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Vision-threatening retinal diseases affect millions of people worldwide, representing an
important public health issue (high social cost) for both technologically advanced and new-
industrialized countries. Overall RD group comprises the retinitis pigmentosa, the age-
relatedmacular degeneration (AMD), the diabetic retinopathy (DR), and idiopathic epiretinal
membrane formation. Endocrine, metabolic, and even lifestyles risk factors have been
reported for these age-linked conditions that represent a “public priority” also in this
COVID-19 emergency. Chronic inflammation and neurodegeneration characterize the
disease evolution, with a consistent vitreoretinal interface impairment. As the vitreous
chamber is significantly involved, the latest diagnostic technologies of imaging (retina) and
biomarker detection (vitreous) have provided a huge input at both medical and surgical
levels. Complement activation and immune cell recruitment/infiltration as well as
detrimental intra/extracellular deposits occur in association with a reactive gliosis. The
cell/tissue aging route shows a specific signal path and biomolecular profile characterized
by the increased expression of several glial-derived mediators, including angiogenic/
angiostatic, neurogenic, and stress-related factors (oxidative stress metabolites,
inflammation, and even amyloid formation). The possibility to access vitreous chamber
by collecting vitreous reflux during intravitreal injection or obtaining vitreous biopsy during a
vitrectomy represents a step forward for an individualized therapy. As drug response and
protein signature appear unique in each single patient, therapies should be individualized.
This review addresses the current knowledge about biomarkers and pharmacological
targets in these vitreoretinal diseases. As vitreous fluids might reflect the early stages of
retinal sufferance and/or late stages of neurodegeneration, the possibility to modulate
intravitreal levels of growth factors, in combination to anti-VEGF therapy, would open to a
personalized therapy of retinal diseases.
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INTRODUCTION

A recent evaluation of the current prevalence and pattern of retinal diseases (RD) in industrialized
and nonindustrialized countries highlights that RD are increasing worldwide representing a serious
problem even under COVID-19 emergency.

RD group includes the retinitis pigmentosa, the age-related macular degeneration, the diabetic
retinopathy, and the idiopathic epiretinal membrane formations. Other than genetic background,
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several risk factors (endocrine, metabolic, and even lifestyles
influencers) have been reported for these age-linked conditions
that represent a “public priority” as worldwide population is more
long-lived and its life expectancy is increasing. The chronic
inflammation and neurodegeneration affect the neuronal
network, with different vitreoretinal interface impairment. As
the vitreous chamber is significantly affected due to release of a
plethora of soluble mediators, the latest diagnostic technologies of
imaging (retina) and biomarker detection (vitreous) have
provided a huge input at both medical and surgical levels. As
per consecutive increase, the early complement activation, the
immune cell recruitment/infiltration with local release of soluble
mediators, and the formation of intra/extracellular deposits lead
to impairment of the neuronal network, sustained by reactive
gliosis. Tissue/cell aging shows a specific signal path and
biomolecular profile characterized by the increased expression
of several glial-derived mediators, including angiogenic/
angiostatic, neurogenic, and stress-related factors (oxidative
stress metabolites, inflammation, and even amyloid formation).

This review addresses the current knowledge about potential
candidate biomarkers and pharmacological targets in these
vitreoretinal diseases. As vitreous fluids might reflect the early
stages of retinal sufferance and/or late stages of degeneration, the
possibility to modulate intravitreal levels of growth factors will be
also discussed as an additional way to improve treatment
approaches, most of them in combination to anti-VEGF therapy.

PRECISION THERAPY FOR RETINAL
DISEASES: STATE OF THE ART

Over the last years, numerous changes have been introduced to
improve vitreoretinal surgery, such as the development of
transconjunctival sutureless vitrectomy, ameliorated cutters,
and new surgical approaches (Fujii et al., 2002). The
possibility to collect vitreous biopsies represents a great
opportunity of analysis for individualized medicine in retinal
diseases (Oh and Oshima, 2014; Kasi et al., 2017; Coassin et al.,
2020).

Globally, precision medicine approach represents a new way
of thinking at prevention and treatment of multifactorial diseases,
taking into consideration the individual variability in terms of
genetic background, environment, and lifestyle. Although
relatively new, the concept of precision medicine has
represented for many years a fundamental aspect of healthcare
outside ophthalmology. The possibility to predict and treat the
disease depending on the specific local condition represents a
crucial aspect of cancer therapy, and it is now extended to several
other healthcare areas (Blix, 2014; Velez et al., 2018). In
ophthalmology, precision medicine represents an effective
approach for treating ocular tumors (Straatsma, 2018). In
addition, this strategy is being applied successfully in the
management of the inherited diseases (Ong et al., 2013). In
the recent years, precision therapy has gained increasing
interest for the management of retinal diseases. In particular,
it has been recently proposed for intravitreal treatments in
association with the biochemical analysis of vitreal reflux

(Cacciamani et al., 2016). Collecting vitreous samples at the
time of anti-VEGF intravitreal injection for wet AMD may be
an effective method to elaborate further the precise clinical
condition of the specific patient under treatment.

One aspect of precision medicine is the necessity of
noninvasive indicators to drive the decision of the specialist.
The contribution of computerized imaging, particularly the Optic
Coherence Tomography (OCT) for examining the retinal layers
in a noninvasive way, has improved drastically the posterior
segment therapeutic approaches and reduced significantly
healthcare costs, although a high percentage of senior
population in industrialized countries is affected (Spaide et al.,
2018). Diagnostic Imaging applied to retina and fundus has
gained success worldwide, contributing to a better
management of retinal diseases (Li et al., 2018). This
computer-assisted technology has been recently associated
with a considerable development of biomarkers coming from
proteomic, metabolomic, and genetic basic and applied research
investigation (Ristori et al., 2020).

RETINAL DISEASES: THE MECHANISMS
BEHIND CLINICAL MANIFESTATIONS

Many RD have a multifactorial etiology, most probably driven by
a combination of genetic and environmental factors, interacting
to produce a wide range of phenotypes (Hull et al., 2014).
Environmental stressors allow epigenetic modifications by
influencing cellular activity and tissue response (Crick, 1970;
Jafari et al., 2017). Some morphological and biostrumental
biomarkers (subretinal fluid, intraretinal fluid, intraretinal
cysts, hyperreflective foci, drusen/pseudodrusen, epiretinal/
limiting membranes, geographic/outer retinal atrophy, and
fibrovascular pigment epithelial detachment) are currently of
great utility in addition to the biostrumental biomarkers
provided by OCT scansion (Cacciamani et al., 2019). For
sustainment, some health-recognized biomarkers are also used
to discriminate between absence of, association of, or defined
pathological states (Ahmed et al., 2014). The possibility to have
inflammatory biomarkers, as quantified in vitreal or vitreal reflux
samples or even biopsies whenever accessible, represents a step
forward in grading pathological manifestation as well as in
guiding the surgical decision (Figure 1). RD forms will be
discussed stepwise with respect to biomarkers’ association. RD
group (RP, AMD, DR, and ERMs) will be discussed below with
respect to clinical manifestations and biomarker association as
quantified in vitreal fluids.

Retinitis Pigmentosa (RP)
RP is a neurodegenerative eye disease characterized by
degeneration of rod/cone photoreceptors leading to night
blindness, followed by a progressive mid-peripheral vision loss,
and culminating in complete blindness (around mid-40s)
(Hamel, 2006). RP is genetically and phenotypically
heterogeneous: mutations occur between 0.025 and 0.04% of
worldwide population (Van Soest et al., 1999; Dias et al.,
2018). RP outcome, disease onset (age), progression rate, and
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secondary clinical signs are variable, even in parents and relatives
(Guadagni et al., 2015). Mutant proteins implicated in some
functional process of retina may trigger nonsyndromic RP, while
mutations in genes working in cells/tissues result in systemic
manifestations (syndromic RP) (Waters and Beales, 2011;
Wheway et al., 2014; Dias et al., 2018). Mutations in proteins
associated with the classical components of the
phototransduction cascade (rhodopsin and phosphodiesterase),
cell signaling factors (such as Crx, Nrl), disc membrane-
associated glycoproteins (peripherin), ion channels (such as
the light sensitive cationic ones), and the structural proteins of
the cilium can contribute to disease heterogeneity (Roesch et al.,
2012; Daiger et al., 2013). Genetic and environmental factors
(light) are known to modulate the entire disease: faster disease
progression occurring at the inferior retina may result from a
modifying effect caused by light. It has been hypothesized that
light sources privilege the superior visual field, implying that a
greater exposure occurs at the inferior retina, accelerating whole
retinal degeneration (Paskowitz et al., 2006). This aspect was
particularly evident when rd10 mice were exposed to increasing
light intensity: particularly, both retinal function and
photoreceptors’ number decreased as a function of light-
dependent exposure, with morphological alterations and loss
of synaptic connectivity inside the retinal network (Kutsyr
et al., 2020).

Biomarkers in RP
Although genetic defects in photoreceptors or retinal pigment
epithelium represent the primary causes of RP development,
recent studies looked at the inflammatory response as a
possible contributor for RP pathogenesis (Yoshida et al.,
2013). In previous studies, Yoshida and coworkers showed
that: i) inflammatory cells accumulate in the vitreous cavity of
RP patients, mainly younger ones; ii) RP patients with increased
inflammatory cells into vitreal cavity show decreased visual
function; iii) increased proinflammatory cytokines and
chemokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IFN-γ,

GRO-α, I-309, IP-10, MCP-1, MCP-2, and TARC) typify both
aqueous and vitreous from RP patients (Yoshida et al., 2013). All
together, these aspects suggest the presence of a “strong” chronic
inflammatory reaction depending on RP pathogenesis (Ohnaka
et al., 2012). Similarly, proinflammatory cytokines and
chemokines were quantified in retinas of rd10 experimental
model (Ikeda et al., 2002; Ohnaka et al., 2012; Semba et al.,
2013; Yoshida et al., 2013; Jové et al., 2014; Zhang et al., 2015;
Kohler et al., 2016). Of those factors, MCP-1 levels were
significantly increased in human RP aqueous and vitreous
(Ikeda et al., 2002; Nakazawa et al., 2007; Ohnaka et al., 2012;
Semba et al., 2013; Yoshida et al., 2013; Jové et al., 2014; Zhang
et al., 2015; Kohler et al., 2016). As known from other diseases and
experimental studies, the ability of MCP-1 is to recruit
monocytes, activate dendritic cells, and stimulate memory
T cells at injured sites (Ikeda et al., 2002; Nakazawa et al.,
2007). More interestingly, MCP-1 activates microglia, which
contributes to neuronal inflammation and subsequent
neuronal apoptosis (Gupta et al., 2003; Minghetti et al., 2005).
Nakazawa and coworkers demonstrated that MCP-1 contributes
to photoreceptor apoptosis following retinal detachment, through
a microglia/macrophage activation pathway (Nakazawa et al.,
2007). In human RP retinas, another study demonstrated that an
activated microglia phenotype was present in the outer nuclear
layer of regions populated by death committed rods (Gupta et al.,
2003). These data suggest that MCP-1, in concert with other
soluble mediators, may play an important role in the
inflammatory reactions and degenerative process of RP (Gupta
et al., 2003; Nakazawa et al., 2007).

Age-Related Macular Degeneration (AMD)
AMD, a neurodegenerative late-onset retinal disease showing
clinical and pathological aspects close to Alzheimer Diseases, is a
retinal disease leading to central vision loss: it is characterized by
neurodegeneration of the central region of retina and choroid
(Haddad et al., 2006). Two major forms have been identified:
atrophic (dry) and exudative (wet) AMD.While dry AMD (about

FIGURE 1 | Flowchart summarizing the main steps of precision medicine. (A), (B) Biostrumental parameters’ acquisition by computerized tomography.
Representative image showing retinal layers (A)with a red square schematized in (B). Retinal insult is followed by the release of a plethora of inflammatory mediators that
can be quantified according to different sampling route (C). Samples can be appropriately processed to release RNA, DNA, or proteins (D), according to different new
and old generation techniques (E). The main biomarkers used as outcome indicator are listed in (E).
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85% of cases) is characterized by yellow subretinal deposits
(drusen) and/or retinal pigment epithelial (RPE) irregularities
(hyperpigmentation/hypopigmentary changes), the wet form
(around 15% of cases) is characterized by choroidal
neovascularization and fibrovascular RPE detachments
(Haddad et al., 2006). Both environment and genetic factors
can contribute to developing and/or exacerbation of AMD
(Haddad et al., 2006). The observation of 52 common and
rare variants at 34 genetic loci, independently associated with
late AMD, implies that genetic factors might represent a crucial
aspect in the management of disease (Haddad et al., 2006). A
strong genetic association in AMD pathogenesis was found for
complement factor H (CFH) and complement factor I (CFI), as
well as in the metalloproteinases tissue inhibitor 3 (TIMP3), due
to the presence of rare coding variants (frequency < 0·1%)
(Mitchell et al., 2018). Gene–environment interaction and
factors such as age and race may lead to oxidative damage
and inflammation (Sacca et al., 2009; Gemenetzi and Lotery,
2020). Strong association between several environmental factors
and AMD has been reported and particularly the main
demographic/environmental risk factors are aging, smoking,
diet, fat intake, and obesity (Klein et al., 1992; Christen et al.,
1996; Seddon et al., 1996; Cho et al., 2001; Seddon et al., 2003;
Friedman et al., 2004). In the neovascular form of AMD, a higher
risk of AMD development was associated with white populations,
with respect to Hispanic and Black ones (Sommer et al., 1991;
Cruickshanks et al., 1997). Protective effects came from diet
(antioxidants, nuts, fish, and omega-3 fatty acids) (Age-Related
Eye Disease Study Research Group, 2001). Other potential risk
factors (hypertension, high cholesterol levels, and sunlight
exposure) have been prospected although with no specific
involvement (Seddon and Chen, 2004).

Biomarkers in AMD
Analytical procedures and related immunoassay for biomarker
detection (screening and monitoring) would contribute
significantly to the management of AMD, at both early and
late disease (Nath et al., 2017). A strong biological correlation
was observed between endothelial dysfunction and biomarkers of
inflammation/oxidative stress. As anti-neovascular therapy is a
popular strategy for AMD, the development of predictable
biomarker would be of immense importance for strategizing
therapeutic modalities based on the underlying pathology.
Chau and coworkers determined matrix metalloproteinase-
(MMP-) 2 and MMP-9 levels in the plasma collected from
AMD suffering patients, highlighting that plasmatic MMP-9
levels were significantly higher in age-related maculopathy and
choroidal neovascularization (CNV) groups, as compared to
control groups (Chau et al., 2008). Machalinska and colleagues
showed the presence of increased circulating endothelial cells
(EndCs) and endothelial progenitor cells (EPCs) in AMD
patients, as compared to healthy individuals. Authors
highlighted that this specific increase would reflect a severe
vascular disturbance (Machalińska et al., 2011). With respect
to oxidative stress, Totan and coworkers showed the presence of
increased Endothelin-1 (ET-1) and reduced Nitric Oxide (NO)
plasmatic levels in AMD, suggesting an imbalance between

vasoconstrictor and vasodilator agents, possibly reflecting
either an endothelial dysfunction in AMD pathogenesis or a
role of vasoconstriction in exudative AMD (Totan et al., 2015).
Another study showed significant elevation of serum
concentrations of IL-1α, IL-1β, IL-4, IL-5, IL-10, IL-13, and
IL-17 in AMD patients compared to control subjects (Nassar
et al., 2015). IL-1 is a macrophage-derived major
proinflammatory cytokine acting mainly through the induction
of a network of inflammatory cytokines, chemokines, and other
small soluble mediators (Dinarello, 2009). IL-1 early release
might elucidate, at least in part, the increased vascular
exudation resulting in larger and persisting macular edema in
these patients (Dinarello, 2009). Guymer et al. also demonstrated
an association between elevated urinary cytokines, transforming
growth factor- (TGF-) β1 and monocyte chemoattractant
protein-1 (MCP-1), and AMD (Guymer et al., 2011).
Therefore, the possibility to have a “urinary panel”
(biomarkers) would facilitate the monitoring of disease
progression or predicting vision-threatening complications or
even measuring the response to treatments (Guymer et al.,
2011). Some soluble receptors, taking actively part in the
recognition of major proinflammatory cytokines, have gained
increasing interest in the last years. For instance, the observation
of increased plasma level of soluble Tumor Necrosis Factor
Receptor-II (TNFR-II) in AMD supported the hypothesis of
low-grade systemic inflammation in patients with AMD (Faber
et al., 2015). Of crucial interest was the use of Paraoxonase-1
(PON1), an antioxidant agent used as an indicator of lipid
peroxidation, to evaluate oxidative stress in patients with
AMD. Authors reported a negative correlation between PON1
activity and Malondialdehyde (MDA) levels in patients with
AMD. This may suggest some efficacy of antioxidant therapy
to inhibit lipid peroxidation and that hypothetical agents able to
increase PON1 activity could be a therapeutic option in AMD
(Baskol et al., 2006).

Diabetic Retinopathy (DR)
DR, the result of diabetes causing damage to retinal blood
vessels, is an ocular disease that may have different clinical
characteristics but may lead to severe visual loss (Hayreh,
2014). Disease is associated with impaired glucose metabolism
and after 20 years of type-1 diabetes, 80% of patients with
insulin treated type-1 diabetes and 50% of patients with type-2
diabetes will have some degree of DR (Stitt et al., 2016).
According to clinical manifestation, DR is currently
categorized as mild, moderate, and severe nonproliferative
diabetic retinopathy (NPDR) and proliferative diabetic
retinopathy (PDR) in which retinal neovascularization is
present (Cehofski et al., 2017). Diet and obesity have been
reported to contribute massively to the development of type 2
diabetes. By the way, heritability can account for more than
52% of the advanced PDR, showing retinal neovascularization
(Seddon, 2013).

Biomarkers in DR
DR is a common and often severe complication of diabetes.
Nevertheless, despite the wide array of treatments available for
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DR management, vision restoration in advanced stage of disease
is difficult. Although it is well known that tight glycemic control
may protect from end-organ damage, the risk of developing
diabetic complications despite adequate blood sugar control
may be demonstrated by validated biomarkers. Fasching et al.
demonstrated that, irrespective of metabolic control, serum
concentrations of intercellular adhesion molecule-1 (ICAM-1)
and vascular cell adhesion molecule-1 (VCAM-1) were elevated
in patients with insulin-dependent diabetes mellitus (IDDM),
reflecting ongoing endothelial cell stimulation and leukocyte
activation (Fasching et al., 1996). No difference in serum
E-selectin concentration was detected between diabetic patients
(with or without macroangiopathy) and normal subjects,
suggesting the contribution of adhesion molecules in the
development of atherosclerosis occurring in diabetes (Kado
and Nagata, 1999). Sharma et al. reported that circulating
markers of inflammation, endothelial injury, and TNF
signaling were significantly associated with DR in patients
with type-1 diabetes (T1Ds). TNF receptor-I (TNFR-I) and
TNFR-II receptors were highly correlated, but DR are
associated more strongly with TNFR-I (Sharma et al., 2015).
Studies showed the importance of TNF-α system in diabetic
retinal microvascular damage (Behl et al., 2008). TNF-α
binding to two specific membrane receptors (TNFR-I and
TNFR-II) starts a signal pathway leading to the activation of
transcription factors (NF-κB and Bax) involved in the
proinflammatory and apoptotic cascade (Aderka, 1996). The
diabetes-related vascular complications have been correlated
with C-reactive protein (CRP), TNF-α, and IL-6 in the
EURODIAB Prospective Complication Study (Schram et al.,
2005). Indeed, a positive correlation was reported for DR and
cardiovascular inflammatory factors, highlighting that strategies
focused to decrease inflammatory activity may prevent the
development of vascular complications in type 1 diabetes
(Schram et al., 2005). Of interest, increased plasma levels of
Endothelin (ET-1), a potent endothelium-derived vasoconstrictive
peptide, have been found in non-insulin-dependent diabetic
(NIDDM) patients, prospecting ET-1 as new marker of vascular
damage in diabetic subjects (Laurenti et al., 1997). Jacqueminet and
coworkers proposed the peripheral blood MMP-9 levels as “a
suitable substitute biomarker” of retinopathy in type-1 diabetes
not associated with vascular complications (Jacqueminet et al.,
2006). Transforming growth factor-β (TGF-β), themain inducer of
extracellular matrix remodeling and associated with collagen
production and fibrogenesis, was found overexpressed in
NIDDM patients (Pfeiffer et al., 1996). Lee et al. showed
elevated levels of circulating endothelial progenitor cells (EPCs)
and serum Erythropoietin (Epo), VEGF, and Substance P (SP)
which may be involved in the progression of DR, sustaining a
systemic vasculogenesis rather than a local angiogenesis (Lee et al.,
2006). Both level and type of serum oxidative stress
products–Malondialdehyde (MDA), Conjugated Diene (CD),
Advanced Oxidation Protein Products (AOPPs), protein
carbonyl, and 8-hydroxydeoxyguanosine (8-OHdG)– have been
reported to have a predictive role in the development and
progression of DR (Pan et al., 2008).

Idiopathic Epiretinal Membrane Formations
(ERMs)
ERMs are thin and avascular sheet of fibrous tissue developing over
the retinal layer, at the vitreoretinal interphase, merely at the macular
area of retina, causing changes in architectonics and functioning with
consequent reduced vision. ERMs etiology is idiopathic inmany cases
(80%) or secondary to different situations, including retinal
detachment or vascular or inflammatory retinal diseases (Bottós
et al., 2012). Prognostic and therapeutic decisions occur
principally by OCT evaluation (Unsal et al., 2019). Vitrectomy
followed by ERM peel-off is the routine surgical approach.
Nevertheless, ERMs and even the associated internal limiting
membrane can reform due to genetic/epigenetic influences or
particular conditions (Gemenetzi and Lotery, 2020).

Biomarkers in ERMs
A recent study investigated the possibility to use an interplay of
OCT and biochemical markers to allow a grading of ERM
formation, severity, and traction entity, an indirect marker of
retinal status or detach (Stevenson et al., 2016). Other than
cytokine release, some additional biomarkers have been recently
identified and quantified in both vitreous and tissues (Ahmad et al.,
2018). Some of those inflammatory mediators were recognized as
tissue remodeling actors (IL6, IL33, and IL8), implying the
possibility of a direct modulation of cell migration and collagen
metabolism at the vitreoretinal interface (Dinice et al., 2020). A
special note should be devoted to Osteopontin, a tissue remodeling
biomarker of recent attention (Dinice et al., 2020). In addition to the
cell phenotypingmarkers (GFAP, Iba1, andCD56), othermolecular
targets have been observed and some oxidative ones are highlighted
at both molecular and biochemical level (Marrocco et al., 2017).
None of these biomarkers can be tissue or disease specific, although
their increased expression as well as just their presence can be of
great diagnostic and prognostic value (Strimbu and Tavel, 2010).
Last, it is important tomention that someOCT parameters could be
used to predict postoperative visual outcomes in patients with iERM
treated with PPV (Minami et al., 2019).

DR AND NOVEL POTENTIAL PLAYERS FOR
PERSONALIZED MEDICINE

The possibility to select some biomarkers for predictive purposes
will help to define patients suitable for therapy, according to the
concept of precision medicine devoted to tailored individual needs.
In the last decade, RNA and protein array approaches have been
implemented by the metabolomic analysis, the proteasome/
lysosome analysis, and the next generation sequencing coupled
to the pharmacogenomics (PGx), as additional supports for
individualized therapy (Laíns et al., 2019). Metabolome and
associated pathways have been tested for improving our
understanding of disease pathophysiology and associated
mechanisms, as recently prospected for clarifying some aspects
of a cicatricial disease of the ocular surface (Laíns et al., 2019; Di
Zazzo et al., 2020). All the proteome and metabolome information
should be verified with conventional approaches, bypassing some
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limits of these multiparametric techniques (Miteva et al., 2013). As
known, metabolomics is strictly dependent on the influence of
external factors (external environment, nutrition habits, age, and
microbiome, among others) (Patti et al., 2012). The study of
metabolomic variations allows the possibility to: i) increase the
understanding of disease pathophysiology at the molecular level,
generating new hypotheses for disease mechanisms; ii) identify
those predictive/diagnostic biomarkers; iii) assess disease
progression/exacerbation; iv) elucidate the influence of
environment/lifestyle exposures in disease; and finally, v) assess
drug efficacy and/or toxicity as well as eventual adverse-drug
reactions (Nicholson et al., 2012; Jové et al., 2014; Kohler et al.,
2016).

Epigenetic Factors
In the recent years, the epigenetic mechanisms gained attention for
their promising ability to reduce the gap between environmental
factors and disease development/exacerbation, by means of gene
modulation (Lanza et al., 2019). Although many efforts have been
carried out to elucidate genetic and environmental risk factors for
retinal diseases, little is still unknown about their molecular
mechanisms. Recent studies highlighted the association between
epigenetic changes and incidence/progression of retinal diseases
associated with visual loss (Lanza et al., 2019). While several gene
mutations have been reported for RP, the mechanisms underlying
photoreceptor death remain to be elucidated (He et al., 2013). A
recent study carried out in an experimental model of RP (rd1mouse)
showed an increased histone deacetylase (HDAC) activity just before
photoreceptor degeneration, an effect significantly reduced in the
presence of HDAC inhibitors (Sancho-Pelluz et al., 2010). A reduced
electroretinography response was observed in degenerated retinal
cells when the retinal endoribonuclease Dicer (a helicase with rnase
motif enzyme) is specifically knocked down (Damiani et al., 2008). As
well, epigenetic mechanisms, including chromatin modifications,
have been implicated in AMD pathogenesis (Liu et al., 2012).
Merely, Suuronen and coworkers demonstrated that the addition
of HDAC inhibitors resulted in expression/secretion of clusterin (a
major component of drusen) by human RPE cell line, suggesting that
the management of HDAC activity is important to limit or even
counteract drusen formation (Suuronen et al., 2007). By using the
DNA methylation microarray and bisulfite pyrosequencing applied
to frozen human RPE/choroid samples (donors), Hunter and
coworkers observed the hypermethylation of glutathione
S-transferase isoforms mu1 and mu5 (GSTM1 and GSTM5) in
AMD compared with age-matched control tissues (Hunter et al.,
2012). The ability of GSTM1 and GSTM5 to reduce oxidative stress
appears of great interest, as oxidative stress was hypothesized to
contribute to AMD pathophysiology (Hunter et al., 2012).

In diabetic complications, the epigenetic contribution has been
proposed to explain the exacerbation of retinal damage in the
presence of poor glycemic control (Villeneuve and Natarajan,
2010). As observed in streptozotocin- (STZ-) treated rats (an
experimental model of diabetes) with poor glycemic control,
retinas and related retinal endothelial cells showed an
overexpression of the histone modifiers HADC1, HADC2, and
HADC8 and a reduced activity of histone H3-specific
acetyltransferase (Zhong and Kowluru, 2010). Since histone-

associated impairments did not reverse upon glycemia
stabilization, an epigenetic-driven metabolic memory was
hypothesized as major reason for DR endurance even in the case
of restoration of normal circulating glucose levels (Zhong and
Kowluru, 2010). Other epigenetic modifications include the
expression of histone H3K4me2 associated with the
transcriptional activation and decrease of superoxide dismutase
gene (SOD-2), as observed in human DR retinas (donors) (Zhong
and Kowluru, 2013).

microRNAs and Pharmacogenetic
Biomarkers
Several microRNAs (miRNAs) have been implicated in
photoreceptor degeneration in RP, DR, and ERMs (Wang et al.,
2012; Russo et al., 2017; Anasagasti et al., 2018). Briefly,miRNAs are
small nucleotide non-coding RNA sequences (≈25mers) interfering
negatively with gene expression, at the RNA-induced silencing
complex (RIS) level, through a binding/degrading activity
(nucleases associated pattern) of specific transcripts in the
cytosol. Either degrading or reducing transcript activity/
translation inside the ribosomal machinery, miRNAs represent
key regulators for tissue development and more properly cell
growth, development, and differentiation (Jeker and Marone,
2015). One miRNA can target more than one mRNA and its
ability to buffer variations in gene expression due to environmental/
microenvironmental changes, and not the basic cell functions,
highlights their important contribution to maintaining cellular
homeostasis and para-inflammation (Lee et al., 2019). Impaired
or even a complete loss of miRNA activity can result in several
defects and malfunctioning at both tissue and cell level (Gurtner
et al., 2016). Pathological implications of miRNA dysregulation
have been described for retinal tissues, under either normal or
pathological states (diabetes, neovascularization) (Liu et al., 2020).
The usefulness of miRNA, as diagnostic tool, has been prospected
from experimental models of diabetic retinopathy. Merely, both
serum and retina of diabetic mice were found to express
dysregulated miRNAs implicated in the regulation of VEGF,
BDNF, PPAR-α, and CREB1 expression before the retinal
vasculopathy occurs (Platania et al., 2019). Recently, a strong
association of specific miRNAs with the progression and severity
of retinal as well as vitreoretinal impairments has been observed
(Russo et al., 2017; Martins et al., 2020). Their quantification in
ocular fluids has been correlated with disease staging and severity,
with promising diagnostic and/or prognostic outcomes.

Neuroprotective Factors
A unique attention has been devoted for years to the role of growth
factors, including neurotrophic and angiogenic/angiostaticmediators,
whose positive role is undoubted in RD.Machalinska et al. reported a
marked decrease in the Pigment Epithelium-Derived Factor (PEDF)
plasma levels in patients with dry AMD, whereas a significant higher
level of PEDF and Vascular Endothelial Growth Factor (VEGF) was
observed in the wet form, suggesting that different manifestations of
AMDmay be the result of altered concentrations of counterbalancing
stimulators/inhibitors of angiogenesis (Machalińska et al., 2012). In
the last decades, NGF has displayed interesting abilities in the visual
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system, working at both ocular surface and retina/optic nerve levels.
The pleiotropic NGF effects have been described either in vitro (cell
culture models) or in vivo (experimental models and humans),
leading to the development of clinical trials devoted to
demonstrating the useful NGF administration in
neurodegenerative eye diseases. Other than in neurotrophic ulcer
application, this neurotrophic route was particularly evident in the
treatment of impaired retinal signal in experimental retinitis
pigmentosa and in retinal cell death/optic nerve degeneration in
response to abnormal elevated intraocular pressure (Sposato et al.,
2008; Sivilia et al., 2009). Our recent observation in experimental
models supports the neuroprotective effect of NGF in insulted eye,
chiefly for retina and optic nerve degeneration (Rocco et al., 2017).
Based on our results, NGF protective effects might be related to an
increased survival of retinal ganglion cells and nerves in the optic
nerve. The cell survival and neuritis outgrowth in NGF exposed were
confirmed by further results, by administration of NGF/αVEGF
combination implying an additional effect of the single NGF
treatment (Rocco et al., 2017). With respect to NGF alone, the
NGF/αVEGF combination significantly delayed and/or protected
photoreceptors as well as retinal cells from degeneration. The
concept of angiogenic depletion coupled to drugs and/or growth
factors has been tested recently (Heier et al., 2020).

All the above reported biomarkers represent a concrete
support to complete the imaging information. Essentially,
genomics, proteomics, metabolomics, proteasome, and
pharmacogenomics can represent valid tools for precision
therapy applied to retinal healthcare (Figure 2).

CONCLUSION AND FUTURE DIRECTIONS

As vitreous fluids might reflect the early stages of retinal
sufferance and/or late stages of degeneration, the possibility to
modulate intravitreal levels of growth factors, in combination to
anti-VEGF therapy, would open to a new and more appropriate

therapy to counteract retinal neurodegeneration. The pathways
involved in this new way of thinking will be disclosed in the near
future, opening to new alternative strategies of personalized
therapies for a better management of retinal disorders through
neuroprotection. The possibility to perform a grading of disease
severity and finalize the surgical decisions is an adding value in
personalized medicine.

Taken together, the above summarized findings sustain the
great value of searching new research strategies for preserving the
retina from neurodegeneration. The possibility to access vitreous
chamber by collecting vitreous reflux during intravitreal injection
or collecting vitreous biopsy at the time of vitrectomy represents a
step forward for an individualized therapy. Drug response and
protein signature appear to be unique in the single patient:
therefore, therapies should be much as tailored as possible.
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FIGURE 2 | A graphical abstract summarizing the long-lasting and difficult process leading to personalized therapy. Basic and translational research crosstalk to
clinical practice, and all convey to precision medicine. Overall steps in research field inform each other with the goal of improving the efficiency and effectiveness of
disease prevention, diagnosis, and treatment.
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