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Abstract
At the time of their clinical manifestation, the heterogeneous group of adult and pediatric gliomas carries a wide range of 
diverse somatic genomic alterations, ranging from somatic single-nucleotide variants to structural chromosomal rearrange-
ments. Somatic abnormalities may have functional consequences, such as a decrease, increase or change in mRNA transcripts, 
and cells pay a penalty for maintaining them. These abnormalities, therefore, must provide cells with a competitive advantage 
to become engrained into the glioma genome. Here, we propose a model of gliomagenesis consisting of the following five 
consecutive phases that glioma cells have traversed prior to clinical manifestation: (I) initial growth; (II) oncogene-induced 
senescence; (III) stressed growth; (IV) replicative senescence/crisis; (V) immortal growth. We have integrated the findings 
from a large number of studies in biology and (neuro)oncology and relate somatic alterations and other results discussed 
in these papers to each of these five phases. Understanding the story that each glioma tells at presentation may ultimately 
facilitate the design of novel, more effective therapeutic approaches.
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Introduction

Gliomas encompass a very diverse group and account for the 
great majority of tumors originating in the parenchyma of 
the central nervous system (CNS) [166]. Two larger glioma 
groups are recognized: so-called diffuse gliomas, character-
ized by extensive infiltrative growth into the surrounding 
CNS parenchyma, and more circumscribed (non-diffuse) 
gliomas such as pilocytic astrocytoma and ependymo-
mas. Diffuse gliomas, by far the most frequent gliomas in 
adult patients, are traditionally classified according to their 
microscopic similarities with (precursors of) glial cells and 
then designated as diffuse astrocytomas, oligodendroglio-
mas or mixed gliomas/oligoastrocytomas. Additionally, 

a malignancy grade is assigned to these tumors based on 
the presence/absence of especially marked mitotic activ-
ity, florid microvascular proliferation (MVP), and necrosis 
[175, 233]. For over a century, such microscopic evaluation 
has provided the gold standard for the diagnosis of gliomas, 
assessment of prognosis and formed the basis for therapeu-
tic management. However, multiple studies showed that a 
purely histopathologic classification suffers from consider-
able inter- and intraobserver variability [3, 46, 217].

As with other human cancers, the pathogenesis and 
molecular evolution of gliomas are often characterized 
by somatic chromosomal aberrations, widespread or focal 
copy number changes and targeted gain and loss of func-
tion events in oncogenes and tumor suppressor genes [211, 
224, 225]. Various permutations of somatic alterations 
were shown to be associated with distinct tumor entities 
and differential sensitivities to treatment, such as a chromo-
some 1p/19q-codeletion in oligodendrogliomas conferring 
increased sensitivity to chemotherapy [26, 27]. In the course 
of the last two decades, it became increasingly clear that 
such molecular characteristics may provide a more robust 
and objective basis for subtyping of diffuse gliomas and both 
scientists and clinicians turned towards molecular markers 
to aid diagnosis [30, 34, 59, 234, 244]. Indeed, the Inter-
national Society for Neuropathology—Haarlem Consensus 
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Guidelines and the most recent edition of the WHO clas-
sification of CNS tumors (published in 2016) embraced the 
notion of an integrated histo-molecular classification of dif-
fuse gliomas [130, 131].

In adult patients three major subgroups of diffuse glioma 
are now defined based on the presence or absence of muta-
tions in the isocitrate dehydrogenase 1 (IDH1) or IDH2 gene 
and of complete, combined loss of the short arm of chromo-
some 1 and of the long arm of chromosome 19 (complete 
1p/19q-codeletion):

• IDH-wildtype: most of these histologically represent 
astrocytic tumors, a large percentage belonging to the 
highest malignancy grade, i.e., glioblastomas.

• IDH-mutant and 1p/19q-non-codeleted: these tumors 
also generally have an astrocytic phenotype, but a much 
larger percentage is at first diagnosis histologically lower 
grade/WHO grade II or III.

• IDH-mutant and 1p/19-codeleted: most of these are char-
acterized by a prominent oligodendroglial phenotype of 
the tumor cells.

Following this strategy, the diagnosis of mixed glioma/
oligoastrocytoma can be expected to largely disappear, 
except when additional molecular tests cannot be performed 
or do not provide unequivocal results; in that situation, not-
otherwise-specified (NOS) should be added to the diagnosis 
to indicate that ideally such samples require further workup 
[132]. Rare ‘dual genotype’ oligoastrocytomas have been 
reported that show polymorphic phenotypes with both a 
complete 1p/19q-codeletion component and non-codeleted 
component [93, 235]. Diffuse midline glioma, H3 K27M-
mutant, was added in the WHO 2016 classification as a 
separate entity [116, 191, 242]. This type of diffuse glioma, 
which most often occurs in children, is by definition located 
in the ‘midline’ of the CNS (brainstem, thalamus, cerebel-
lum and/or spinal cord) and considered as highly aggres-
sive (WHO grade IV) irrespective of the malignancy grade 
assigned by histology [129]. By far, the most frequent astro-
cytic tumors in children though are pilocytic astrocytomas 
that generally are more circumscribed (therefore, grouped 
under non-diffuse gliomas) and show an indolent, WHO 
grade I behavior [44, 105, 190]. Meanwhile, the transition 
from a purely histological to a histo-molecular classifica-
tion of especially diffuse gliomas represents a paradigm shift 
and necessitates re-evaluation of histologic criteria used for 
grading and guidance of therapeutic decisions [164, 181].

In this review, we summarize current knowledge and pro-
pose five phases in gliomagenesis that occur sequentially 
and ultimately lead to its clinical manifestation (Fig. 1). 
Each phase is characterized by distinct molecular altera-
tions and phenotypic characteristics, such as differences in 
growth dynamics and evolutionary mechanisms. A critical 

assumption in our model is the existence of two growth bar-
riers, which we refer to as oncogene-induced and replicative 
senescence. Similar barriers have been described in detail 
in the context of cultured epithelial cells and fibroblasts and 
much of this work has paved the road for our understand-
ing of these mechanisms in gliomagenesis [77, 183, 239]. 
In the model we propose, the first phase of initial growth 
(phase I) follows the acquisition of a glioma initiation event 
and is characterized by aberrant proliferation of pre-tumor 
cells. Continued oncogenic exposure may impede tumor 
growth and trigger a durable form of cell cycle arrest termed 
oncogene-induced senescence (phase II) in a majority of 
tumor cells. Some phase I/II cells may acquire molecular 
changes to bypass oncogene-induced senescence and con-
tinue growth in spite of unfavorable and stressful conditions 
including DNA damage and dysfunctional telomeres. Con-
tinued growth despite incremental genomic instability marks 
the third phase of stressed growth (phase III). This second 
round of glioma cell growth under harsh conditions triggers 
a second round of durable growth arrest termed replicative 
senescence (phase IV) and in some cases, brings forth a state 
of cellular crisis characterized by widespread cell death. 
Rare cells may acquire stem-like characteristics and a means 
to continue growth indefinitely, giving rise to a final phase of 
immortal growth (phase V). Such phase V glioma stem-like 
cells uphold the tumor progenitor cell population via their 
capacity for self-renewal and may also give rise to more dif-
ferentiated and growth-arrested stage IV cells, losing their 
stem-like properties. In this manuscript, we systematically 
review the evidence for this model and propose candidate 
mechanisms where definitive evidence is lacking. Acknowl-
edging that this model is an abstract simplification of gliom-
agenesis, we also provide some examples of exceptions and 
conflicting evidence. While the focus of this review is on 
various molecular categories of diffuse glioma recognized 
by the most recent WHO classification, a few examples in 
the realm of non-diffuse gliomas are touched upon as well.

A model for the temporal molecular 
pathogenesis of gliomas

Phase I: initial growth

The theory that cancer results from accumulation of muta-
tions over time, in a subset of patients combined with contri-
bution of inherited risk factors, has been around for over six 
decades and has been refined over the years [5, 79, 80, 111, 
158, 160]. For the purpose of this review we will consider 
a glioma initiation event to be the first acquired (somatic) 
event towards developing glioma. This event should provide 
a competitive growth advantage, either by directly increasing 
proliferation or by creating the conditions in which increased 
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Fig. 1  Model of the molecular life history of gliomas, prior to becom-
ing clinically manifest. The temporal sequence of events can be sub-
divided into five phases (I–V) represented in different colors. a The 
number of dividing cells (or proliferation rate) across each phase. 
Proliferation peaks towards the end of growth phases and dips going 
into senescence phases. b The tumor mass across each phase. Tumor 
mass increases exponentially during growth phases and logarithmi-
cally during senescence phases. c Telomere length across each phase. 
Telomere length over time follows a pattern that is inverse to tumor 
mass. d Cell doubling diagram indicating the growth barriers (senes-

cence phases) and resulting selection bottleneck. e Somatic altera-
tions associated with different phases in gliomagenesis. The timing of 
each event is indicated on the x-axis of panel C. Genomic instability 
events are accumulated during phase III–IV. Of note, this model is 
a simplified representation of true gliomagenesis. The x-axis is not 
drawn to scale, in part because the duration of the phases likely varies 
from cell to cell and between various tumor types. Furthermore, the 
position of the curves is arbitrary as cells in a tumor may not be in 
sync. BFB breakage–fusion–bridge, DM double minute, ALT alterna-
tive lengthening of telomeres
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proliferation may happen. Cells and their progeny character-
ized by such an event will be primed to outcompete neigh-
boring cells giving rise to an initial submicroscopic tumor 
mass. While germline events that contribute to glioma risk 
precede such glioma initiation events, their incomplete pen-
etrance suggests that they cannot be considered as causal 
for glioma formation and instead prime the environment for 
tumor formation [196]. Furthermore, even if a glioma initia-
tion event marks the first somatic event in the formation of a 
tumor it may not be responsible for initiating growth directly. 
Instead, this event may promote tumorigenesis indirectly via 
stochastic activation of oncogenes or repression of tumor 
suppressors. Genetic or epigenetic selection pressures will 
prioritize daughter cells with growth advantages over those 
without and daughter cells with lethal genotypes will rapidly 
disappear [64, 150, 245].

IDH‑mutant diffuse gliomas

Mutations in IDH1/IDH2 are commonly considered to be 
glioma initiating. Several studies have shown that they are 
amongst the few alterations highly shared amongst gliomas 
at first presentation and their recurrences [9, 100, 204] which 
is explained by their presence in the cell of origin and all 
cells derived thereof. Comparing multiple biopsies from the 
same tumor, IDH mutation can be confidently detected in 
each tumor segment and thus fit the proposed criteria of a 
glioma initiation event [107, 124, 204]. In vitro experiments 
have demonstrated that IDH mutations alone are sufficient to 
reprogram the transcriptome and epigenome of normal cells 
to prevent these cells from entering a terminally differenti-
ated state [134, 147, 213].

IDH dysregulation likely contributes to gliomagenesis 
via the accumulation of the oncogenic metabolite R(−)-2-
hydroxyglutarate (2HG) [114, 176]. Wildtype IDH enzymat-
ically converts isocitrate into α-ketoglutarate (α-KG) as part 
of the citric acid cycle, whereas mutant IDH metabolizes 
α-KG into 2HG [54, 231]. Both mutant and wildtype IDH 
alleles are, therefore, essential for the oncogenic function of 
IDH. IDH mutations in glioma result in genome-wide hyper-
methylation [159, 213], most likely due to effects of 2HG 
on the ten–eleven translocation methylcytosine dioxygenase 
(Tet) family of proteins [61, 134, 243]. This hypermethyla-
tion may provide a growth advantage to cancer cells due to 
the epigenetic activation of oncogenes via stochastic activa-
tion of alternative gene regulatory programs, some confer-
ring added fitness [64]. One such mechanism in glioma may 
be through methylation-induced disruption of a CCCTC-
binding factor (CTCF) binding site, resulting in aberrant 
activation of platelet-derived growth factor receptor alpha 
(PDGRFA) [63].

Although most experimental models of IDH involve over-
expression of mutant IDH in vitro, several transgenic mouse 

models have been described [28, 125]. Early transgenic 
models showed that conditional knock-in of mutant IDH in 
the murine brain led to perinatal lethality [188]. A more 
recent inducible model demonstrated that mutant IDH led 
to increased proliferation and infiltration in the CNS paren-
chyma of murine neural stem cells [10]. Though these mice 
eventually died due to hydrocephalus and did not develop 
malignant tumors, they showed symptoms of the initial 
phases of gliomagenesis. Thus, while experimental models 
of mutant IDH are generally insufficient to cause glioma, 
mutant IDH leads to changes that could be interpreted as 
early tumor development.

IDH‑wildtype diffuse astrocytomas

Approximately 70% of IDH-wildtype diffuse astrocytomas 
are characterized at the molecular level by a single copy loss 
of chromosome 10 and gain of chromosome 7 (+ 7/− 10) 
[16, 34]. Loss or diploid loss of heterozygosity of chromo-
some 10 and of chromosome arm 10p in particular has been 
reported to occur more frequently and may precede gain of 
chromosome 7 [94]. Based on evolutionary modeling using 
primary-recurrent tumor pairs and multisector tumor sam-
pling, several independent groups have found that + 7/− 10 
is homogeneous and longitudinally preserved and thus likely 
the first and glioma initiation event in a large fraction of 
IDH-wildtype diffuse astrocytomas/glioblastomas [69, 107, 
168, 198, 229]. A recent study suggested that gains of chro-
mosome 7 likely occur early in tumorigenesis, amongst the 
first 10% of driver events [69]. In the past several years, 
there has been a lot of interest in the role of TERT promoter 
mutations in oncogenesis and an increasing body of evi-
dence suggests that these mutations precede + 7/− 10 [106]. 
Nevertheless, a potential role of TERT promoter mutations 
to promote proliferation in the initial growth phase and as a 
glioma initiation event is speculative and will be discussed 
later in this review.

Chromosome 7 is home to several oncogenes that have 
been implicated in gliomagenesis such as cyclin-dependent 
kinase 6 (CDK6), MET proto-oncogene (MET) and epider-
mal growth factor receptor (EGFR), while chromosome 10 
hosts several tumor suppressor genes, including Tet family 
member Tet methylcytosine dioxygenase 1 (TET1) and phos-
phatase and tensin homolog (PTEN). Though these genes 
comprise the prime suspects, it is unlikely that they alone are 
responsible for initiating glioma development [168]. Studies 
across different diseases and in various model organisms 
have shown that large chromosomal copy number changes 
led to gross gene dosage fluctuations impacting various spe-
cific and general cellular functions [206]. Such changes may, 
therefore, act in concert to promote tumor development.

Some IDH-wildtype diffuse gliomas show cytogenetically 
intact chromosomes 7 and 10, implying that other initiation 
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events give rise to these tumors as well. Such events may 
include activating or inactivating alterations in the phospho-
inositide 3-kinase (PI3K), receptor tyrosine kinase (RTK) 
and mitogen-activated protein kinase (MAPK) pathways 
[142]. PI3K pathway alterations include mutations in PI3-
kinase subunit alpha (PIK3CA), PI3-kinase subunit P85-
alpha (PIK3R1), or inactivation the aforementioned tumor 
suppressor PTEN [127, 173, 199]. Glioma initiation events 
may also include point mutations in RTK pathway genes 
such as EGFR and PDGFRA or in MAPK pathway genes 
such as neurofibromin 1 (NF1) [220]. Much is already 
known about the effect of these mutations on cancer growth 
but additional research is needed to secure their potential 
role as glioma initiation events.

A particular subgroup of diffuse IDH-wildtype gliomas 
is characterized by mutations in H3 histone family mem-
bers and these gliomas occur most often in children [191, 
202, 241]. The diffuse midline glioma, H3 K27M-mutant, 
shows a lysine to methionine substitution at position 27 
of the H3 histone family member 3A (H3F3A) or histone 
cluster 1 H3 family member 3B (HIST1H3B) gene and is 
included in the WHO 2016 classification as a separate entity. 
Other H3-mutant diffuse gliomas in children and adolescents 
occurring predominantly in the cerebral hemispheres often 
show H3 G34R/V mutation (implying a glycine 34 to argi-
nine or valine substitution) [115, 201, 202, 241]. In contrast 
to hypermethylated IDH-mutant gliomas, these H3-mutant 
gliomas have a general DNA hypomethylation phenotype 
[14]. A recent study showed that expression of mutant H3 
K27M in neonatal mice brains led to ectopic proliferation, 
indicating a possible pre-cancerous change [126]. Although 
additional support is needed, combined with their apparent 
mutual exclusivity with mutations in IDH and changes char-
acteristic for IDH-wildtype tumors, these findings indicate 
that H3 K27M and H3 G34R/V mutations may be glioma 
initiation events [32].

Non‑diffuse gliomas

Recent studies have shown that pilocytic astrocytomas near 
universally harbor abnormalities in the MAPK pathway, and 
most commonly a tandem duplication targeting chromosome 
7q, which gives rise to a KIAA1549–BRAF fusion gene 
consisting of the N terminus of KIAA1549 and the kinase 
domain of v-RAF murine sarcoma viral oncogene homolog 
B1 (BRAF) [44]. Alternative alterations include the onco-
genic V600E missense mutation also targeting BRAF [190]. 
The BRAF V600E mutation results in an activating change 
due to a substitution of valine with glutamic acid at codon 
600. In a non-cancer setting, BRAF activates kinases MEK 
and ERK, which in turn activate transcriptional machinery to 
promote differentiation, proliferation, growth and apoptosis 
[31]. Both BRAF V600E mutation and BRAF fusion genes 

contribute to tumorigenesis by constitutively activating the 
kinase domain of BRAF, resulting in overactive signaling 
activity and a selective growth advantage for affected cells 
[55, 67, 102]. In most pilocytic astrocytomas (even after 
thorough analysis), an activating change in BRAF or other 
MAPK pathway members is the only genomic change that 
can be confidently detected, implying that it is the glioma 
initiation event in this disease [187].

Phase II: oncogene‑induced senescence

Continued oncogenic signaling in the initial growth phase 
prompts the activation of tumor suppressive signaling via 
activation of the  p16INK4a/p14ARF–RB–p53 cell cycle and 
cell stress pathways (Fig. 2), slowing tumor growth and 
transitioning a majority of cells with intact pathways into 
a terminal state called oncogene-induced senescence [43]. 
First discovered over five decades ago in cultured fibroblasts, 
senescence is a stress-induced durable cell cycle arrest [82]. 
The role of senescence in cancer has been reviewed exten-
sively [29, 42, 78, 83, 174, 193]. Briefly, senescence pro-
vides a major tumor suppressive barrier and dividing tumor 
cells are put under selection pressure to acquire molecu-
lar events to prevent or overcome its onset. Hallmarks of 
senescence include durable growth arrest; short, dysfunc-
tional telomeres; and a marked increase in DNA damage and 
stress signaling [42]. Although senescent cells are growth 
arrested, they are metabolically active and release a plethora 
of signaling molecules to the microenvironment, also known 
as the senescence-associated secretory phenotype [174]. 

Fig. 2  Process diagram indicating the  p16INK4a/p14ARF–RB–p53 
pathway in normal conditions. Disruption of one or multiple compo-
nents through mutation or copy number change may prevent or sup-
press the onset of senescence. Various stimuli use different routes to 
activate the senescence response, leaving compensatory mechanisms 
in place in case components fail. For example, if oncogene-induced 
senescence is repressed via CDKN2A/B inactivation, DNA damage 
and telomere shortening could still trigger replicative senescence via 
ATM and ATR . CDKs cyclin-dependent kinases (e.g., CDK2), MDMs 
murine double minutes (e.g., MDM2)
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Distinction must be made between oncogene-induced senes-
cence which is discussed here and is triggered by chronic 
oncogenic signaling, and replicative senescence discussed 
later, describing senescence triggered by telomere dysfunc-
tion following extensive replicative cycles [193]. Oncogene-
induced senescence poses a significant growth barrier and 
most cells will not acquire molecular alterations that allow 
them to bypass this barrier and will, therefore, become 
senescent [43]. However, rare cells may acquire such alter-
ations, eliciting a selective sweep by a subclone that will 
rapidly dominate the neoplastic cell population.

In some cancer types, a senescent precursor stadium 
can be identified, such as intestinal polyps in colon cancer 
and dysplastic naevi in melanoma [192]. In contrast to the 
catastrophic karyotypes demonstrated by their later stage 
derivatives, these growth-arrested senescent precursor 
lesions entered a senescent state via the activation of single 
oncogene such as BRAF and are otherwise genetically unre-
markable [72, 117, 151, 153]. This begs the question if such 
premalignant precursor changes exist for diffuse gliomas as 
well. If so, such precursor lesions may, however, well be 
(sub)microscopic in size and go unnoticed in imaging or 
autopsy studies.

The tumor suppressor proteins  p16INK4a,  p14ARF, RB 
and p53 can be considered as gatekeepers of senescence. 
The INK4a/ARF locus on chromosome 9 contains both 
cyclin dependent kinase inhibitor 2A (CDKN2A) and 2B 
(CDKN2B), combined encoding for both  p16INK4a and 
 p14ARF via alternative splicing. Tumor suppressors RB and 
p53 on the other hand are encoded for by the genes retino-
blastoma 1 (RB1) and tumor protein 53 (TP53) on chromo-
somes 13 and 17, respectively. Inactivation of one or multi-
ple of these genes via genomic deletion and/or inactivating 
mutations has been linked to repression of senescence sign-
aling and is a common event in all cancers including glio-
mas [39, 83, 195, 240]. For the purpose of this review, we 
define the term ‘senescence bypass event’ as any molecular 
alteration that suppresses the onset of oncogene-induced 
senescence.

IDH‑mutant diffuse astrocytomas

IDH-mutant astrocytomas are often characterized by loss of 
one allele of TP53, combined with a loss-of-function muta-
tion in the remaining allele. The frequency of TP53 muta-
tions in IDH-mutant (‘secondary’) glioblastomas is compa-
rable to that in lower grade IDH-mutant astrocytomas from 
which these glioblastomas are derived via malignant pro-
gression, suggesting that TP53 aberrations are early lesions 
in these tumors [162]. Furthermore, and in contrast to IDH-
wildtype gliomas, TP53 mutations were shared between all 
TP53-mutant cases of primary and recurrent tumors in a 
recent study [100]. Analysis of multiple biopsies from the 

same IDH-mutant tumors indicated that samples mutant for 
TP53 were always IDH mutant, while some IDH-mutant 
samples lacked TP53 mutations, suggesting that IDH muta-
tions precede TP53 inactivation [232]. IDH mutation and 
TP53 inactivation, therefore, both comprise early events in 
gliomagenesis, with TP53 inactivation generally following 
mutation in IDH.

The p53 tumor suppressor protein is involved in many 
different functions, and especially its role in cell cycle 
arrest and senescence is very well understood [81]. While 
enzymatically active wildtype p53 triggers senescence in 
response to oncogenic stress, mutant p53 inadequately 
blocks proliferation thereby bypassing the onset of onco-
gene-induced senescence. In addition, p53 takes a promi-
nent role in the senescence pathway (Fig. 2) and loss of its 
enzymatic activity impacts replicative senescence, triggering 
crisis [195]. This is discussed further in phase IV (“Phase 
IV: Replicative senescence/crisis” section).

IDH‑mutant oligodendrogliomas, 1p/19q‑codeleted

The majority of IDH-mutant tumors wildtype for TP53 
demonstrate a combined single copy loss of the complete 
chromosome arms 1p and 19q (complete 1p/19q-codeletion) 
[20, 27]. These tumors are the canonical oligodendroglio-
mas according to the revised WHO criteria [130]. Though 
it has been suggested that 1p/19q-codeletions are the result 
of an unbalanced translocation, much about the contribution 
of this event to oncogenesis remains to be resolved [95]. 
1p/19q-codeletion was found to be stable across longitudi-
nal samples and multiple biopsies, suggesting that they are 
early events [1, 97, 218]. The finding that codeleted tumors 
are almost exclusively IDH-mutant, while the reverse is 
not true, suggests that mutations in IDH precede codele-
tion. This suggestion may implicate a common cell of ori-
gin for both astrocytoma (IDH-mutant, non-codeleted) and 
oligodendroglioma (IDH-mutant and 1p/19q-codeleted). 
Indeed, recent evidence was provided that substantiates this 
hypothesis, demonstrating that differences in inferred cell 
identity between oligodendrogliomas and astrocytomas may 
be entirely explained by different microenvironment makeup 
and the impact of the 1p/19q-codeletion on the expression 
of genes on these chromosome arms [219]. The authors 
found that although these histological tumor types differ in 
morphology, these histological subtypes share a compara-
ble developmental hierarchy and glial lineage. Transcrip-
tion factors involved in oligodendrocyte differentiation are 
also expressed in both histologies [6]. Several case reports 
have highlighted ‘dual genotype’ oligoastrocytomas, dem-
onstrating molecular features of both bona fide astrocytic 
and bona fide oligodendroglial tumor cells [93, 235]. Such a 
dual genotype may be explained by assuming that very early 
in gliomagenesis a subset of IDH-mutant cells experiences 
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a complete 1p/19q-codeletion and a TERT promoter muta-
tion, while another IDH-mutant subset acquires a mutation 
in TP53 and/or ATRX. Detailed and sufficiently powered 
longitudinal studies of primary and recurrent diffuse gli-
omas may help to elucidate the actual frequency of such 
‘dual genotypes’, how they are related to mixed histological 
appearances, and how they evolve over time [2].

Additional loss-of-function mutations in far-upstream 
element binding protein (FUBP1) on 1p31.1 and capicua 
transcriptional repressor (CIC) on 19q13.2 are observed in 
over 60% of 1p/19q-codeleted gliomas [15]. A paired analy-
sis of primary and recurrent 1p/19q-codeleted oligodendro-
gliomas described distinct alterations in CIC and FUBP1 
in the primary and the recurrent tumor [9]. Another report 
described that these events were frequently private to either 
primary or recurrence, but not both [1]. Both findings cor-
roborate observations of CIC and FUBP1 mutation hetero-
geneity across nine distinct samples from the same oligo-
dendroglioma, including finding five distinct CIC mutants 
across nine tumor samples [204]. Loss-of-function muta-
tions in these genes led to a loss of protein expression and 
the FUBP1 mutation was associated with adverse survival 
compared to wildtype tumors [35, 90]. These findings sug-
gest an important role for these genes and indicate that in 
cases in which these events were not found in one sample 
of the tumor, they still might be present elsewhere. Despite 
their apparent importance, the role of these events in gliom-
agenesis remains to be understood.

It is not clear whether 1p/19q-codeleted oligodendroglio-
mas undergo senescence or acquire mechanisms to bypass 
senescence. 1p/19q-codeleted gliomas generally lack altera-
tions in genes associated with oncogene-induced senescence 
such as BRAF or senescence bypass such as TP53, RB1 
or CDKN2A. Nevertheless, given their continued clinical 
growth it appears that these tumors have somehow evaded 
growth arrest and senescence barriers. Perhaps the 1p/19q-
codeletion allows pre-cancerous cells to avoid senescence 
through the mono-allelic inactivation of tumor suppressor 
genes on these chromosome arms [197]. One mechanism 
that was previously proposed may be via a dosage-dependent 
repression of chromodomain helicase DNA-binding domain 
5 (CHD5) on 1p36 [7, 8, 222]. A study that used genetic 
engineering to create mouse models with gains and losses of 
a region corresponding to human 1p36 found that duplica-
tion of this region led to decreased proliferation and senes-
cence whereas a single-copy deletion led to immortalization 
[8].

IDH‑wildtype diffuse astrocytomas

Amongst IDH-wildtype astrocytomas/glioblastomas, one 
of the most frequent alterations is a homozygous loss of 
CDKN2A and CDKN2B [128]. Mathematical modeling has 

suggested that homozygous CDKN2A/B loss occurs after 
+7/−10 but before other molecular events [168]. Homozy-
gous CDKN2A/B loss alone is insufficient for tumor for-
mation in mice, requiring the activation of an oncogene 
to generate tumors in vivo [215]. As such, homozygous 
CDKN2A/B loss is likely a second event in the tumorigen-
esis of IDH-wildtype astrocytoma or glioblastoma. The role 
of protein products  p16INK4a and  p14ARF in senescence is 
very well understood. Indeed, astrocytes with a homozygous 
deletion of CDKN2A/B can grow indefinitely in culture, and 
introduction of  p16INK4a in immortal human glioma cell lines 
with this deletion leads to cell cycle arrest and senescence 
[87, 216]. Taken together, these results indicate that loss of 
CDKN2A/B may provide adult IDH-wildtype astrocytomas 
with a reliable means for senescence bypass.

Mutations in TP53 sometimes co-occur with homozy-
gous CDKN2A/B loss in IDH-wildtype glioma [163]. While 
TP53 mutations are often shared across all tumor cells in 
IDH-mutant astrocytoma, TP53 mutations in IDH-wildtype 
astrocytomas are frequently unique to one or a few tumor 
subclones [107]. In this same study, it was found that 
amongst IDH-wildtype astrocytomas, whereas CDKN2A/B 
is consistently deleted, TP53 mutations are frequently lost or 
gained at tumor recurrence. These observations suggest that, 
in IDH-wildtype astrocytoma, CDKN2A/B may be primarily 
important for senescence regulation

Pediatric H3-mutant/IDH-wildtype diffuse gliomas are 
TP53 mutant in about 50% of cases, which may act as a 
senescence bypass event in these tumors [191]. Amongst 
remaining H3-mutant tumors, approximately 20–30% of H3 
K27 mutant diffuse gliomas show mutations in Activin A 
Receptor Type 1 (ACVR1) [23, 65, 208, 242]. There is no 
evidence that ACVR1 has any role in sentence regulation; 
however, ACVR1 alterations were found to be mostly mutu-
ally exclusive with alterations in TP53 and PPM1D. PPM1D 
is a protein phosphatase downstream of p53 involved in 
apoptosis regulation following DNA damage and thus likely 
involved in senescence [62]. Expression of ACVR1 mutants 
in  Tp53null murine astrocytes implanted in mouse brains 
failed to induce tumors, likely because H3 K27 mutations 
are required as a tumor initiation event and thus suggesting 
that ACVR1 does not meet the criteria for a tumor initiation 
event [242]. Thus, while about half of pediatric H3-mutant 
gliomas demonstrate TP53 mutations that may act to bypass 
senescence, it remains unclear if and how TP53-wildtype 
H3-mutant pediatric gliomas bypass senescence.

Non‑diffuse gliomas

Several lines of evidence suggest that pilocytic astrocyto-
mas (WHO grade I, IDH-wildtype) are arrested in a senes-
cent phase II state and do not advance to later phases. First, 
these tumors were found to frequently demonstrate several 
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biomarkers of senescence at tumor detection, including 
widespread β-galactosidase activity and  p16INK4a stain-
ing [88, 112, 177]. Second, these tumors are very quies-
cent genetically, often demonstrating but a single activated 
oncogene, such as a BRAF fusion, BRAF V600E mutation 
or rarely an activating mutation in FGFR1 or PTPN11 [101, 
212, 246]. Third, these tumors generally grow slowly, have 
excellent outcomes and sometimes regress, perhaps because 
the tumor cells do not immortalize [24, 25, 75, 185]. Fourth, 
expression of activated BRAF V600E alone does not lead 
to tumor development in in vitro and in in vivo mouse 
models, while the combined activation of BRAF and loss 
of CDKN2A/B is transforming, suggesting that additional 
mutations to bypass senescence are required to advance to 
phase III [92, 182, 189]. The clinical presentation of pilo-
cytic astrocytoma may be the result of senescence-mitigating 
circumstances, such as a cell of origin with proliferative 
potential in the absence of senescence-bypass.

Phase III: stressed growth

Cells presenting with continued proliferative signaling 
beyond the oncogene-induced senescence barrier are gener-
ally characterized by defective DNA damage response sign-
aling and continued growth in a stressed environment. Dur-
ing this phase the repetitive DNA at the telomeric terminal 
ends of chromosomes become increasingly important [161]. 
Telomeres progressively shorten as cells divide due to the 
linear conformation of chromosomes and directional repli-
cation machinery, a phenomenon that is critically important 
for diseases like cancer which are characterized by often 
rampant proliferation [165]. Telomeric DNA takes on a lasso 
conformation called the t-loop, and these loops are bound 
by the shelterin DNA-binding protein complex. Together, 
these characteristics protect chromosome ends from being 
recognized as DNA double-strand breaks and prevent inad-
vertent activation of DNA damage response pathways [56].

Dysfunctional telomeres are critically short and improp-
erly protected telomeres lacking t-loops and shelterin com-
plexes. They trigger the activation of DNA damage response 
pathways via ataxia telangiectasia-mutated (ATM) and ataxia 
telangiectasia and Rad3-related (ATR ) kinase, which are 
triggered by exposed and unprotected double-stranded and 
single-stranded DNA break ends, respectively. The exposed 
ends then fall victim to homology directed repair (HDR) 
and non-homologous end joining (NHEJ) repair processes, 
intended to repair accidental DNA breaks but lead to gross 
genomic instability when triggered by dysfunctional telom-
eres. When telomeres are unprotected, these repair processes 
prompt sister chromatids to fuse with one another, forming 
a dicentric chromosome. During the anaphase, the dicen-
tric chromosome will form a bridge spanning the mitotic 
spindle and connecting the two daughter cells. Resolution 

of the chromatin bridge via cytoplasmic 3′ nuclease TREX1 
results in breakage of the dicentric chromosome at a locus 
not necessarily at the site where the fusion had occurred, 
resulting in an unbalanced inheritance of genetic mate-
rial between the two daughter cells. Because the resulting 
daughter cells also lack telomeres, this process of break-
age–fusion–bridge (BFB) cycles (Fig. 3a) will repeat itself 
every subsequent cell division until telomeres are restored 
[4, 70, 144, 148, 149]. The detrimental genomic instability 
acquired via telomere dysfunction and BFB cycles endows 
these cells with powerful stochastic mutational mechanisms 
to acquire changes that provide a survival benefit under 
selective pressure.

The intensity of genomic instability endured during 
the stressed growth phase may depend on the severity of 
senescence pathway dysregulation incurred overcom-
ing oncogene-induced senescence (Fig. 2). In the case of 
H3-mutant, IDH-wildtype and IDH-mutant astrocytoma/
glioblastoma this pathway is perturbed close to the source 
via the direct loss of RB, p53 or  p16INK4a protein function. 
In IDH-mutant and 1p/19q-codeleted oligodendroglioma 
this pathway may be repressed indirectly, for example, via 
the modulation of  p14ARF activity through a partial deletion 
of CHD5. This may explain why the latter group of tumors 
shows significantly less genomic instability compared to the 
former tumor types. Moreover, in pilocytic astrocytoma this 
pathway may not be affected at all and these tumors may 
not advance beyond oncogene-induced senescence. While 
genomic instability incurred during phase III demonstrates 
some patterns that are unique to a certain glioma subtype, 
these features are generally shared across all gliomas regard-
less of subtype. We, therefore, did not separate this section 
according to tumor type as we did for the other phases. More 
research is needed to carefully delineate the selective pres-
sures at play to better understand differences and similarities 
between various glioma entities in this respect.

The advent of high-throughput sequencing has led to 
remarkable progress in understanding the complexity of 
genomic instability in cancer, including complex deletions, 
amplifications and translocations [245]. It is important to 
note that the genomic organization that can be reconstructed 
using sequencing at the time of analysis are those changes 
that resulted in viable cells and were selected for. Recent 
work has shown that telomere dysfunction directly leads to 
catastrophic genomic events, including genome shattering 
(chromothripsis), clustered regions of focal hypermutation 
(kataegis) and whole genome doubling (tetraploidization) 
[60, 137, 138]. Although the incidence of chromothripsis 
across the spectrum of gliomas is not known, a recent report 
suggests that chromothripsis is very common in glioblas-
toma [139]. Comparison of primary and recurrent tumors 
across various tumor types including gliomas demonstrated 
that recurrent tumors lack additional genomic instability, 
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Fig. 3  Genomic instability related to telomere stress. a Schematic 
illustrating BFB cycles. Following a single BFB cycle, daughter cells 
are left with unequal DNA content, leading to a deletion in A and an 
amplification in B. BFB cycles may also involve fusion of non-sister 
telomeres (not shown). b Repetitive BFB cycles form palindromes 

demonstrating high intra-segmental homology. This can lead to intra-
chromosomal fusions and formation of double minutes. c Following 
chromothripsis segments can be rearranged, lost or circularized. TSG 
tumor suppressor gene, OG oncogene, DDR DNA damage response, 
DM double minutes, BFB breakage–fusion–bridge
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suggesting that these events occurred during a stressful 
period, the initial development of the tumor that was later 
stabilized [60].

Recently, there has been a renewed interest in circular 
extrachromosomal DNA elements called double minute 
(DM) chromosomes in cancer, and it was shown that such 
DMs are common in gliomas [57, 214]. Although DM chro-
mosomes have been long recognized as a cytogenetic feature 
of cancer, relatively little was known about its biological rel-
evance. DM chromosomes have a predisposition to involve 
cancer oncogenes such as MYC proto-oncogene protein 
(MYC), MDM2 proto-oncogene (MDM2) or cyclin-depend-
ent kinase 4 (CDK4) [53, 113, 156, 186, 247]. A unique 
feature of DM is that they lack centromeres and telomeres to 
dictate the organization of the mitotic spindle during mito-
sis and are, therefore, randomly distributed across daughter 
cells [103]. Interestingly, this feature hypothetically provides 
DM chromosomes with an impressive fitness advantage over 
linear chromosomes as they do not need telomeres to protect 
them from inadvertent DNA damage response pathways and 
are not subjected to detrimental BFB cycles. It has been 
proposed that DM chromosomes are the result of the fusion 
and circular assembly of stretches of linear DNA consisting 
of highly homologous sequences of inverted duplications 
in tandem following sequential BFB cycles (Fig. 3b) [205]. 
Others have proposed that ineffective DNA repair following 
chromothripsis can lead to linear DNA fragments getting 
pieced together in a circular fashion (Fig. 3c) [66]. A study 
by our group found evidence of chromothripsis in several 
glioblastoma samples localized to chromosome 12 involv-
ing MDM2 and CDK4 and suggested that these segments 
may be arranged in extrachromosomal DMs [247]. Because 
these are inherently random processes, it is possible that DM 
chromosomes that promote survival are positively selected 
for during telomere dysfunction. Compared to IDH-mutant 
gliomas, DMs in IDH-wildtype tumors more often involve 
established glioma oncogenes, despite what appears to be 
a comparable frequency of DMs in both glioma categories 
[57]. More research is needed to precisely determine the 
frequency of DMs in glioma subtypes and to pinpoint the 
genetic origin of these structures.

A recent study of paired primary and recurrent IDH-
mutant gliomas reported that in some cases allelic imbal-
ances of the IDH-mutant allele occurred upon recurrence, 
which led to a change in mutant protein expression and con-
sequently decreased 2HG production [145]. Furthermore, 
IDH-mutant tumors are very hard to culture, and when it 
succeeds, IDH mutations that were present initially have 
been reported missing, raising the possibility that losing 
an IDH mutation is advantageous for survival in culture 
[135]. Introduction of mutant IDH in cell cycle checkpoint-
deficient cells rapidly transforms these cells into competent 
tumor cells [99]. However, IDH inhibition in these cells after 

as little as 4 days after its first introduction did little to slow 
tumor growth. These findings suggest that some IDH-mutant 
gliomas may rapidly evolve and acquire additional driver 
events to uphold the tumor cell population.

To summarize, telomere dysfunction and stressed 
growth may promote the context-dependent evolution of 
glioma cells, sometimes rendering glioma initiation events 
redundant and providing gliomas with new fuel that rapidly 
increase intratumoral heterogeneity and can deal with vari-
ous toxic stresses and bottlenecks. While stochastic muta-
tional mechanisms in the stressed growth phase provide 
ample selection pressure to acquire beneficial changes, the 
detrimental genomic instability under which cells must oper-
ate acts as a powerful tumor suppressive barrier. Unchecked 
growth will rapidly lead to another round of DNA damage-
induced replicative senescence, or when those checkpoints 
fail completely, cell crisis.

Phase IV: replicative senescence/crisis

Sustained stressed growth is not durable and will eventu-
ally lead tumor cells down to one of two possible roads. 
Tumor cells with a partially intact senescence response 
(i.e., functional p53 and RB) may undergo a second round 
of senescence called replicative senescence in response to 
dysfunctional telomeres. Tumor cells with a completely 
dysfunctional senescence response (i.e., loss-of-function 
mutation in TP53 or RB1) instead continue proliferating in 
a state of cellular crisis leading to cell death in a vast major-
ity of cells [51]. Replicative senescence and crisis both pose 
a second population bottleneck to further tumor formation. 
It is essential that tumor cells transition to a less stressful 
environment with proper telomere maintenance to prevent 
further BFB cycles and other catastrophic events. Cell 
culture experiments have demonstrated that direct immor-
talization of cells prior to a stressed growth phase enables 
them to bypass genomic instability and immortalize lack-
ing the wild karyotypes typically associated with malignant 
transformation [68, 154]. These observations suggest that 
genomic instability in cancer development generally pre-
cedes immortal growth and is required to generate errors 
enabling telomere maintenance [68].

Acquisition of a telomere maintenance mechanism 
endows cancer cells with immortal growth, meaning that 
they are bestowed a limitless replicative potential [108]. 
Telomere maintenance is established once a tumor cell has 
reactivated telomerase or activated alternative lengthening 
of telomeres. Moreover, restoration of telomere function 
may prevent further BFB cycles and restore genome sta-
bility. The canonical pathway involves the reactivation of 
the ribonucleoprotein telomerase which is transcriptionally 
silent in differentiated adult cells [74]. The telomerase cata-
lytic component telomerase reverse transcriptase (TERT) is 
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expressed in over 80% of human cancers and is thought to be 
rate limiting for telomerase activity [194]. In the alternative 
pathway tumors become immortalized via a recombination-
driven mechanism called alternative lengthening of telom-
eres (ALT) [21].

IDH‑mutant diffuse astrocytomas

IDH-mutant diffuse astrocytomas almost universally dem-
onstrate ALT [85]. ALT cells present with several defin-
ing characteristics, including a heterogeneous distribution 
of telomere length across chromosomes, extrachromo-
somal telomeric DNA fragments in a circular configura-
tion (c-circles), increased expression of telomeric repeat-
containing RNA (TERRA ) from telomeres, the formation 
of ALT-associated promyelocytic leukemia bodies (APBs), 
frequent telomere sister chromatid exchanges (T-SCEs) and 
recombination between telomeres from different chromo-
somes [58]. Telomeres in ALT cells are heterogeneous in 
length and relatively long, demonstrating telomere lengths 
much longer than telomerase-positive cells on average [22]. 
ALT provides cancer cells with stabilizing telomere mainte-
nance in a telomerase-negative setting. Although it remains 
unclear how ALT becomes activated, its presence has been 
tightly associated with loss-of-function events targeting the 
α-thalassemia/mental retardation syndrome X-linked (ATRX) 
or death-domain-associated protein (DAXX) genes and these 
events are also a hallmark feature of IDH-mutant astrocy-
tomas [84, 98, 104]. ATRX functions as an ATP-dependent 
helicase within the SWI/SNF family and combined these two 
genes form the ATRX–DAXX complex, which functions 
as a histone chaperone to deposit the histone variant H3.3 
at telomeres [71]. Telomeric DNA has a tendency to form 
secondary quadruplex structures that challenge the replica-
tion machinery and need to be resolved for proper replica-
tion [170]. How exactly these two genes protect telomeres 
from recombination and ALT is still unknown. It has been 
suggested that the combined helicase activity of ATRX and 
the histone chaperone capabilities of the ATRX–DAXX 
complex can resolve the secondary quadruplex structure at 
telomeres, thereby enabling proper progression of the rep-
lication fork during S-phase and preventing the inadvertent 
activation of recombination (ALT) mechanisms [121, 122].

The presence or absence of inactivating ATRX and DAXX 
mutations present a strong correlation with ALT in many 
tumor types including gliomas [84, 133, 191]. Recent 
in vitro studies have shown that knockout of ATRX alone is 
insufficient to cause ALT; however, ATRX knockout com-
bined with inactivation of p53 and RB enzymatic activity 
led to an increased incidence of ALT after enduring sev-
eral cycles of telomere induced crisis [40, 155, 180]. Fur-
thermore, the reintroduction of ATRX expression in ATRX 

mutant ALT cells led to a repression of T-SCE, APBs and 
c-circle formation [40, 155].

IDH‑mutant oligodendrogliomas, 1p/19q‑codeleted

Oligodendrogliomas, IDH-mutant and 1p/19q-codeleted 
almost universally use telomerase to maintain telomeres 
and virtually all of these tumors carry an activating TERT 
promoter mutation [106]. These TERT promoter mutations 
are amongst the most common non-coding mutations in 
cancer [89, 91, 106, 223]. Recurrent hotspot point muta-
tions substitute a cytosine at − 228 or − 250 relative to the 
promoter to a thymine (C228 > T or C250 > T) to create a de 
novo e-twenty-six (ETS) transcription factor binding site that 
recruits the ETS family member GA-binding protein alpha 
chain (GABPA) to activate transcription [13].

Although the timing of TERT promoter mutations is still 
under debate, several lines of evidence suggest that TERT 
promoter mutations arise early in gliomagenesis and per-
haps even occur prior to the glioma initiation event. TERT 
promoter mutations preferentially occur in tissues with a 
lower rate of self-renewal and there are numerous reports on 
the extra-telomeric functions of TERT, including effects on 
the NF-κB and WNT/β-catenin pathway promoting tumor 
growth and invasiveness [106, 141, 169]. Combined, this 
raises the possibility that these mutations may contribute to 
tumorigenesis via other pathways than its effect on telomer-
ase alone, providing a biological reason for these mutations 
to contribute to gliomagenesis early in phase I and before 
the onset of dysfunctional telomeres. In a glioma-specific 
analysis, it was found that nearly all tumors with the ‘phase 
I event’ + 7/− 10 or ‘phase II event’ 1p/19q-codeletion have 
TERT promoter mutations, whereas not all TERT promoter 
mutant gliomas have + 7/− 10 or 1p/19q-codeletions, which 
may indicate that TERT promoter mutations even precede 
+ 7/− 10 and 1p/19q-codeletions [34]. Another group stud-
ied the mutation fraction using multisector sequencing in 
1p/19q-codeleted oligodendrogliomas and found that TERT 
promoter mutations indeed are early events and may occur 
before IDH mutations [204]. The idea that TERT promoter 
mutation occurs early is further corroborated by the finding 
that genetically engineered TERT promoter mutations in tel-
omerase-positive embryonic stem cells do not affect telomer-
ase activity, while upon differentiation these engineered cells 
remain telomerase positive and acquire immortality [36]. 
More recently, it was found that TERT promoter mutations in 
melanoma initially do not support telomere maintenance and 
telomeres shorten to critically short length despite harboring 
promoter mutations [37]. The effect on telomere length was 
not observed until later, which the authors attributed to a 
two-step immortalization process. One study even reported 
canonical (− 228 and − 250) somatic TERT promoter muta-
tions in the blood of multiple non-cancer patients, indicating 
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that these events could even occur before the onset of cancer 
and act to prime the tumor bed [143]. Although roles for 
TERT outside of telomere maintenance remain to be under-
stood, these observations provide a sound argument that 
TERT promoter mutations can occur early in or even before 
gliomagenesis while providing a means towards immortali-
zation at a later stage.

IDH‑wildtype diffuse astrocytomas

The majority of IDH-wildtype diffuse gliomas use telom-
erase for telomere maintenance [120]. Re-analysis of pre-
viously published samples reclassified according to WHO 
2016 criteria demonstrated that approximately 75% of dif-
fuse IDH-wildtype gliomas are TERT promoter mutant 
[172]. Thus, TERT promoter mutations are common in 
both the most and the least aggressive diffuse gliomas 
(IDH-wildtype diffuse astrocytomas and IDH-mutant and 
1p19q-codeleted oligodendrogliomas, respectively), sug-
gesting that TERT promoter mutations are not dictating 
their biological behavior. It was further found that ATRX 
mutations occur in approximately 5% of IDH-wildtype dif-
fuse astrocytomas [172]. The prevalence of ALT in IDH-
wildtype diffuse gliomas is higher than the frequency of 
ATRX mutations, suggesting that some of these tumors may 
use ATRX-independent mechanisms to activate ALT [85]. 
In a similar fashion, the prevalence of telomerase activity is 
higher than the prevalence of TERT promoter mutations in 
this tumor type, suggesting that these tumors may use TERT 
promoter-independent mechanisms for the reactivation of 
telomerase [120]. Several candidate mechanisms have been 
previously described in glioma, including TERT promoter 
methylation or TERT amplifications [11]. Contrary to adult 
IDH-wildtype diffuse glioma, H3-mutant malignant pediat-
ric glioma frequently demonstrates ALT [140], and several 
studies reported frequent co-occurrence of ATRX mutations 
in both H3 K27 and G34 mutant gliomas. However, reports 
of co-occurrence vary between 30 and 60% for K27 and 
75–100% for G34, suggesting that there is a role for telom-
erase in many of these tumors as well [123].

Phase V: immortalization and dedifferentiation

The glioma stem cell theory states that amongst all cancer-
ous cells in a tumor, a subset of cells act as progenitor or 
stem cells with reproductive capabilities and sustaining 
the cancer, much like normal bone marrow stem cells are 
responsible for replenishing the population of circulating 
leukocytes [221]. It has often been contrasted to the theory 
of clonal evolution, which suggests that cancers evolve 
through an iterative process of clonal expansion from a 
single cell [73]. Recent advances in single-cell sequenc-
ing and lineage tracing have unveiled multiple populations 

of tumor cells in bulk tumor samples, providing fuel for 
the cancer stem cell hypothesis [119, 171, 210, 219]. One 
study used single-cell RNA sequencing on IDH-mutant 
and 1p/19q-codeleted oligodendroglioma patient samples 
and uncovered distinct cell populations of undifferenti-
ated tumor stem cells and cells that are more differentiated 
along various glial lineages [210]. In a similar study of 
IDH-mutant astrocytoma the authors were able to detect 
the same cellular populations but with a higher ratio of 
stem-like to differentiated cells that increased with increas-
ing WHO grades [219]. Another study used DNA barcod-
ing of repeatedly in vivo-transplanted glioblastoma cells 
to trace the lineage during their engraftment and found 
a population of progenitor cells that sustained the tumor 
and gave rise to differentiated non-proliferative cells [119].

These studies all provide support for a cancer stem cell 
hypothesis and raise the question how these findings fit 
with our model, which leans towards a model of clonal 
evolution. In fact, current evidence may suggest that both 
mechanisms are acting together (Fig. 4a). Whereas clonal 
evolution is important to establish the initial cancer stem 
cell population, neutral evolution (in line with the cancer-
stem cell hypothesis) may fit better once the initial can-
cer core has been established, especially so when further 
evolutionary stimuli (e.g., senescence barriers, hypoxia, 
treatment) are lacking. The concept of neutral evolution 
holds that most molecular changes are not caused by natu-
ral selection but rather by the stochastic allelic variation 
that are neutral and do not affect cellular fitness [109]. A 
recent study analyzed cancer genomes from TCGA and 
found neutral evolution in approximately one-third of a 
wide spectrum of over 900 tumors, including 35 gliomas 
of which 8 (23%) suggested evidence in support of a neu-
tral evolution process [236]. The authors conclude that 
all clonal selection must have occurred before the onset 
of cancer growth and not in later arising subclones. Sev-
eral groups have since challenged these findings and sug-
gested that their analysis does not univocally prove neutral 
evolution starting from the first malignant cell [157, 207, 
237]. While it may be possible that tumors evolve neu-
trally beyond the most recent selective sweep we do not 
agree with the conclusion that these findings suggest that 
all clonal selection must occur before the onset of tumor 
growth. The authors do not take into account that at the 
time the tumor presents itself and is surgically removed, 
all remnants of a selection process that have been outcom-
peted or died will have completely disappeared, in contrast 
to “neutral” variants which do not affect fitness and will 
remain. According to our simplified model, tumorigenesis 
sequentially follows phase I–V. Once the cancer stem cell 
population has been established, tumor cells will follow 
neutral evolution, as long as new evolutionary or other 
stimuli for opportunistic growth are lacking (Fig. 4a).
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Aforementioned studies supporting the cancer stem cell 
hypothesis suggest that multiple cellular populations exist 
within a tumor, including a self-renewing cancer stem cell 
population and a less-proliferative differentiated population. 
A recent paper demonstrated that cells derived from gli-
oma stem cells may differentiate and subsequently undergo 
senescence [167]. We speculate that phase V tumor cells 
represent cancer stem cells that may give rise to more differ-
entiated, phase IV cells (Fig. 4a). The transition from phase 
IV to V and vice versa is likely volatile in nature owing 
to transcriptional reprogramming including the activation 
of the stemness factors oligodendrocyte transcription fac-
tor 2 (OLIG2), sex-determining region Y-box 2 (SOX2) and 
the reactivation of telomerase [203]. On the other hand, the 
transition from phase I to phase IV is more rigid in nature, 
involving various changes on a genomic level, including 
somatic mutations and copy number changes as described. 
This important distinction in flexibility led us to believe that 
phase V cells may re-differentiate and assume a phase IV 
state.

Although they are growth arrested, senescent cells are 
metabolically active and release a plethora of signaling mol-
ecules to the microenvironment. The senescence-associated 
secretory phenotype (SASP) is a feature of senescent cells 
that curtails these cells with the release of proinflammatory 
cytokines [47]. SASP does not depend on  p16INK4a or p21 
activity and senescence with intact  p16INKa function actually 
suppresses SASP [49]. Similarly, activated p53 signaling 
also suppresses SASP while TP53 loss induces SASP [48, 
136, 178]. These findings suggest that the SASP response is 
stronger when senescence pathway genes are lost. Indeed, 
IDH-wildtype astrocytomas often harbor homozygous 

deletions in CDKN2A/B and are known to have a highly 
active microenvironment [230]. Genes associated with SASP 
were shown to be overexpressed in higher grades of glioma 
and older patients, the latter group more likely to be affected 
by high-grade IDH-wildtype astrocytoma [50]. Moreover, 
it was found that primary glioblastoma cells retain a func-
tional senescence program despite mutations in the TERT 
promoter and CDKN2A/B locus [118]. These findings imply 
that senescent and differentiated phase IV cells may be cru-
cial for shaping the immune microenvironment in gliomas 
(Fig. 4b).

A broader perspective

While there are not many known environmental risk fac-
tors that predispose to glioma, large cohort genome-wide 
association studies over the past two decades have identi-
fied multiple heritable polymorphisms conferring glioma 
risk [96, 110, 152, 179, 196, 238]. Notably, several of these 
risk loci are localized to genes involved in telomere mainte-
nance, including the telomerase reverse transcriptase TERT, 
telomerase RNA component TERC, and other telomere 
maintenance-associated genes STN1, CST complex subunit 
(OBFC1), protection of telomeres 1 (POT1) and regulator 
of telomere elongation 1 (RTEL1) [152]. Moreover, there 
appears to be a significant increased glioma risk in people 
with increased leukocyte telomere lengths [45]. Unsurpris-
ingly, glioma risk alleles at aforementioned genes are also 
associated with increased leukocyte telomere length [41, 
226, 228]. Telomeres thus play an important role in not only 
the development of gliomas, but also in glioma risk [227]. 

Fig. 4  a Integration of a clonal 
evolution and cancer stem cell 
model for gliomagenesis. This 
model assumes that sequen-
tial mutations and selection 
pressure drive the evolution of 
cancer stem-like cells. At the 
same time, these stem-like cells 
may give rise to more differenti-
ated (i.e., phase IV) offspring 
that may divide further but 
rapidly become growth arrested. 
b According to this model these 
cells may be senescent and con-
tribute to the cancer phenotype 
by eliciting a microenviron-
ment response via SASP. SASP 
senescence-associated secretory 
phenotype; ILs interleukins; 
CXCLs chemokines (C–X–C 
motif); CCLs chemokines (C–C 
motif)
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In fact, the positive association between leukocyte telomere 
length and cancer risk is not specific to glioma and shared 
across many cancers. A recent Mendelian randomization 
study found that longer leukocyte telomere length was asso-
ciated with an increased risk to cancer but a reduced risk to 
non-neoplastic disease such as cardiovascular disease [209]. 
It has been suggested that this difference is due to individu-
als with longer telomeres being more likely to acquire driver 
mutations due to an increased proliferative potential whereas 
the inverse relationship observed for non-neoplastic disease 
may be due to the impact of telomere shortening on tissue 
degeneration [19, 200].

Several hereditary disorders are associated with an 
increased risk of glioma development, including neurofi-
bromatosis type 1 and type 2 (NF1, NF2) and the TP53 
germline mutation/Li–Fraumeni syndrome. NF1 and NF2 
are autosomal dominant hereditary disorders with germline 
mutations in NF1 and NF2 and clinically characterized by 
multiple benign nerve sheath tumors (especially neurofibro-
mas in NF1, schwannomas in NF2), but also by a markedly 
increased risk on particular gliomas (especially pilocytic 
astrocytoma in NF1 and ependymomas in NF2) [33, 76, 
184]. Both genes are well-known tumor suppressor genes 
and key components in the MAPK pathway [38]. It has been 
demonstrated that senescence commonly occurs in benign 
nerve sheath tumors and that prolonged NF1 disruption 
leads to oncogene-induced senescence in a model system, 
providing a rationale as to why these germline disorders pre-
sent with tumors that are often relatively indolent [52]. A 
germline perturbation affecting NF1 or NF2 can be consid-
ered a tumor initiation event, explaining why this germline 
disorder guarantees the formation of multiple benign nerve 
sheath tumors over one’s lifetime.

Li–Fraumeni syndrome is a rare autosomal dominant 
hereditary disorder that is caused by the germline perturba-
tion of TP53 or CHK2, which regulates p53 activity [12, 
18, 146]. Whereas NF1 and NF2 guarantee the formation of 
especially multiple benign tumors (including non-diffuse gli-
omas) in a lifetime, Li–Fraumeni patients pose a greater risk 
to developing a malignant tumor, including a diffuse glioma 
[17]. This risk increases with age and is over 50% at age 30, 
with a lifetime cancer risk of over 70% in men and almost 
100% in women [146]. Moreover, 15 and 4% of affected 
individuals were found to develop a second and third can-
cer [86]. Li–Fraumeni syndrome germline mutations affect 
phase II and prevent the onset of oncogene-induced senes-
cence following the acquisition of a glioma initiation event, 
thus increasing the risk of developing cancer over a lifetime.

The germline mutations underlying NF1/NF2 and 
Li–Fraumeni syndrome represent pathways that both need 
to be disrupted for a malignant tumor to form. The fact 
that nearly all patients with NF1/NF2 develop one or more 
benign tumors can be understood by acknowledging that in 

these disorders a germline tumor initiation event is involved. 
Unless this pathway is supplemented by a senescence bypass 
event, these tumors do not readily proceed to malignancy. 
In contrast, Li–Fraumeni syndrome is characterized by an 
increased risk for malignant tumors in many (but not all) 
patients. In this syndrome, the germline senescence bypass 
event needs to be supplemented by a tumor initiation event 
for a tumor to develop, and such tumors may be more 
aggressive/malignant due to the defective senescence bar-
rier, allowing the tumor (precursor) cell to instantly progress 
to phase III and instigate genomic instability.

Conclusion

Our knowledge on the molecular events driving cancer has 
grown exponentially over the years. This review has aimed 
to put this new knowledge into the perspective of the tem-
poral molecular pathogenesis of glioma, starting from the 
first aberrant cell all the way to a symptom-causing glioma. 
To this end we have combined what is known on gene (mal)
function, tumor evolution, genomic instability and telomere 
maintenance to develop a model of gliomagenesis. This 
model describes five sequential phases cancer cells undergo 
during their gliomagenesis. We speculate that transitions 
from one phase to the next can be characterized by acquisi-
tion of tumor-driving events that sequentially contribute to 
the hallmarks of cancer as previously proposed, including 
proliferation, evasion of apoptosis and limitless replicative 
potential [79, 80]. Our model is a simplified abstraction 
of what may be the truth and new insights will refine and 
improve our understanding. Meanwhile, we hope that our 
model will help foster hypotheses leading to new insights 
into the molecular life history of glioma that will help iden-
tify convincing therapeutic vulnerabilities.
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