
ORIGINAL INVESTIGATION

Effects of acute tryptophan depletion on affective processing
in first-degree relatives of depressive patients and controls
after exposure to uncontrollable stress

Christine Firk & C. Rob Markus

Received: 8 November 2007 /Accepted: 25 February 2008 /Published online: 13 June 2008
# The Author(s) 2008

Abstract
Rationale Individuals with a family history of depression
may be more likely to develop depression due to an innate
vulnerability of their serotonergic system. However, even
though serotonergic vulnerability may constitute a risk factor
in the development of depression, it does not seem to be
sufficient to cause a depressive episode. Based on previous
data, it is suggested that stress may be a mediating factor.
Objectives This study examined the role of serotonin (5-
HT) in stress coping in individuals with or without a family
history of depression.
Materials and methods Nineteen healthy first-degree rela-
tives of depressive patients (FH+) and 19 healthy controls
without a family history of depression (FH−) were tested in
a double-blind placebo-controlled design for affective
processing under acute stress exposure, following acute
tryptophan depletion (ATD) or placebo.
Results Significant negative effects were found of stress on
affective processing in FH− and FH+. In addition, FH−
responded slower to positive words after stress only following
ATD, whereas FH+ responded marginally slower under stress
already after placebo and before stress following ATD.
Conclusion Acute stress exposure reduces positive affec-
tive bias; supporting the role of stress as an important
predecessor in the development of depression. Furthermore,

FH+ may be more susceptible than FH− to the negative
effects of stress as well as to the negative effects of ATD.
The results support the assumption that the 5-HT system is
involved in stress resilience and may be more vulnerable in
first-degree relatives of depression.
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Introduction

First-degree relatives of depressive patients have a two- to
threefold increased risk of developing depression (Kelsoe
2005; Sullivan et al. 2000). Although environmental factors
play a role, adoption and twin studies indicate that the
heritability ranges between 31% and 41% (Sullivan et al.
2000). Although the neurobiological equivalent of this
genetic predisposition remains unclear, the brain serotonergic
system seems to be involved (Maes and Meltzer 1995;
Owens and Nemeroff 1994). Evidence comes from studies
reporting lower plasma serotonin (5-HT) precursor availabil-
ity of tryptophan for the brain, reduced cerebrospinal fluid
(CSF) concentration of the serotonin metabolite 5-hydrox-
yindoleacetic acid (5-HIAA) and decreased platelet 5-HT
uptake in depression, suggesting diminished brain 5-HT
function (Maes and Meltzer 1995; Neumeister et al. 2004b).

Acute tryptophan depletion (ATD) is commonly used to
study serotonergic vulnerability (for a review, see Fusar-Poli
et al. 2006; Young et al. 1985). The intervention reduces
brain 5-HT through intake of a tryptophan-free amino acid
mixture which reduces tryptophan (TRP) relative to the sum
of the other large neutral amino acids (LNAAs) with which
TRP competes for brain uptake (i.e. Fernstrom and Wurtman
1971; Gessa et al. 1974; Maes and Meltzer 1995; Moja et al.
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1991). Reduced 5-HT neurotransmission after ATD is
indicated by decreased brain 5-HT synthesis and release as
well as by lower concentrations of cerebrospinal fluid 5-
hydroxyindoleacetic acid (5-HIAA) (Carpenter et al. 1998;
Nishizawa et al. 1997; Williams et al. 1999).

Acute TRP depletion is found to reverse antidepressant-
induced remission (Booij et al. 2005; Delgado et al. 1990,
1999) and induces depressive symptoms in remitted depres-
sive patients (Booij and Van der Does 2007; Hayward et al.
2005; Moreno et al. 2000, 2006; Neumeister et al. 2004a),
whereas in healthy subjects, no or only modest effects are
found (e.g., Benkelfat et al. 1994; Bhatti et al. 1998; Evers
et al. 2005; Fusar-Poli et al. 2007; Klaassen et al. 1999; Ruhe
et al. 2007). However, depressogenic effects of ATD seem to
be mediated by family history for depression. Healthy
subjects with a positive family history (FH+) of depression
show greater depressed mood after ATD than healthy
controls without a family history (FH−) (Benkelfat et al.
1994; Klaassen et al. 1999; Neumeister et al. 2002; Sobczak
et al. 2002a; van der Veen et al. 2007). Furthermore, mood
lowering effects of ATD may depend on the 5-HT transporter
genotype, a gene-linked polymorphic region (5-HTTLPR)
with two functional variants (Neumeister et al. 2002, 2006;
Roiser et al. 2007; Walderhaug et al. 2007) that has been
shown to modulate the vulnerability to depression (Caspi
et al. 2003). These findings support the assumption of a 5-
HT vulnerability factor for depression in FH+ increasing
susceptibility to 5-HT alterations.

Even though serotonergic vulnerability may constitute a
likely risk factor in the development of depression, it does
not seem to be the sole contributor. Recent studies revealed
that stress may be an important mediating factor. Stressful
life events often precede the onset of depression (Brown
et al. 1987; Heim and Nemeroff 2001; Van Praag 2004) and
individuals with a genetic 5-HT vulnerability respond more
readily to stressful life events with depressive feelings than
individuals without a genetic vulnerability (Caspi et al.
2003). Furthermore, there is considerable evidence for
complex interactions between the serotonergic system and
neuroendocrine stress mechanisms (Van Praag 2004) and 5-
HT is involved in the initiation and termination of the stress
response (Dinan 1996; Fuller 1996; Lefebvre et al. 1992).
Acute stress increases brain 5-HT turnover (e.g., Davis
et al. 1995; De Kloet et al. 1982; De Kloet et al. 1983) as a
biological mechanism for stress adaptation (Nuller and
Ostroumova 1980; Van Praag et al. 2004), whereas
dysfunctional brain 5-HT is found to reduce HPA function
and stress adaptation (Maes et al. 1991; Seckl and Fink
1991). In addition, brain 5-HT augmentation is found to
reduce the negative effects of stress on cortisol stress-
responses and depressive symptoms in healthy but stress-
susceptible subjects compared to controls (Markus et al.
2000a, 2002). In accordance, Richell et al. (2005) reported

that even healthy subjects are susceptible to the mood-
lowering effects of stress exposure following ATD.

Based on these previous findings, FH+ individuals are
thought to be prone to the negative affective effects of stress
due to serotonergic vulnerability. In addition, this may even
be more profound after ATD (Firk and Markus 2007).

Depression is associated with reduced attention, memory
and executive functioning (Elliott et al. 1996; Paelecke-
Habermann et al. 2005; Porter et al. 2003; Tavares et al.
2003); among which attention bias towards negative
information has frequently been demonstrated (e.g., Lim
and Kim 2005; Rinck and Becker 2005). Depressed patients
respond slower to happy words compared to sad words
during affective go/no-go tasks (Erickson et al. 2005;
Murphy et al. 1999) and this was also observed in healthy
individuals following ATD (Murphy et al. 2002).

The present study investigated whether first-degree
relatives of depressive patients (FH+), as compared with
subjects without a family history of depression (FH−), are
more prone to the negative effects of stress exposure and
TRP depletion on affective processing. Based on previous
data (Murphy et al. 2002), it is hypothesized that stress,
particularly after ATD, would slow down responses to
positive words and that this is more pronounced in FH+.

Materials and methods

Subjects

Maastricht University students (n=200) completed a ques-
tionnaire package concerning personal details. Students
reporting having at least one first-degree relative diagnosed
with major depression were invited for a personal interview,
as well as students reporting no first and second-degree
relative with a depressive disorder. To assess FH, all
participants were interviewed by a trained psychologist
with an abbreviated version of the Family History Research
Diagnostic Criteria (FHRDC) (Endicott et al. 1975). In
addition, participants meeting the FH+ inclusion criteria
were asked whether relatives could be contacted for
confirmation.

Nineteen healthy first-degree relatives of depressive
patients (FH+) and 19 healthy controls without a family
history of depression (FH−) were selected for the experi-
ment. A structured psychiatric interview (MINI) (Sheehan
et al. 1994) was carried out to exclude psychiatric disorders.
Furthermore, the Symptom Checklist SCL-90 (Arrindell
and Ettema 1986) and the Beck Depression Inventory
(BDI) (Beck et al. 1961) were filled in to verify the absence
of depressive and general psychopathologic symptomatol-
ogy. The FH− group and the FH+ group did not differ with
respect to sex, age, BMI and BDI, and SCL-90 scores (all
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p>0.05). Demographic characteristics are presented in
Table 1.

Participants were excluded if they reported chronic and
current illness; history of psychiatric or medical illness;
medication use; metabolic, hormonal, or intestinal diseases;
irregular diets; or deviant eating habits and excessive
alcohol or drug use. Participants’ health was checked with
standardized medical questionnaires that were evaluated by
a trained doctoral-level psychologist under the supervision
of a medical doctor.

Participants included in the study revealed normal body-
mass indexes (BMI, between 19 and 26 kg/m2) were non-
smokers and were requested not to use alcohol or any kind
of drugs before and during the study. Inclusion criteria for
FH+ were the presence of at least one first-degree relative
with major depression according to the DSM-IV criteria,
whereas inclusion criteria for FH− include absence of a
first- or second-degree relative with major depression.

The study was approved by the Medical Ethics Com-
mittee of the Academic Hospital Maastricht and complied
with the requirements of the European Council of Good
Clinical Practice (GCP) adopted by the 52nd World
Medical Association General Assembly, Edinburgh, Scot-
land (October, 2000). All subjects gave their informed
consent and were paid 125 Euros for participation.

Design

A placebo-controlled, double-blind, crossover design was
used. During two experimental sessions, subjects were
monitored for affective processing before and after acute
stress exposure either following intake of a TRP-free (ATD)
or a TRP-containing placebo (PLC) amino acid mixture.
The order of presentation of the ATD and PLC condition
was counterbalanced within groups and both experimental
sessions were separated by at least 1 week. Female subjects
were tested in the follicular phase of their menstrual cycle
or when actually taking oral contraceptives.

Procedure

Eligible participants attended a briefing at Maastricht
University to receive information about the study and to
be scheduled for the experiment.

On each experimental morning, two subjects arrived at
the laboratory at 08:30 am and 10:00 am, respectively.
Subjects fasted overnight; only water or tea without sugar
was permitted. After arrival, a first blood sample was taken
followed by a first version of the affective go/no-go task to
make subjects familiar with the test condition. Then, a first
measurement of vegetative side effects was conducted
followed by administration of the amino acid mixture (t0).
Four and a half hours later (t4.5), a second blood sample
was taken followed by a second measure of vegetative side
effects. Then (t5) participants conducted a second version of
the affective go/no-go task followed by the stress task.
After completion of the stress task, a third version of the
affective go/no-go task was administered.

Between intake of the amino acid mixture and exposure to
laboratory tasks, the subjects were able to study or to read
magazines in a separated private room. They had free access
to water and decaffeinated tea. Two hours after administration
of the amino acid mixture, they received a standardized
protein-poor lunch as previously used in ATD studies (Riedel
et al. 1999; Sobczak et al. 2002a, b). At the end of each test
day, subjects received a high protein snack and bananas,
which are natural sources of L-tryptophan to facilitate a quick
recovery from possible negative effects of ATD.

Acute tryptophan depletion

A reduction in brain 5-HT was accomplished by ATD
through the use of a tryptophan-free collagen-protein (CP)
amino acid drink (Blokland et al. 2004; Evers et al. 2005).
To obtain a drinkable mixture, 100 g of the protein powder
was mixed with 200 ml of tap water and 20 ml syrup. The
placebo mixture was identical in composition but 1.2 g l-
TRP (Sigma, Zwijndrecht; The Netherlands) was added.
See Table 2 for the amino acid composition of the different
conditions (Evers et al. 2005).

This ATD method differs from the classic methodology
by including a gelatin-based hydrolyzed CP that contains
the entire range of amino acids (except for L-TRP) in the
form of peptides. After administration, these peptides are
decomposed into amino acids and the mechanism of
depletion is identical to the classic ATD method (Blokland
et al. 2004; Evers et al. 2005).

Stress exposure

The Markus–Peters computerized mental arithmetic task
(MPA) was used as an uncontrollable stress situation.

Table 1 Demographic characteristics of the FH+ group and FH−
group

FH+ FH−

Women 15 14
Men 4 5
Age 20.5 (2.1) 22.1 (3.6)
BMI 21.7 (2.2) 23.1 (2.5)
SCL-90 19.9 (17.9) 26.4 (23.6)
BDI 3.6 (3.6) 5.4 (4.2)

Values are mean (SD).
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Subjects were given eight successive 1-min trials during
which they had to solve a specific number of multiple
choice mental arithmetic problems (the criterion) under
time constraints, while exposed to continuous 75, 80, or
85 dB industrial noise presented through headphones. They
were led to believe that the intensity of the noise depended
on their performance; if they failed the criterion, noise
intensity was chosen by the computer during the next trial;
if they met the criterion, they could choose the intensity of
the noise. In fact, the criterion was always set at one sum
above what subjects could manage as calculated from the
average time per sum needed on previous trials. This task
has been demonstrated to induce psychological and
physiological stress (Markus et al. 1998, 2000a, b; Peters
et al. 1998).

Affective go/no-go paradigm

Amodified version of the affective go/no-go task described by
Murphy et al. (1999) was used to detect affective attentional
bias. In this task, happy and sad words are presented on the
screen one-by-one for 300 ms, followed by an interstimulus
interval of 900 ms during which participants must make or
withhold a response depending on word valence. The task
comprised two practice and 12 experimental blocks; each
containing nine happy words and nine sad words. Subjects
were instructed to respond either to happy or sad words
before each block and to respond as quickly as possible.

Every two blocks, the targets and the distractors changed;
words that were previously targets became distractors and
vice versa (SSHHSSHHSSHHSS or HHSSHHSSHHSSHH).
Due to this arrangement, shift blocks and non-shift blocks
could be studied. The 27 happy words and 27 sad words
were derived from previous studies (e.g., Lim and Kim 2005;
Rinck and Becker 2005) and were matched on frequency,
word length, and valence. Every word was presented twice
as target and twice as distractor; once in a shift block and
once in a non-shift block.

Vegetative side effects

In order to measure possible side effects of the amino acid
mixtures, a list (five-point scales) of 10 vegetative side
effects was completed before and 4.5 h (t4.5) after intake.
The list contained the following items: feeling cold, feeling
hot, dizziness, transpiration, bulled vision, nausea, palpita-
tions, dry mouth, and abdominal complaints.

Biochemical analyses

Blood samples were collected in 5 ml vacutainer tubes
containing sodium heparine for amino acids and were
centrifuged at 5,000 rpm for 10 min at 4°C. Subsequently,
the supernatants were directly stored at −80°C until
analysis. Before storage, the supernatant for amino acid
determination (100 μl) were mixed with 4 mg sulfasali-
cylic acid. Analyses were conducted with HPLC, making
use of a 2–3 μm Bischof Spherisorb ODS II column. The
plasma tryptophan ratio was calculated by dividing the
tryptophan concentration by the sum of the other large
neutral amino acids, i.e. valine, isoleucine, leucine, tyro-
sine, and phenylalanine.

Statistical analysis

The main research questions were analyzed by repeated
measures analyses of variance (ANOVAs) by using the
General Linear Model (GLM: SPSS 12.0 for Windows)
with one between-subjects factor family history (FH+
versus FH−) and the within-subjects factors treatment
(ATD versus PLC), stress (pre-stress versus post-stress),
or time (t0 versus t4.5) on the several dependent measures.
Furthermore, in the analyses of the affective go/no go
performance target valence (sad versus happy) and shift
(shift versus non-shift condition) were added as within-
subjects factors. Although we counterbalanced for order
and gender, these factors were preliminary taken as
covariates. However, since none of these factors contribut-
ed to (or changed) any of our findings, order of treatment
and gender were left out of the final analyses. All statistics
are evaluated at a significance level of 5% (two-tailed).

Table 2 Composition (grams) of the gelatin-based protein (all values
are g per 100 g of each mixture)

ATD PLC

Phenylalanine 1.9 1.9
Tyrosine 0.4 0.4
Valine 2.1 2.1
Leucine 3 3
Isoleucine 1.4 1.4
Tryptophan 0.1 1.3
Serine 3.1 3.1
Glycine 22.5 22.5
Histidine 0.5 0.5
Arginine 8.8 8.8
Threonine 1.1 1.1
Alanine 9.3 9.3
Proline 13.3 13.3
Methionine 0.6 0.6
Cystein 0.2 0.2
Lysine 3.6 3.6
Hydroxyproline 12.1 12.1
Hydroxylysine 1.4 1.4
Aspartic acid + asparagines 9.3 9.3
Glutamic acid + glutamine 5.2 5.2
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Results

Plasma amino acids (TRP:LNAA ratio)

Repeated measures analysis of variance with FH (FH−
versus FH+) as between-subjects factor and treatment (ATD
versus PLC) and time (t0 versus t4.5) as within-subjects
factors were carried out for total plasma TRP concentra-
tions and for the TRP:LNAA ratio. For TRP concentrations,
a significant treatment × time interaction was found [F
(1,36)=156.57, p<0.001] reflecting a decrease from t0 to
t4.5 by 62% after ATD and an increase from t0 to t4.5 by
13% after PLC administration (see Fig. 1). Analysis of the
plasma TRP:LNAA ratio revealed a significant treatment ×
time interaction [F(1,36)=158.77, p<0.001]. As indicated
in Fig. 1, there was a 65% decline in plasma TRP:LNAA
after ATD and an increase from t0 to t4.5 by 8% after PLC.
No other main or interaction effects were found including
FH.

Vegetative side effects

Repeated measures analysis of variance with FH (FH−
versus FH+) as between-subjects factor and treatment (ATD
versus PLC) and time (t0 versus t4.5) as within-subjects
factors on the total score of vegetative side effects did not
reveal any significant main or interaction effects.

Affective go/no-go performance

Mean values and standard deviations are presented in
Table 3. Repeated measures ANOVAs were carried out
with FH (FH− versus FH+) as between-subjects factor and
treatment (ATD versus PLC), target valence (sad versus
happy), shift (shift versus non-shift condition), and stress
(pre-stress versus post-stress) as within-subjects factors on
reaction time, errors, and omissions. To investigate changes
from baseline to pre-stress (to explore acute effects of
treatment), we repeated the statistical analyses and replaced
the WS factor stress (pre-stress versus post-stress) with the
WS factor time (baseline versus pre-stress). However, as we
did not find any effect of treatment, these analyses are not
described. Furthermore, no baseline differences were found
between test days.

Reaction Time Analysis of reaction time (RT) data revealed
a significant valence × stress interaction [F(1,36)=5.42, p=
0.026] reflecting increased RTs for happy words post-stress
compared to pre-stress [t(37)=2.09, p<0.0.043] but not for
sad words [t(37)=1.39, p=0.17] (Fig. 2). However, this
interaction was qualified by a significant 5-way FH ×
treatment × stress × valence × shift interaction [F(1,36)=
3.99, p=0.05]. Further analysis for the shift and non-shift
condition separately revealed a significant FH × treatment ×
stress × valence interaction for the non-shift condition only
[F(1,36)=6.36, p=0.016]. In the non-shift condition, there
was a significant FH × treatment × stress interaction for
happy words only [F(1,36)=6.69, p=0.014]). As visualized
in Fig. 3, the FH− group showed slower RTs post-stress
compared to pre-stress only following ATD [t(18)=2.57, p=
0.019] but not after PLC [t(18)<1], whereas the FH+ group
showed slower RTs post-stress compared to pre-stress
independent of treatment and slower RTs already following
ATD (before stress onset). These latter changes in the FH+
group, however, did not approach significance by further
post-hoc testing (P between 0.07 and 0.11).

Errors Analysis of error data revealed a main effect of shift
[F(1,36)=18.81, p<0.001]; indicating significant more
errors during shift blocks compared to the non-shift blocks.
Analysis also revealed a main effect of stress (F(1,36)=
8.42, p=0.006), indicating a decrease in the number of
errors post-stress compared to pre-stress. There were no
effects of FH, treatment, or valence.

Omissions Analysis of omission data revealed a significant
stress by valence interaction [F(1,36)=7.57, p=0.009],
indicating that significant more omissions were made pre-
stress compared to post-stress for happy words [t(37)=2.31,
p=0.027] but not for sad words [t(37)=1.16, p=0.25].
There were no effects of FH or treatment.
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Discussion

The goal of the present study was to assess affective
processing in individuals with a positive (FH+) or negative
(FH−) family history of depression following ATD or
placebo under acute stress exposure. Tryptophan depletion
lowered the plasma TRP:LNAA ratio by 65%, which is
comparable with previous studies using the collagen–
protein (Evers et al. 2005) or classic ATD mixture (Van
der Does 2001).

Although psychological or physiological stress responses
were not measured in the current study, significant stress-
induced emotional, cognitive, hormonal, and electrophysio-
logical changes have been reported with the MPA task (e.g.,
Markus et al. 2002; Peters et al. 1998). Furthermore,
reaction times significantly decreased after the stress task,
further supporting that stress was successfully induced in
the current study.

Analysis of affective processing revealed a stress by
valence interaction reflecting reduced responsiveness to
happy words after acute stress exposure. Previous findings
already demonstrated slowed or diminished responses to
happy words in depressed patients compared to healthy
controls (Deveney and Deldin 2004; Erickson et al. 2005;
Murphy et al. 1999), which may reflect lower mood and
subsequent increased interference from sad distractors.
Current findings indicate that a positive affective bias
normally found in healthy individuals may also be
diminished by acute stress exposure, which may be due to
a stress-induced lowering of mood (van der Veen et al.
2007). This further supports the hypothesis of stress as an
important predecessor in the development of depression
(Brown et al. 1987; Heim and Nemeroff 2001; Van Praag

2004). Current data further suggest that the negative effects
of stress on (reducing) positive affective bias may depend
on family history of depression and may be influenced by
ATD and task-shifting. The FH− group showed stress-
induced slowed responses to happy words in non-shift
blocks only following ATD, whereas the FH+ group
roughly seemed to exhibit such reductions already after
ATD (which was not found after PLC) as well as after stress
following PLC.

The present findings suggest that acute stress induces a
negative affective bias and that FH− subjects may be more
stress-resilient than FH+ subjects and may become suscep-
tible to stress especially after ATD. Interestingly, although
task shifting requires more cognitive flexibility (e.g.,
Monsell 2003), the negative affective bias (slowed
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Fig. 2 Mean RTs (SE) for happy and sad targets before and after
stress exposure collapsed over treatment and family history

Table 3 Affective go/no go data

FH+ FH−

PLC ATD PLC ATD

Pre-stress Post-stress Pre-stress Post-stress Pre-stress Post-stress Pre-stress Post-stress

Happy shift RTs 512 (78) 500 (79) 487 (98) 497 (72) 497 (61) 514 (55) 497 (53) 504 (60)
Errors 2.8 (2.4) 2.2 (1.8) 3.2 (2.6) 3.3 (3.8) 3.1 (2.6) 2.7 (2.2) 3.2 (2.6) 3.3 (3.8)
Omissions 2.4 (2.8) 2.4 (2.6) 3.3 (4.6) 2.3 (3.0) 1.3 (1.3) 1.2 (2.0) 1.1 (1.2) 1.3 (2.5)

Happy non-shift RTs 486 (77) 522 (69) 521 (46) 518 (74) 496 (61) 492 (51) 489 (58) 520 (59)
Errors 2.5 (1.9) 1.7 (1.2) 1.8 (1.6) 2.6 (2.1) 2.2 (1.8) 1.9 (2.5) 2.1 (2.3) 2.1 (2.0)
Omissions 3.1 (3.5) 1.6 (1.7) 1.7 (1.4) 1.9 (2.7) 1.7 (2.1) 1.6 (1.4) 1.6 (2.1) 0.8 (1.1)

Sad shift RTs 514 (72) 499 (63) 511 (57) 489 (95) 508 (98) 506 (46) 522 (58) 504 (59)
Errors 3.2 (2.7) 2.2 (2.7) 3.5 (4.4) 2.7 (2.9) 2.4 (2.1) 1.4 (1.6) 2.4 (2.5) 2.4 (1.9)
Omissions 1.9 (2.9) 2.1 (2.4) 1.9 (3.0) 2.7 (4.0) 1.4 (2.1) 1.1 (1.2 0 0.5 (0.8) 1.4 (2.2)

Sad non-shift RTs 519 (52) 510 (65) 517 (51) 507 (42) 512 (48) 526 (58) 514 (53) 515 (57)
Errors 2.5 (2.3) 2.2 (1.6) 2.0 (1.6) 2.1 (2.5) 1.5 (1.7) 1.6 (1.7) 2.3 (1.9) 1.7 (1.9)
Omissions 1.7 (1.9) 1.6 (2.1) 1.7 (1.6) 2.0 (2.6) 0.8 (1.1) 0.8 (1.2) 1.0 (1.4) 1.1 (1.2)

Values represent mean (SD)
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responses to happy words following stress and ATD) could
only be seen for the non-shift blocks but not for the shift
blocks. Although hypothetical, the increased negative
affective bias following stress as well as ATD may be less
profound the more attention or alertness is required (shift
blocks) and may be increased in situations in which less
attention is required (non-shift blocks). Previous ATD
studies with healthy subjects revealed mixed results; either
reporting negative affective bias following ATD for shift
and non-shift blocks (Murphy et al. 2002) or no effects at
all (Roiser et al. 2007; Rubinsztein et al. 2001). Current
data may explain these inconsistent findings by the
mediating influence of stress. Individuals with a family
history of depression may already be prone to the negative
effects of ATD and may also be more negatively affected by
stress in the absence of ATD. These findings should of
course be interpreted with caution since they appear to be
rather modest (also depending on task-shifting and valence)
and do not remain significant after repeated post-hoc testing
in the separated small FH+ group. Yet, they nicely comply
with—and elaborate on—previous findings and suggestions
of an innate 5-HT vulnerability in FH+ (Benkelfat et al.
1994; Klaassen et al. 1999; Sobczak et al. 2002a, b). Hence,
serotonin plays an important role in stress coping, and clear
interactions appear between 5-HT and the neuroendocrine

stress system (Porter et al. 2004). Acute stress increases 5-
HT neurotransmission (Davis et al. 1995; De Kloet et al.
1982, 1983), which promotes stress adaptation by mediat-
ing negative feedback control of cortisol on the HPA axis
(Nuller and Ostroumova 1980; Van Praag 2004). Increased
5-HT under stress will be diminished after ATD and
subsequently may increase stress vulnerability. Richell et
al. (2005) reported greater negative mood after stress in
healthy subjects following ATD that was attributed to
reduced function of the 5-HT-mediated resilience system
and subsequent enhanced stress susceptibility. In the studies
of Markus et al. (2000a, 2002), 5-HT augmentation was
found to enhance resilience to stress only in chronically
stressed (healthy) subjects probably by compensatory
stress-induced 5-HT receptor sensitization. Whereas 5-HT
challenge may particularly improve stress coping in 5-HT
vulnerable subjects, ATD may lower stress coping also in
non-vulnerable subjects due to a drastic depletion in brain
TRP and subsequent 5-HT function.

One limitation of the present study is that we did not
include mood changes. It has been suggested that ATD-
induced changes in affective processing are mediated by
reduced mood (van der Veen et al. 2007) which may also
hold for stress-induced changes. However, it remains
questionable whether ATD- or stress-induced changes in
affective processing are necessarily mediated by subjective
mood changes. Murphy et al. (2002) reported a negative
affective bias in the affective go/no-go following ATD in
healthy volunteers but did not find any changes in mood.
Therefore, measuring affective processing may be a more
sensitive method to measure stress- or ATD-related
changes. Yet, in further studies it would, nevertheless, be
interesting to include changes in explicit mood experiences
as an additional affective measure. A second limitation may
be that we did not contact family members to confirm
diagnoses; however, participants were interviewed by a
trained psychologist and to increase reliability, all partic-
ipants were asked whether relatives could be contacted to
confirm diagnoses.

In conclusion, acute stress exposure reduces positive
affective bias supporting the role of stress as an important
predecessor in the development of depression. However,
these negative effects of stress may depend on family
history of depression: FH+ may be more susceptible to the
negative effects of stress and ATD on affective processing
than FH−. Nevertheless, the tentative explanation that FH+
is more prone to stress and ATD due to an innate
serotonergic vulnerability merits further research.
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