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Background: Hepatocellular carcinoma (HCC) is one of the most common

cancers with high mortality in the world. HCC screening and diagnostic models

are becoming effective strategies to reduce mortality and improve the overall

survival (OS) of patients. Here, we expected to establish an effective novel

diagnostic model based on new genes and explore potential drugs for HCC

therapy.

Methods: The gene expression data of HCC and normal samples (GSE14811,

GSE60502, GSE84402, GSE101685, GSE102079, GSE113996, and GSE45436)

were downloaded from the Gene Expression Omnibus (GEO) dataset.

Bioinformatics analysis was performed to distinguish two differentially

expressed genes (DEGs), diagnostic candidate genes, and functional

enrichment pathways. QRT-PCR was used to validate the expression of

diagnostic candidate genes. A diagnostic model based on candidate genes

was established by an artificial neural network (ANN). Drug sensitivity analysis

was used to explore potential drugs for HCC. CCK-8 assay was used to detect

the viability of HepG2 under various presentative chemotherapy drugs.

Results: There were 82 DEGs in cancer tissues compared to normal tissue.

Protein–protein interaction (PPI), GeneOntology (GO), and Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment analyses and infiltrating immune

cell analysis were administered and analyzed. Diagnostic-related genes of

MT1M, SPINK1, AKR1B10, and SLCO1B3 were selected from DEGs and used

to construct a diagnostic model. The receiver operating characteristic (ROC)

curves were 0.910 and 0.953 in the training and testing cohorts, respectively.

Potential drugs, including vemurafenib, LOXO-101, dabrafenib, selumetinib,

Arry-162, and NMS-E628, were found as well. Vemurafenib, dabrafenib, and

selumetinib were observed to significantly affect HepG2 cell viability.

Conclusion: The diagnostic model based on the four diagnostic-related genes

by the ANN could provide predictive significance for diagnosis of HCC patients,
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which would be worthy of clinical application. Also, potential chemotherapy

drugs might be effective for HCC therapy.
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Introduction

Hepatocellular carcinoma (HCC) is an increasingly serious

public health problem, and it is gradually becoming one of the

main causes of cancer mortality in the world (Villanueva, 2019).

As most cases of HCC occur in patients with underlying chronic

liver diseases like hepatitis B virus (HBV) infection and varying

degrees of cirrhosis, the diagnosis of HCC in humans is

challenging (Vogel and Saborowski, 2020; Yang and

Heimbach, 2020). Most HCC patients are diagnosed when

they have obvious clinical symptoms appear or are at

advanced stages of the disease, which reduces or even

precludes the effective use of curative therapy (Ayuso et al.,

2018; Rastogi, 2018). Therefore, identifying candidate

biomarkers and constructing novel diagnostic models could be

useful in distinguishing HCC patients from normal people,

which would improve the overall survival (OS) of HCC patients.

In the clinic, the detection of serum tumor markers has been

widely used for its advantages of the noninvasive method (Han

et al., 2020). However, the information provided by the

conventional assays for carcinoembryonic antigen (CEA) and

carbohydrate antigen 19-9 (CA19-9) is not specific or sensitive

enough (Cui et al., 2016; Edoo et al., 2019). Thus, developing

novel diagnostic biomarkers is necessary for early detection of

HCC. Meanwhile, HCC patients could not get timely treatment

because of multidrug resistance or might have suffered from

severe drug-related adverse effects from chemotherapy (Zhang

et al., 2016). Calling for novel and effective drugs for HCC

patients is an eternal theme of the times.

With the improvement of bioinformatics technology,

differentially expressed genes (DEGs) by systematic

bioinformatics analysis could be employed to select candidate

genes and underlying pathways that were related to the

occurrence and progression of HCC for diagnosis (Wang

et al., 2018; Li et al., 2021). Moreover, an artificial neural

network (ANN) is a classic machine learning method, which

is often used for modeling construction (Zhong et al., 2019; Mai

et al., 2020). In this study, we first retrieved transcriptional

expression data of patients with HCC patients from GEO

datasets and found 82 DEGs between normal and HCC

tissues. Next, the possible functional mechanisms were

explored by protein–protein interaction (PPI), Kyoto

Encyclopedia of Genes and Genomes (KEGG), and Gene

Ontology (GO) enrichment analyses. Then, metallothionein

1M (MT1M), solute carrier organic anion transporter family

member 1B3 (SLCO1B3), serine protease inhibitor Kazal type

1 gene (SPINK1), and aldo–keto reductase family 1B10

(AKR1B10) were found and used as candidate biomarkers to

construct an artificial neural network (ANN) model. Further

validation of diagnostic-related genes was performed by QRT-

PCR in HepG2 and HL7702 cell lines. The potential drug for

HCC therapy, including vemurafenib, LOXO-101, dabrafenib,

selumetinib, Arry-162, and NMS-E628, were found based on four

diagnostic-related genes. Vemurafenib, dabrafenib, and

selumetinib might have a broad application prospect in HCC.

Methods

Datasets

The RNAmicroarray data of HCC samples and corresponding

normal liver tissue were retrieved from the GEO dataset (https://

www.ncbi.nlm.nih.gov/geo/). The datasets of GSE14811,

GSE60502, GSE84402, GSE101685, GSE102079, GSE113996,

and GSE45436 were downloaded and divided into training and

testing cohorts. The “sva” package of R was used to ensure that the

GEO datasets were batch effects-corrected before bioinformatics

analysis to avoid generating less reliable results (Leek et al., 2012).

The first six datasets were classified as training cohorts and used

for diagnostic model construction. The latter was classified as a

testing cohort and used for validation.

Identification of differentially expressed
genes

Normalization of the count matrix was performed with the

trimmed mean of the M-values normalization method of the edgeR

(R package). The limma R package was used to identify differentially

expressed genes (DEGs) in the construction cohort. The screening

standards of DEGs for functional enrichment analysis were |log2FC|

> 1 and FDR<0.05. The screening standards of DEGs for diagnostic-
related genes used for ANNmodel establishment and drug-sensitive

analysis were |log2FC|> 2 and FDR<0.05.

Functional enrichment analysis

For protein–protein interaction (PPI), we used the String

(Protein–Protein Interaction Networks, V: 10.5) database (https://

string-db.org/). Kyoto Encyclopedia of Genes and Genomes
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(KEGG) andGeneOntology (GO) enrichment analyses of theDEGs

were performed by using the R clusterProfiler package, including the

packages of “GOplot,” “ggplot2,” “stringi,” “colorspace,” and

“digest”. Then, the pathway and process enrichment analyses

were carried out using Metascape (Metascape, http://metascape.

org). As for infiltrating immune cell analysis, the R package of

“e1071,” “corrplot,” and “vioplot” were used for analysis and

depicting differences. The 22 representative immune cells and

gene expressions in every kind of immune cell to distinguish

immune cells from each other are shown in Supplementary

Table S1.

Construction and validation of the
diagnostic model

The artificial neural network (ANN) classifier was a feed-

forward neural network with three layers, which included input

nodes, a hidden layer, and output nodes. Themulti-layer perceptron

method was incorporated, and training of the network was based on

the feed-forward back propagation method to adjust the internal

factors of the network, which reduced the overall errors during the

repeated development cycles. The ANN model learned to connect

the relations between the input and output layers by adjusting the

weights and biases of the hidden layer. Here, we used the training

cohort (GSE14811, GSE60502, GSE84402, GSE101685, GSE102079,

and GSE113996) to establish the ANN diagnostic model, and the

testing cohort (GSE45436) was used as the validation one. There

were 221 normal tissues and 284 HCC tissues in the training cohort,

while 41 normal tissues and 93 HCC tissues were in the testing

cohort.

Cells and cell culture

The HepG2 cell line (Human HCC) and HL7702 (human

normal cells) were purchased from the Chinese Academy of

Medical Sciences (Beijing, China). The HepG2 cells were grown

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 10% fetal bovine serum (Life Technologies, Inc., Carlsbad,

CA, United States), 1 mM sodium pyruvate, 0.1 mM non-

essential amino acids, and 2 mM L-glutamine at 37°C and in

5% CO2 in a humidified incubator. The HL7702 cells were

cultured in RPMI-1640 medium (Gibco, Rockville, MD,

United States) supplemented with 10% Fetal Bovine Serum

(Life Technologies, Inc., Carlsbad, CA, United States) at 37°C

in a humidified 5% CO2 atmosphere.

Quantitative real-time PCR

Here, we used HepG2 and HL7702 to verify the expression

of diagnostic genes. The total RNA was isolated by TRIzol

reagent (Life Technologies Corporation, Carlsbad, CA, United

States) under the manufacturer’s s directions. Then, 0.8 μg

mRNA was used for synthesis of 20 μL cDNA using

Superscript II reverse transcriptase and random hexamers

(Invitrogen, Carlsbad, CA, United States). Q-RT PCR was

further performed on an ABI PRISM 7300 Sequence Detection

System with SYBR Green PCR Master Mix (Applied

Biosystems). The primers used in this study were MT1M

(forward 5′-ATTGAATTCGGATGGACCCCAACTGCTC-
3′, reverse 5′-ATTCTCGAGTCAGGCACAGCAGCTG-3′),
SLCO1B3(forward 5′-TCATAAACTCTTTGTTCTCTG
CAA-3′, reverse 5′-GTTGGCAGGCATTGTCTTG-3′),
SPINK1 (forward 5′-AACACTGGAGCTGACTCCCT-3′,
reverse 5′-ATCAGTCCCACAGACAGGGT-3′), and

AKR1B10 (forward 5′-CATATCCAGAGGAATGTGATT
GTCA-3′, reverse 5′- AGACCTGAATGTTCTCAACAA

TGC-3′). GAPDH was the internal comparison. The mRNA

expression of relative genes was calculated using the 2−ΔΔCt
method with normalization to GAPDH expression.

Drug-sensitive analysis of the gene
signatures

The transcriptional expression of NCI-60 human

cancer cell lines was downloaded from the CellMiner

project page (https://discover.nci.nih.gov/cellminer).

Pearson’s correlation analysis was performed to

determine the association between diagnostic genes and

drug sensitivity.

Cell counting kit-8 (CCK-8 assay)

CCK-8 assay was used to detect the viability of

HepG2 under various presentative chemotherapy

drugs. The cells were resuspended, seeded in a 96-well plate

(6 × 104 cells/well), cultured at an appropriate environment

(37°C, 5% CO2.), and continually incubated for 2 h with 10 ul

CCK-8 solution (Yeasen, Shanghai, China) added to each well.

The absorbance of each well was measured at 450 nm and

tested by a microplate reader (Bio-Rad, Hercules, CA). The

calculation of cell viability was processed as follows:

(Experimental group - blank control)/(Negative control -

blank control) ×100%. The blank groups contained DMEM

medium only, while the negative groups were set up with

HepG2 and HL7702 cultured in DMEM-F12 without

drugs. Vemurafenib (S1267) and Selumetinib (S1008) were

obtained from Selleck Chemicals (Houston, TX,

United States). Dabrafenib was purchased from Merck

(Kenilworth, NJ, United States). Binimetinib and

larotrectinib were provided by Med Chem Express

(Shanghai, China).
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Results

Identification of DEGs

A total of 221 normal samples and 284 tumor samples

obtained from the GEO dataset formed the training cohort

and participated in the identification of DEGs. The differential

expression of 82 genes between the normal and HCC

samples was identified by building a difference comparison

matrix. A heatmap and volcano map showed

47 downregulated genes and 35 upregulated genes (Figures

1A and B). The protein–protein interaction (PPI) network

and co-expression among these genes are presented in

Figure 1C.

Functional enrichment and pathway
analyses

KEGG and GO function enrichment analyses were

performed here. As for GO function analysis, three GO terms

were selected: molecular function (MF), cellular component

(CC), and biological process (BP). Expression analysis showed

that DEGs had the most uniquely enriched terms for organelle

FIGURE1
Identification of candidate genes (A)Heatmap of differential gene expression between normal andHCC samples in the training cohort, log2FC =
1. (B) Volcano map of differential gene expression between normal and HCC samples in the training cohort. (C) PPI network between these genes
(cutoff = 0.4).

FIGURE 2
Function analysis based on the DEGs (A)Heatmap of GO analysis. (B) Circos plot of GO terms based on DEGs. (C) Cluster profiler analysis of the
GO based on DEGs. (D) Barplot of KEGG terms based on DEGs. (E)Circos plot of KEGG terms based on DEGs. (F)Cluster profiler analysis of the KEGG
based on DEGs.
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fission, (mitotic) nuclear division, and spindle, which were

related to cell proliferation, cell division, and cell cycling. The

processes mentioned were substantially over-represented during

cancer transformation. Also, “oxidoreductase activity, acting on

the CH–CH group of donors” was enriched in the list

(Figure 2A). In Figures 2B, C, several up-regulated DEGs were

mainly enriched in processes of “nuclear division,” “organelle

fission,” etc., while down-regulated ones were mainly gathered in

“response to toxic substance”.

Furthermore, KEGG pathway enrichment analysis indicated

that DEGs were significantly enriched in “Cell cycle”, “Tyrosine

metabolism”, etc (Figure 2D). In Figures 2E and F, upregulated

DEGs were mainly enriched in the “Cell cycle” while

downregulated DEGs were gathered in several cancer-related

metabolism pathways.

To further validate and organize the results of KEGG and GO

function, the DEGs were functionally annotated using

Metascape. Metascape analysis showed the top 20 clusters of

enriched biological processes like “mitotic cell cycle process,”

“response to toxic substance,” etc (Figures 3A and B).

Identification and validation of diagnostic-
related genes

Further comparison analysis between liver tissues from

HCC and normal samples was identified by improving the

screening criteria of logFC into |log2FC|>2, and we got four

genes as candidate genes (Supplementary Figure S1). Next, a

random forest analysis was performed, and four diagnostic-

related genes (MT1M, SPINK1, AKR1B10, and SLCO1B3) were

ensured, which showed that two genes were upregulated and

two genes were downregulated (Figures 4A, B). The mean

decrease in the Gini coefficient was a measure of how each

variable contributed to the homogeneity of the nodes in the

resulting random forest. The values were all over 40, which

meant the four genes were of great importance in the

development of the ANN model (Figure 4B). The diagnostic-

related genes identified were shown in heatmap and could

divide the training cohort into two groups (Figure 4C).

Further validation of the diagnostic-related genes was

performed by QRT-PCR (Figure 4D).

FIGURE 3
Functional pathway analysis usingMetascape. (A)Network of enriched terms colored by the cluster identified in DEGs using theMetascape tool.
(B) Top 20 clusters of enriched biological processes identified in DEGs using the Metascape tool.
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Construction and validation of the
diagnostic model built on an artificial
neural network

We calculated the risk gene scores of the four genes in each

sample to get the median cutoff value and defined the upregulated

gene as “1” and the downregulated gene as “0” in each sample in the

training and testing cohorts (Supplementary Table S2). The

approximate ratio of the sample number in the training cohort

(Normal:221;HCC:284) and the testing cohort (Normal:41;HCC:93)

is 4 to 1. Then, the ANN method was performed to construct a

diagnosticmodel based on gene scores ofMT1M, SPINK1, AKR1B10,

and SLCO1B3 in each sample. The ANNmodel included three layers

(input, hidden, and output) in which the number of nodes in the

input layer and output layer was equal to 4 (number of input genes)

and 2 (control and treatment), respectively (Figure 5A). An ROC

curve was performed to detect whether the model could distinguish

the HCC sample from the normal sample, and the area under the

curve (AUC) was 0.910 (Figure 5B). In addition, the model worked

well in the testing cohort as the AUC of ROC was 0.953 (Figure 5C).

FIGURE 4
Identification of target genes. (A) Decision tree random forest tree. (B) Mean decrease in Gini coefficient of four target genes. (C) Heatmap of
diagnostic candidate DEGs (D) QRT-PCR of four target genes, **p < 0.01, ***p < 0.001.

FIGURE 5
Diagnostic model constructed by the ANN (A) Schematic representation of the ANN model developed to predict the risk of HCC and normal
samples. Thin lines represented synaptic weight <0; the thicker lines represented synaptic weight >0. (B) AUC of ROC curves verified the diagnostic
performance of the ANN model in the training cohort. (C) AUC of ROC curves verified the diagnostic performance of the ANN model in the testing
cohort.
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FIGURE 6
Analysis of infiltrating immune cells in the training cohort. (A) Heatmap of relative fraction of 22 representative immune cell population in the
Con (normal) and Treat (HCC) cohorts was displayed. (B) Boxplots showed the cores of 22 immune cells between the Con (normal) and Treat (tumor)
cohorts. (C) Heatmap of correlation between 22 immune cells.
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Infiltrating immune cell analysis

The relative percent of 22 representative immune cells in the

normal and HCC samples is presented in Figure 6A to show the

approximate change in the proportion of immune cells in the

training cohort. In Figure 6B, only “T cells CD4 naive”,

“Macrophages M0”, “Macrophages M1”, and “Macrophages

M2” displayed a substantial difference between the two groups

(Figure 6B). “MacrophagesM1”was the most significant one (p <
0.001) compared to “T cells CD4 naïve” (p = 0.021),

“Macrophages M0” (p = 0.038), and “Macrophages M2” (p =

0.017). Furthermore, Macrophages M2 showed a significant

negative correlation with Macrophages M1 and M0, while

Macrophages M0 and M2 were both upregulated in the HCC

group (Figures 6B, C).

The sensitivity of diagnostic-related gene
expression to presentative chemotherapy
drug

With the help of NCI-60, a public database of human cancer

cell lines, we determined the relationship between these

diagnostic genes and drug sensitivity and showed the top

16 correlation analyses according to the p-value. Figure 7

demonstrated that SPINK1 was sensitive to vemurafenib,

dabrafenib, selumetinib, ARRY-162 (binimetinib) (p < 0.001),

and SLCO1B3 was sensitive to LOXO-101(larotrectinib) (p <
0.001) and NMS-E628 (p = 0.002), while it was insensitive to

arsenic trioxide. In addition, the expression of MT1M was

insensitive to vinblastine, paclitaxel, and tyrothricin (p <
0.001). Moreover, AKR1B10 was insensitive to arsenic trioxide

(p = 0.001).

The cell viability under various
presentative chemotherapy agents

Here, we further validate the HepG2 under various

presentative chemotherapy drugs, including vemurafenib,

dabrafenib, selumetinib, binimetinib, and larotrectinib,

for they were sensitive to SPINK1 and SLCO1B3. We found

that the former three kinds of drugs could significantly

inhibit the cell viability of HepG2, while the latter two

could also work slightly without significant differences

observed (Figure 8).

FIGURE 7
Scatter plot of the relationship between diagnostic-related gene expression and drug sensitivity.
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Discussion

HCC is one of the most widespread problems facing by

society today, which still has a high mortality rate in China (Xie

et al., 20192020). Although comprehensive treatments have been

adopted, HCC is associated with poor OS due to late diagnosis

and high metastasis rate (Liu et al., 2020; Zhang et al., 2020).

Early diagnosis, reasonable assessment of prognosis, and timely

intervention are important for HCC patients, which encouraged

us to explore better relevant biomarkers and diagnostic models

(Beumer et al., 2021). Advancing molecular biology research

methods brought diagnostic evaluation based on new types of

biomarkers into reality. In this study, we observed 82 DEGs

between HCC and normal samples. Based on DEGs, we explored

the functional enrichment and pathway analyses and found that

they were likely to be involved in mitosis and oxidative stress,

which is consistent with the current latest research about cancer

proliferation, metastasis, and treatment resistance. Moreover, in

the infiltrating immune cell analysis, the unbalance of

Macrophage M1/M2 was observed in this study. Macrophage

M1 exerted cytotoxic function and eliminated early HCC, while

macrophage M2 exerted anti-inflammatory activities and

promoted cancer cell proliferation and invasion (Tian et al.,

2019). However, Macrophage M0 and Naive T cell amounts were

upregulated in the HCC cohort, while not all of them would

differentiate to maturity and interfere with HCC proliferation or

immigration. Thus, increasing the ratio of M1/M2 and the

number of mature T cells might be a potential treatment for

HCC (Dou et al., 2019; Yan et al., 2021).

To better select the candidate gene from DEGs for

diagnostic model construction, we employed a random forest

algorithm and foundMT1M, SLCO1B3, SPINK1, and AKR1B10

were the chosen ones. The mean decrease in the Gini coefficient

of the four target genes was all above 40, which meant they had

obvious specificity in DEGs. MT1M, SLCO1B3, SPINK1, and

AKR1B10 were cancer-related genes that were associated with

different human diseases, especially in HCC. The specific

biological functions of the four diagnostic-related genes

(MT1M, SLCO1B3, SPINK1, and AKR1B10) in HCC in the

recent 10 years are presented in Table 1.

FIGURE 8
Cell viability of HepG2 under various presentative chemotherapy agent treatment in 24 h. The absorbance of HepG2 under treatment of (A)
vemurafenib (5 μM), (B) dabrafenib (5 μM), (C) selumetinib (5 μM), (D) binimetinib (5 μM), and (E) larotrectinib (5 μM). *p < 0.05, ns = not significant.
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In this study, we found the four target genes could divide the

training cohort into two groups and have the same trend as in

previous research. We also confirmed the expression trend of the

four genes in HepG2 and HL7702 cell lines by QRT-PCR. Based

on the four diagnostic-related genes, the ANN diagnostic model

was developed and validated in GEO datasets. The ANN model

obtained the highest prediction performance and has been widely

used in various diseases to predict the population with high risk

(Kourou et al., 2015; Zhong et al., 2019; Li et al., 2020). Based on

the four diagnostic candidate genes, we successfully established a

diagnostic model as for AUC of ROC was 0.910 and 0.953 in the

training and testing cohorts, respectively, which meant it served

as a reliable prediction model in our study.

According to the four diagnostic-related genes, we

screened the potential drug that has a connection with

diagnostic genes by NCI-60. We found that SPINK1 was

sensitive to vemurafenib, dabrafenib, selumetinib, and

ARRY-162, and SLCO1B3 was sensitive to LOXO-101 and

NMS-E628. In addition, we further validated the cell viability

of HepG2 under various presentative chemotherapy drugs,

including vemurafenib, dabrafenib, selumetinib, binimetinib,

and larotrectinib and observed vemurafenib, dabrafenib, and

selumetinib might have a broad application prospect in HCC.

Vemurafenib was a small-molecule inhibitor of the oncogenic

v-raf murine sarcoma viral oncogene homolog B (BRAF)

kinase that was used for treatment of melanoma (Hyman

et al., 2015). However, increased SPINK1 secretion was

reported to be related to vemurafenib resistance in BRAF

V600E-mutant colorectal cancers, indicating the need to

target different gene variant subtypes of HCC during

chemotherapy (29193645). Vemurafenib was also noticed to

be the substrate of SLCO1B3, which might influence the

absorption and elimination of the HCC chemotherapy drug

(23340295). Nevertheless, BRAF gene polymorphisms were

associated with capsule formation in HCC (Sun et al., 2021).

BRAF-mutation-mediated MAPK pathway downstream was

often constitutively activated and led to cancer cell

differentiation, proliferation, angiogenesis, and anti-

apoptosis, suggesting targeting the BRAF pathway might

inhibit HCC progression in the future (Gnoni et al., 2019).

Dabrafenib was also a selective inhibitor of BRAF kinase for

patients suffering from BRAF-mutated melanoma, advanced

non-small cell lung cancer, and anaplastic thyroid cancer

harboring the BRAFV600E mutation (Puszkiel et al., 2019).

Until now, no association between dabrafenib and

expression of SPINK1 was reported in cancer treatment.

Also, dabrafenib was found to inhibit the activation of

OATP1B3 (SLCO1B3), which might contribute to

increasing OATP1B3-substrate-sensitive drug during the

absorption phase (Nebot et al., 2021). Considering the

pharmacological mechanisms of dabrafenib and

vemurafenib were similar, we also expected that dabrafenib

TABLE 1 Various biological functions of four diagnostic-related genes in HCC.

Gene Biological function References

MT1M Inhibiting proliferation, migration, invasion, and inducing apoptosis as well in HepG2 and Hep3B (Changjun et al., 2018; Zhang et al., 2018)

Promoter methylation of it could be regarded as serum biomarkers for noninvasive detection of HCC. Ji et al. (2014)

SLCO1B3 It participated in drug absorption, distribution, metabolism, and excretion and was downregulated in HCC
patients

Hu et al. (2019)

Low expression of it might be a potential diagnostic, prognostic marker, targeted treatment in HCC
patients and multistep hepatocarcinogenesis

(Yamashita et al., 2014; Chen et al., 2020; Kitao
et al., 2020)

However, SLCO1B3-mediated up-taking of indocyanine green was essential for HCC resection. It might
also be related to poor prognosis of specific subclass of Wnt/β-catenin-activated HCC.

(Ueno et al., 2014; Shibasaki et al., 2015)

SPINK1 Promoting HCC cell proliferation, cell cycle, and invasion in vitro (Huang et al., 2021; Lin et al., 2021)

Downregulating E-cadherin and inducing EMT of HCC to promote metastasis Ying et al. (2017)

It could be regarded as a potential biomarker for early detection and targeted therapy of HCC. (Marshall et al., 2013; Li et al., 2015; Jia et al., 2022)

It was a downstream effector of the CDH17/β-catenin axis in HCC. Shek et al. (2017)

AKR1B10 It might be a potential diagnostic biomarker for HCC development, metastasis, and a target for HCC-
directed drug development

(DiStefano and Davis, 2019; Zhu et al., 2019)

(Han et al., 2018; Ye et al., 2019)

Inhibiting AKR1B10 expression elevated sorafenib’s anti-HCC effects via blocking the mTOR pathway,
leading apoptosis and autophagy in HCC

Geng et al. (2020)

It participated in the IRAK4/IRAK1/AP-1/AKR1B10 signaling pathway and AUF1-mediated post-
transcriptional regulation of AKR1B10 expression to regulate cancer stemness and drug resistance in HCC.

(Cheng et al., 2018; Zhang et al., 2022)

AKR1B10 expression was downregulated by fidarestat in NK cells, which promoted NK cell glycolysis to
enhance killing ability to fight against HCC cells

Wu et al. (2021)

The alteration rate of it increased significantly with the age of HCC patients Atyah et al. (2018)

Meanwhile, it played an important role in protecting hepatocytes from damage induced by ROS. Liu et al. (2019)
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might have prospects in the treatment of HCC. Selumetinib

was a mitogen-activated protein kinase 1 and 2 (MEK1/2)

inhibitor for treatment of neurofibromatosis, pediatric low-

grade glioma, non-small cell lung cancer, and melanoma

(Campagne et al., 2021). Selumetinib could be delivered by

a novel delivery nanosystem in HCC and showed a well-

targeted therapeutic strategy for HCC (Farinha et al.,

2021). In addition, a combination of sorafenib and

selumetinib could inhibit the growth of naïve and

sorafenib-resistant HCC tumors via suppression of β-

catenin signaling (Huynh et al., 2019). No specific research

reported the direct connection among selumetinib, SPINK1,

and SLCO1B3. However, SPINK1 promoted HCC metastasis

via the MEK/ERK signaling pathway (Ying et al., 2017).

Similar research also reported that SPINK1 expression in

HCC cells was associated with HCC via activating the

c-Raf/MEK/ERK pathway, which suggested that inhibiting

the MEK pathway and usage of selumetinib could be a

potential treatment strategy for HCC(37). In addition, the

potential chemotherapy drug mentioned above mainly

participated in cell proliferation, cell division, and cell

cycling, which was consistent with our functional analysis

and has not been fully used for HCC treatment in clinics

(Davies et al., 2002; Yuan et al., 2020). Moreover, combined

inhibition of BRAF and CSF-1R, which recruits M2-polarized

macrophages in a tumor, resulted in superior antitumor

responses (Mok et al., 2015). Although the potential drugs

for chemotherapy were with broad application foreground,

the diagnostic genes not only could enhance the drug

sensitivity but also increased the resistance of

chemotherapy drugs approved by the Food and Drug

Administration (FDA). Thus, further research is needed for

accurate application of these drugs in HCC.

Conclusion

In conclusion, we constructed a novel diagnostic model based

on four genes by the ANNmodel to predict the diagnosis of HCC

patients. The model could provide useful insights into the

potential prediction of HCC diagnosis. Several potential

chemotherapy drugs came into view, although further

research is required.
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