IHC staining suggested that
Nurr1 expression was weak in superficial gastritis (SG), mildly upre-
gulated in AG, moderately upregulated in dysplasia (DYS) and signifi-
cantly increased in GC tissues (Fig. 1b and c). Moreover, Nurr1 mRNA
expression was significantly increased in human GC samples with
respect to AG samples (Fig. 1d). Next, we compared the expression of
Nurr1 between GC and adjacent normal tissues and found it was
overexpression in GC samples (GEO databases, GSE30727 and
GSE54129) (Fig. 1e). Moreover, Nurr1 protein expression was higher
in human GC samples than the adjacent normal tissues, which was
consistent with the mRNA expression profile of the GEO database
(Fig. 1f). The overexpression of Nurr1 predicted poor prognosis in
three cohorts of GC patients (GSE51105, GSE62254, GSE14210)
(Fig. 1g). Collectively, we confirmed that Nurr1 played a potential
oncogenic role in gastric carcinogenesis.

3.2. Nurr1 promotes GC cells proliferation both in vitro and in vivo

Given that Nurr1 was overexpressed in GC tissues, we explored its
potential role in gastric carcinogenesis. For this objective, Nurr1
siRNA was used to inhibit its expression in BGC-823, SGC-7901 cells
and Nurr1-coding plasmid was used to enhance its expression in
GES-1 cells (Supplementary Fig. 1b�f). Colony formation, CCK8 and
EdU assays suggested that knockdown of Nurr1 by siRNA inhibited
GC cells proliferation, while overexpression of Nurr1 had the oppo-
site effects (Fig. 2a�c, Supplementary Fig. 2) indicating the pro-prolif-
erative function of Nurr1 in GC.

To confirm that Nurr1 could enhance GC cells proliferation in vivo
as well, we generated BGC-823 cells with stable Nurr1 suppression
and the matched control cells (Fig. 2d, e). These cells were injected
subcutaneously into nude mice (3£ 105 cells/mouse). Tumors from
the two groups had different properties. The growth rate was signifi-
cantly attenuated in the group with the injection of Nurr1 suppressed
cells (Fig. 2g). The harvested tumor sizes were smaller and tumor
weights were lighter in the Nurr1 suppression group as compared to
the controls (Fig. 2f and h). These data further supported the pro-pro-
liferative role of Nurr1 both in vitro and in vivo.

3.3. Nurr1 enhances GC cells proliferation by directly targeting CDK4

We then explored the mechanism of GC cells proliferation through
Nurr1. It is well-known that Nurr1 is a transcription factor that can
function as monomers binding to NBRE or as homodimers binding to
NURRE to activate target genes expression [31]. Therefore, potential tar-
get genes with Nurr1 binding sites within their promoters were
screened from cancer-related genes and five candidate genes were
selected. Upon verification, CDK4 mRNA expression was significantly
decreased with depleting Nurr1 expression (Fig. 3a). CDK4 (cyclin-
dependent kinase) plays an important role in mammalian cells



Fig. 1. Nurr1 expression is elevated in GC and its upregulation predicts poor prognosis. (a) Differential expression analysis of nuclear receptors in 3 atrophic gastritis tissues and 3
GC tissues. (b) IHC staining for Nurr1 in SG (superficial gastritis), AG (atrophic gastritis), DYS (dysplasia) and GC samples. Scale bars: 200mm (insets 50mm). (c) IHC score. *P < 0.05,
**P < 0.01, ****P < 0.0001, by Student's t-test. (d) Nurr1 mRNA expression in 37 AG and 37 GC samples was measured by real time PCR. ***P < 0.001 by Mann-Whitney U test. (e)
RNA sequencing database analysis of Nurr1 expression in human GC and paired adjacent normal tissues. The data was obtained from GSE30727 and GSE54129. (f) Western blot
showed the protein levels of Nurr1 in seven pairs of human GC samples (T) and corresponding normal samples (N). (g) Kaplan�Meier analysis of Nurr1 expression in survival of GC
patients (log-rank test). The data was obtained from GSE51105 (204,621_s_at), GSE62254 (204,622_x_at) and GSE14210 (204,621_s_at).
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proliferation where CDK4/6 phosphorylates the retinoblastoma protein
(Rb) tumor-suppressor protein and promotes cell cycle progression
[32]. We then confirmed that CDK4 could be regulated positively by
Nurr1 at both mRNA and protein levels (Fig. 3b and c). Consistently,
phosphorylation of Rb protein was decreased with Nurr1 knockdown
and was upregulated with overexpression of Nurr1 (Fig. 3c). These
results further suggested that CDK4 was a downstream target of Nurr1.
Next, we constructed luciferase reporter plasmids containing CDK4 pro-
moter (WT, in which the Nurr1 binding site was intact) and CDK4
mutant promoter (mut, in which the Nurr1 binding sites were mutated)
(Fig. 3d). Inhibition of Nurr1 significantly decreased promoter luciferase
activity while overexpression of Nurr1 exhibited an opposite effect
(Fig. 3e�g), supporting an indispensable role of direct regulation of
CDK4 by Nurr1. ChIP analysis demonstrated that Nurr1 directly occu-
pied the CDK4 promoter region (Fig. 3h). In brief, CDK4 was a direct tar-
get gene of Nurr1.

We then explored whether CDK4 could promote GC cells prolifer-
ation. We found that CDK4 knockdown could impair GC cells prolifer-
ation by colony formation and CCK8 assays (Supplementary Fig. 3a
and b). Next, we constructed BGC-823 cells that could stably express
CDK4 shRNA (Supplementary Fig. 3c and d). Then these cells were
subcutaneously injected into nude mice. Tumors formed in CDK4



Fig. 2. Nurr1 facilitates GC cells proliferation both in vitro and in vivo. (a and b) Colony formation assay after cells transfected with Nurr1 siRNA or Nurr1-coding plasmid. **P < 0.01,
****P < 0.0001, by Student's t-test. (c) CCK8 assay after cells transfected with Nurr1 siRNA or Nurr1-coding plasmid. (d-e) Nurr1 mRNA and protein expression in BGC-823 cells
transfected with lenti-Nurr1 shRNA. ***P < 0.001, by Student's t-test. (f�h) Primary tumor formation ability in nude mice xenograft model (f), tumor growth curve (g) and tumor
weight (h). * P < 0.05, **P < 0.01 by Student's t-test.
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shRNA group were smaller than that in control group, with regard to
size and weight (Fig. 3i�k). The above results suggested that CDK4
promoted GC cells proliferation in vitro and in vivo.

3.4. H. pylori upregulates Nurr1 expression

H. pylori infection is a primary factor for the occurrence of duode-
nal and gastric ulcers as well as GC [33,34]. Thus, we attempted to
determine whether Nurr1 expression could be affected by H. pylori
infection in GC cells. Nurr1 was induced both at mRNA (Fig. 4a and b,
Supplementary Fig. 4a and b) and protein (Fig. 4c, Supplementary Fig.
4c) levels with infection of two H. pylori strains (Hp11637 and
Hp26695). Induction of Nurr1 was found to be both dose (Fig. 4a, Sup-
plementary Fig. 4a) and time (Fig. 4b and c, Supplementary Fig. 4b
and c) dependent. Consistent with these results, Nurr1 mRNA and
protein expression were also higher in H. pylori-positive AG samples
than that in H. pylori-negative specimens (Fig. 4d, e). These results
revealed that the Nurr1 expression could be induced by H. pylori
infection.

3.5. H. pylori upregulates Nurr1 expression by the PI3K/AKT pathway

In order to determine how H. pylori infection upregulated Nurr1
expression, five key signaling pathways inhibitors were added before
infection with H. pylori in BGC-823 cells. The upregulation of Nurr1
protein expression induced by H. pylori infection was blocked by
PI3K/AKT inhibitor (LY294002) strongly (Fig. 5a). In addition, induc-
tion of Nurr1 mRNA expression by H. pylori was also blocked by
LY294002 treatment (Fig 5b and c). These findings suggested that the
PI3K/AKT pathway was mainly responsible for the induction of Nurr1
by H. pylori. Treatment alone with LY294002 attenuated the induc-
tion of Nurr1 by H. pylori in GC cells. We further confirmed the pro-
tein changes of AKT, p-AKT, Sp1 (discussed later) and Nurr1 by
western blot (Fig. 5d and e). Our results indicated that infection of H.
pylori increased Nurr1 expression through activation of the PI3K/AKT
pathway.
3.6. Nurr1 is transcriptionally activated by Sp1

Previous studies have reported a strong association between
Sp1 and PI3K/AKT pathway in various diseases and Sp1 served as a
downstream protein of PI3K/AKT [35�37]. Thus, we attempted to
determine whether the upregulation of Nurr1 induced by H. pylori
depends on the PI3K/AKT-Sp1 pathway. We found that H. pylori
infection increased the expression of Sp1 and Nurr1 simulta-
neously, and the LY294002 relieved the upregulation of these pro-
teins induced by H. pylori at the same time (Fig. 5d and e). These
results suggested that there was a potential regulatory relationship



Fig. 3. CDK4 is the direct target of Nurr1. (a) RT�PCR analysis of CDK4, E2F1, CCND2, P15, VEGF mRNA expression in BGC-823 cells transfected with Nurr1 siRNA. **P < 0.01,
***P < 0.001 by Student’s t-test. (b) CDK4 mRNA expression in cells transfected with Nurr1 siRNA and in GES-1 cells transfected with Nurr1 overexpression plasmid. **P < 0.01,
***P< 0.001 by Student's t-test. (c) Western blot analysis of Nurr1, CDK4, Rb, p-Rb protein expression in cells transfected with Nurr1 siRNA or Nurr1-coding plasmid. (d) Nurr1 bind-
ing site in human CDK4 promoter and the corresponding base mutation. (e-g) Transcriptional activity of CDK4 assays using Luciferase reporter system. **P < 0.01, ***P < 0.001, by
Student's t-test. (h) ChIP assay of Nurr1 directly bound to the promoter of CDK4. ***P< 0.001, by Student's t-test. (i-k) Primary tumor formation ability in nude mice xenograft model
(i), tumor growth curve (j) and tumor weight (k). * P < 0.05, ****P< 0.0001 by Student's t-test.
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between Sp1 and Nurr1. Indeed, knockdown of Sp1 significantly
decreased Nurr1 expression at both the mRNA and protein levels
while overexpression of Sp1 had the opposite effects (Fig. 6a and
b). These results supported that the expression of Nurr1 could be
regulated positively by Sp1. Acting as a classical transcription fac-
tor, Sp1 occupied the promoter region of target genes through
GGGCGG elements to enhance their transcription [38,39]. We
found three Sp1 binding sites in Nurr1 promoter, and then con-
structed luciferase reporter plasmids containing Nurr1 promoters
(WT1, WT2, and WT3: the binding sites were intact; mut1, mut2
and mut3: the binding sites were mutated accordingly) (Fig. 6c).
Knockdown of Sp1 reduced the luciferase activity of Nurr1 pro-
moters, whereas the overexpression of Sp1 increased the promoter
activity (Fig. 6d), indicating that all the sites were indispensable
for the transcriptional regulation of Nurr1 by Sp1. Next, ChIP assay
was carried to verify the direct binding of Sp1 to Nurr1 promoter
through the three binding sites (Fig. 6e). The results demonstrated
that Nurr1 was a direct target gene of Sp1.

It is also important to reveal whether Nurr1 was induced by H.
pylori via Sp1. We suppressed Sp1 and then infected these cells with



Fig. 4. Infection of H. pylori facilitates Nurr1 expression. (a-b) mRNA expression of Nurr1 in AGS and BGC-823 cells infected with H. pylori (Hp11637) at different MOI (a) and differ-
ent time points (b). *P < 0.05, **P < 0.01, ***P < 0.001, by Student's t-test. (c) Western blot analysis of Nurr1 expression in AGS and BGC-823 cells infected with H. pylori (Hp11637)
at different time points. (d) mRNA expression of Nurr1 in H. pylori-negative or H. pylori-positive AG human samples. **P < 0.01, by Student's t-test. (e) IHC staining for Nurr1 in H.
pylori-negative or H. pylori-positive AG human samples. Scale bars: 200mm (insets 50mm). **P < 0.01, by Student's t-test.
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H. pylori. Both Nurr1 and its target gene CDK4 expression at mRNA
(Fig 6f, Supplementary Fig. 4d) and protein (Fig. 6g, Supplementary
Fig. 4e) levels induced by H. pylori were relieved by Sp1 suppression
indicating an indispensable role of Sp1 in mediating transcriptional
activation of Nurr1 with H. pylori infection.
3.7. Validation of relationship between Nurr1 expression and
pathogenic process

Next, we generated MNU (N-methyl-N-nitrosourea)-treated gas-
tritis mouse model with H. pylori infection to detect the expression of
Nurr1 and associated genes [40,41]. IHC staining showed that, com-
pared with the control group, Nurr1 expression in MNU group was
slightly upregulated, while the expression of Nurr1 in MNU plus H.
pylori infection group was significantly upregulated (Fig. 7a and b).
Importantly, we found the co-expression of Sp1, Nurr1, CDK4 as well
as the cells proliferation marker Ki67 in gastritis tissues (Fig. 7a and
b, Supplementary Fig. 5a), confirming the regulatory relationship
between these genes. In the end, we detected the expression of
Nurr1, Sp1, CDK4, and Ki67 in human GC samples and adjacent nor-
mal samples. As expected, the expression of these proteins was
increased notably in GC samples with respect to adjacent normal
samples (Fig. 7c and d). Similarly, we identified the co-expression of
Sp1, Nurr1, CDK4 as well as Ki67 in GC tissues (Fig. 7c and d, Supple-
mentary Fig. 5b), further confirming our hypothesis about the regula-
tory relationship among them.
4. Discussion

Nuclear receptors (NRs) serve as potential drug targets and
exhibit vital roles in many diseases such as obesity and cancers
[42�44]. There are 48 NRs superfamily including adopted receptors,
endocrine receptors and multiple orphan nuclear receptors [45].
Nurr1 (NR4A2), Nur77(NR4A1) and NOR1(NR4A3) are the members
of NR4A subfamily [46,47]. NR4A receptors regulate cell-intrinsic
program of T cell hypo responsiveness. Tumor-bearing mice with
CAR T cells lacking NR4A receptors present tumor regression and pro-
longed survival [48]. The effect of inhibiting the function of NR4A is
similar to PD-1 blockade but it involves more regulatory elements.
Therefore, NR4A is considered as a promising target for cancer immu-
notherapy. To investigate nuclear receptor genes differentially
expressed between gastritis and GC, we performed gene expression



Fig. 5. H. pylori infection promotes Nurr1 expression depending on the PI3K/AKT pathway. (a) Western blot analysis of Nurr1 protein expression in BGC-823 cells with H. pylori
infection and inhibitors treatment. SB (SB203580), PD (PD18435), LY(LY294002). (b and c) RT-PCR analysis of Nurr1 mRNA expression in AGS and BGC-823 cells with H. pylori infec-
tion and LY294002 (PI3K inhibitor) treatment. ***P< 0.001, ****P < 0.0001, by Student's t-test. (d�e) Western blot analysis of Nurr1, Sp1, P-AKT protein expression in AGS and BGC-
823 cells with H. pylori infection and LY294002 treatment. Cells were harvested at 8 h after H. pylori (MOI=100) infection in (a-e).
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profiling on three atrophic gastritis and GC samples. Results sug-
gested that nine genes were upregulated while four genes were
downregulated. Nurr1 expression was significantly upregulated in
GC samples (Fig. 1a). Therefore, we wanted to explore the function
and mechanism of Nurr1 in GC. In our study, we proved that the aber-
rant upregulation of Nurr1 accelerated GC cells proliferation. Further-
more, CDK4 was a direct downstream target of Nurr1. The Nurr1
DNA-binding domain could recognize AAAGGTCA motifs on the
CDK4 promoter and could transcriptionally activate the CDK4 expres-
sion. We described an oncogenic role of Nurr1 in GC. However,
whether Nurr1 also facilitates the malignant progression of GC
requires further investigation.

It is well established that H. pylori infection is the strongest sin-
gular factor for malignancy within the stomach [21,49,50]. H.
pylori infection induces the release of inflammatory factors facili-
tating the development of chronic gastritis, and in some cases GC
[51]. Thus, we explored the correlation between Nurr1 and H.
pylori in gastric carcinogenesis. In our research, we discovered
that Nurr1 expression was induced by H. pylori and the PI3K/AKT-
Sp1 pathway was responsible for the direct activation of Nurr1. In
our study, we also proved that H. pylori infection promoted the
expression of Nurr1 in the MNU treated gastritis mouse model.
Following H. pylori infection, CagA (Cytotoxin-associated antigen
A) [52] and PGN (Peptidoglycan) are injected into host cells by
T4SS (Type IV secretion system) and this facilitates the transforma-
tion of the infected cells [53�55]. CagA is an important toxin and
CagA positive strains are associated with high risk for GC [56].
CagA stimulates epithelial cells proliferation through mitotic sig-
naling pathways such as the MEK-ERK pathway and decreases epi-
thelial cells apoptosis by interfering with tumor suppressors such
as P53 [20,57,58]. In our study, we did not explore if CagA from H.
pylori can induce Nurr1 expression and it requires further study.



Fig. 6. Sp1 targets Nurr1 promoter and mediates the regulation of Nurr1 by H. pylori. (a) RT-PCR analysis of Nurr1 mRNA expression in AGS and BGC-823 cells transfected with Sp1
siRNA or Sp1-coding plasmid. *P < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, by Student's t-test. (b) Western blot analysis of Nurr1 and Sp1 protein expression in AGS and BGC-
823 cells transfected with Sp1 siRNA or Sp1-coding plasmid. (c) Sp1 binding sites in human Nurr1 promoter and the corresponding base mutation. (d) The transcriptional activation
of the Nurr1 promoter by Sp1 was detected by using a dual luciferase assay in AGS and BGC-823. *P< 0.05, **P< 0.01, ***P < 0.001, ****P< 0.0001, by Student's t-test. (e) ChIP assay
of Sp1 bound to the promoter of Nurr1 in BGC-823. ***P < 0.001, by Student's t-test. (f-g) Sp1 and Nurr1 mRNA (f) and protein (g) expression analysis in AGS and BGC-823 cells with
Sp1 siRNA and H. pylori (Hp11637) treatment. **P < 0.01, ***P < 0.001, ****P < 0.0001, by Student's t-test.
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Transcription factors are important to promote the expression of
key oncogenes in tumors. For instance, c-Jun directly binds to the GLS
promoter and regulates metabolic reprogramming by increasing GLS
expression in cancer cells [59]. In the current study, Nurr1 was posi-
tively regulated by both c-Jun and Sp1. However, only Sp1 could
directly bind to the Nurr1 promoter and could enhance its transcrip-
tion. Interestingly, Sp1 is involved in the development and progres-
sion of multiple cancers and is a downstream target gene of the AKT
signaling pathway. Therefore, it was concluded that Nurr1 was
induced by H. pylori through PI3K/AKT-Sp1 axis.



Fig. 7. Confirmation of correlation between the expression of Nurr1 and pathogenic process in mice tissues and clinical specimen. (a) IHC staining for Nurr1, CDK4, Sp1 and Ki67 in
mucosal epithelial tissues of control, MNU and MNU-Hp treated mice. Scale bars: 200mm (insets 50mm). (b) IHC score. *P < 0.05, **P < 0.01, ****P < 0.0001, by Student's t-test. (c)
IHC staining for Nurr1, CDK4, Sp1 and Ki67 in GC samples and corresponding normal samples. Scale bars: 200mm (insets 50mm). (d) IHC score. **P < 0.01, ****P < 0.0001, by Stu-
dent's t-test.
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There are some studies concerning the function and mechanism of
Nurr1 in GC and other tumors. For example, PGE2 increases Nurr1
expression via cAMP/PKA and NF-kB signaling pathways in colorectal
cancer [60]. Different from the above reports, we primarily focused
on the signaling pathways associated with H. pylori infection and
found that H. pylori could induce Nurr1 expression via PI3K/AKT sig-
naling pathway. What’s more, it has also been reported that Nurr1
expression is upregulated by COX-2 and high expression of Nurr1
can block apoptosis in colorectal cancer [61]. Down-regulation of
Nurr1 can reduce cells proliferation and elevate cells apoptosis in
Hela cells [62]. The above studies indicate that Nurr1 plays a signifi-
cant role of anti-apoptotic in cancer cells. In our study, we found that
the apoptosis of GC cells didn’t change significantly after silencing
of Nurr1, while the proliferation of GC cells was significantly
inhibited (Supplementary Fig. 6a-b). Therefore, we mainly investi-
gated the effect of Nurr1 on proliferation of GC cells. Whereas our
study found that the expression of Nurr1 was increased in GC
samples when compared with adjacent samples, two previous
work in GC found the opposite [56,63]. The different results may
be due to the heterogeneity of samples and possible bias in data
mining. Consistent with the previous reports, our results also
showed that Nurr1 is an indicator of poor prognosis in three GC
patient cohorts of GEO database. Further clinical study is required
to confirm the preliminary findings.



Fig. 8. Schematic model of the study. Infection of H. pylori enhanced Nurr1 expression
by PI3K/AKT-Sp1 signaling pathway and Sp1 directly transcriptionally activated Nurr1
expression. Nurr1 bound to the promoter of CDK4 and increased its expression. In this
study, we revealed the mechanism through which Nurr1 was upregulated and how
Nurr1 promoted GC cells proliferation. Therefore, Nurr1 might be a new target for the
diagnosis and treatment of GC.
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In summary, we present the first report that H. pylori could
up-regulate Nurr1 expression through PI3K/AKT-Sp1 axis, and that
Sp1 directly bound to Nurr1 promoter to activate its transcription.
Nurr1 subsequently promoted CDK4 transcription by directly
binding to its promoter, facilitating GC cells proliferation (Fig. 8).
Therefore, Nurr1 may be a novel target for the diagnosis and treat-
ment of GC.
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