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High-throughput data make it possible to study expression levels of thousands of genes simultaneously under a particular
condition. However, only few of the genes are discriminatively expressed. How to identify these biomarkers precisely is
significant for disease diagnosis, prognosis, and therapy. Many studies utilized pathway information to identify the biomarkers.
However, most of these studies only incorporate the group information while the pathway structural information is ignored. In
this paper, we proposed a Bayesian gene selection with a network-constrained regularization method, which can incorporate the
pathway structural information as priors to perform gene selection. All the priors are conjugated; thus, the parameters can be
estimated effectively through Gibbs sampling. We present the application of our method on 6 microarray datasets, comparing
with Bayesian Lasso, Bayesian Elastic Net, and Bayesian Fused Lasso. The results show that our method performs better than
other Bayesian methods and pathway structural information can improve the result.

1. Introduction

Identifying disease-associated genes, which can be treated as
diagnostic biomarkers, can bring a significant effect on dis-
ease diagnosis, prognosis, and treatments [1, 2]. With the
development of high-throughput technologies in recent
years, gene expression profiling has provided a useful way
to find biomarkers. Researchers can identify the genes which
are differentially expressed between two groups of samples.
These genes are regarded as disease-associated genes. How-
ever, gene expression data usually contains a large number
of genes and a relatively small sample size [3, 4]. And many
of the genes are also redundant or irrelevant to the prediction
[5, 6]. Furthermore, there are also noises in the experiment
procedures which will influence the gene expression values.
Therefore, identifying the biomarkers from gene expression
data is challenging.

During the last decades, a number of gene selection
methods have been developed to tackle this problem. Feature
selection and feature extraction are two major methods (we

treat gene and feature equally in this paper). On the one
hand, the aim of feature selection is to select relevant features
and do not change the form of the features. On the other
hand, feature extraction will extract the feature from the orig-
inal data and may alter the form of the features. Here, we
focus on the feature selection methods since the results of
such methods could be interpreted easily. Feature selection
methods can be generally organized into three categories: fil-
ter, wrapper, and embedded methods. Both the wrapper and
embedded methods are classifier-dependent methods; thus,
they are always time consuming and easy to overfitting.
However, the filter methods are usually based on statistic
approaches [7] such as mRMR [5], PLSRFE [8], lasso [9],
and elastic net [10], which are relatively efficient in terms of
computation and can derive a score of each of the genes
which represents the significance of the gene. Therefore, we
focus on the filter methods in this paper.

Although these methods are successful in many appli-
cations, they usually obtain suboptimal solutions. There-
fore, the prediction accuracies are not satisfied and the
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disease-associated genes selected from different methods have
few overlaps [11]. This is partly due to the fact that the dis-
criminatory power of many biomarkers is similar. Further-
more, some genes which have low discriminatory powers
play important roles in cellular functions. Their combinations
are highly discriminative while they are usually ignored [12,
13].

Recently, with a large amount of biological information
accumulated, there is an increased interest in gene selection
with incorporating information on pathways, which can par-
tially compensate for the lack of reliable expression data
[14]. Pathways depict a series of chemical interactions in liv-
ing cells; genes that interact with one another usually mean
that they function together concertedly. Therefore, these
genes should be highly correlated and have dependence
structures. However, many studies only utilize the informa-
tion that pathways cluster genes into the natural group; the
pathway structural information is neglected. Li and Li have
overcome this disadvantage by incorporating pathway struc-
ture information through a Laplacian matrix of a global
graph [15, 16] and combined with lasso penalty to perform
network-constrained penalty which can select subgroups of
correlated features in the network. This penalty is based on
the assumption that genes belonging to the same pathway
have similar functions and therefore smoothed regression
coefficients. And this penalty has been successfully applied
in many studies [17–19].

The Bayesian approach has three major advantages over
Bayesian selection methods [20]. Firstly, hyperparameters
can be estimated automatically through fulfilling stochastic
draws; thus, 10-fold cross-validation for estimating penalized
parameters is not required. Secondly, the Bayesian frame-
work can utilize the pathway information naturally by inte-
grating it in the model as prior knowledge. Finally, the
Bayesian estimation with the posterior distributions can pro-
vide credible intervals for the regression coefficients, which is
a great advantage over frequentist methods.

In this paper, we work with a Bayesian framework to
perform gene selection through network-constrained regu-
larization. Similar to the Bayesian Lasso [21], Bayesian Elas-
tic Net [22], and Bayesian Fused Lasso [23], we use
shrinkage priors to perform regularization. We show that
all the conditional posteriors of the proposed model are
available in closed form and proper. Thus, parameter esti-
mation can be performed through Gibbs sampling easily.
The pathway information is obtained from the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [24], which is the
most popular pathway public database, especially pathways
associated with several types of cancer could be obtained in
the model. Furthermore, following Held and Holmes [25],
we extend the regression model to binary regression which
can perform binary classification through an auxiliary vari-
able. This method is assessed by applying it to several micro-
array datasets.

2. Method

2.1. The Bayesian Network-Constrained Model for Gene
Selection. Considering an N × P matrix X, where P is the

number of genes and N is the number of the samples, with
a response vector y = ðy1,⋯, ynÞT , we normalize the values
of each feature as the tradition in variable selection; thus,
the mean and standard deviation of each feature are 0 and
1. We assume the likelihood function of the continuous
response is Gaussian function:

Y ∣X, β, σ2 ∼Nn Xβ, σ2In
� �

, ð1Þ

which can be also expressed as

y = Xβ + ε, ε ∼Nn 0, σ2In
� �

: ð2Þ

Following Li and Li’s work [16], we incorporate the path-
way information through its normalized Laplacian matrix.
Consider an undirected graph G = ðV , E,WÞ. In this graph,
genes are represented by a set of nodes V , and the interac-
tions between genes are represented by a set of edges E = fu
∼ vg, andW is the weights of the edges, where wðu, vÞ repre-
sents the weight of edge e = ðu ∼ vÞ which indicates the
uncertainty of the edge between the vertices u and v. The
degree of each vertex is defined as dv =∑u∼vwðu, vÞ. Then,
the normalized Laplacian matrix L for graph G with the uth
and vth elements can be defined by

L u, vð Þ =

1 − w u, vð Þ
du

, if u = v and du ≠ 0,

−
w u, vð Þffiffiffiffiffiffiffiffiffi

dudv
p , if u and v are adjacent,

0, otherwise:

8>>>>>><
>>>>>>:

ð3Þ

Here, we let wðu, vÞ = 1 if there exists an interaction
between gene u and v, and wðu, vÞ = 0, otherwise.

To form the network-constrained regularization, we
assign the prior distribution for β as follows:

β ∼Np 0, σ
2

r
Λ−1

� �
, ð4Þ

where Λ is taking the form:

Λ = diag τ−11 , τ−12 ,⋯, τ−1p
� �

+ L

=

1 + τ−11 L 1, 2ð Þ ⋯ L 1, pð Þ
L 2, 1ð Þ 1 + τ−12 ⋯ L 2, pð Þ
⋮ ⋮ ⋱ ⋮

L p, 1ð Þ L p, 2ð Þ ⋯ 1 + τ−1p

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
:

ð5Þ

Note that Λ only contains hyperparameter τ.
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To eliminate the jΛj1/2 in the prior distribution of β, we
assign the prior distribution for τ as follows:

p τ2 ∣ λ
� �

= Cτ Λj j−1/2
Yp
j=1

λ2

2 exp −
λ2

2 τ2j

 !
, ð6Þ

where Cτ is the normalizing constant.
The prior distribution defined in (6) is proper, due to the

following analysis:
Let A =Λ − In, and A is a symmetric and positive semide-

finite matrix.
Let DA = diag ða1,⋯, apÞ, where a1,⋯, ap are eigen-

values of A and 0 ≤ a1 ≤⋯≤ap.
Since A is the symmetric and positive semidefinite, there

exists an orthonormal matrix Q. Hence, the eigendecomposi-
tion of matrix A can be written as A =QDAQ

T .
Because of Λ = A + In =QDAQ

T +QQT =QðDA + InÞQT ,
so ∣Λ ∣ =Qn

i=1ðai + 1Þ ≥ 1.
Then,

ð∞
0
Cτ Λj j−1/2

Yp
j=1

λ2

2 exp −
λ2

2 τ2j

 !
dτ2

≤ Cτ

ð∞
0

Yp
j=1

λ2

2 exp −
λ2

2 τ2j

 !
dτ2 <∞,

ð7Þ

where the integrand is kernels of the gamma density that
indicates the integral is finite. Therefore, the prior distribu-
tion is proper.

Since

βTΛβ = βTD−1β +〠
u∼v

βuffiffiffiffiffi
du

p −
βvffiffiffiffiffi
dv

p
 !2

≥ 0, D = diag τ21, τ22,⋯, τ2p
� �

,
ð8Þ

Λ is positive semidefinite.
The joint posterior distribution can be written as

p β, λ, σ2, τ2, r ∣ X, Y
� �

∝ σ2
� �−n/2 exp

� −
Y − Xβk k2
2σ2

 !
σ2
� �−p/2

rp/2 Λj j1/2 exp

� −
rβD−1β + rβTLβ

2σ2

 !
Λj j−1/2 λ

2

2 exp

� −
λ2

2 τ2
 !

p rð Þp σ2� �
p λð Þ:

ð9Þ

Integrating out τ2, we have

p β, λ, σ2, r ∣ X, Y
� �

=
ð
p β, λ, σ2, τ2, r ∣ X, Y
� �

p τ2
� �

dτ2

∝
ð∞
0

σ2� �−n/3 exp −
Y − Xβk k2
2σ2

 !

� σ2
� �−p/2

rp/2 Λj j1/2 exp

� −
rβD−1β + rβTLβ

2σ2

 !
Λj j−2/2 λ

2

2 exp

� −
λ2

2 τ2
 !

p rð Þp σ2
� �

p λð Þdτ2 ∝
ð∞
0

exp

� −
Y − Xβk k2 + rβTLβ

2σ2

 !
exp

� −
rβD−1β

2σ2

� �
λ2

2 exp −
λ2

2 τ2
 !

dτ2:

ð10Þ

Applying the fact as follows to the above equation:

a
2 exp −a ∣ z ∣ð Þ =

ð∞
0

1ffiffiffiffiffiffiffi
2πs

p exp −
z2

2s

� �
a2

2 exp −
a2s
2

� �
ds, a > 0,

ð11Þ

we have

p β, λ, σ2, r ∣ X, Y
� �

∝
ð∞
0

exp

· −
Y − Xβk k2 + rβTLβ

2σ2

 !
exp

· −
rβD−1β

2σ2

� �
λ2

2 exp −
λ2

2 τ2
 !

dτ2

= exp −
Y − Xβk k2 + rλ ∣ β∣+rβTLβ

2σ2

 !
:

ð12Þ

Thus, maximizing the posterior distribution is equivalent
to minimizing the following equation:

L r, λ, βð Þ = y − Xβð ÞT y − Xβð Þ + rλ βj j1 + λβTLβ, ð13Þ

which has the same regularization term as the method pro-
posed in [19].

We assign the prior distribution for σ2 as follows:

σ2 ∼ Inverse Gamma a, bð Þ: ð14Þ

And we assign the following prior for the hyperpara-
meters r and λ:
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r ∼Gamma c, dð Þ,
λ ∼Gamma e, fð Þ:

ð15Þ

Then, the hierarchical Bayesian model is

Y ∣X, β, σ2 ∼Nn Xβ, σ2In
� �

,

β∣σ2, τ2, r ∼Np 0, σ
2

r
Λ−1

� �
,

τ2∣λ ∼ Λj j−1/2 λ
2

2 exp −
λ2

2 τ2
 !

,

σ2 ∼ Inverse Gamma a, bð Þ,
r ∼Gamma c, dð Þ,
λ ∼Gamma e, fð Þ:

ð16Þ

2.2. Gibbs Sampling Method. The likelihood is

p y ∣ X, β, σ2� �
∝ σ2
� �−n/2 exp −

Y − Xβð ÞT Y − Xβð Þ
2σ2

 !
:

ð17Þ

According to the above hierarchical model and the likeli-
hood, the joint posterior distribution on data is

p β, σ2, τ2, λ2, r ∣ Y , X
� �

∝ σ2
� �−n/2 exp

� −
y − Xβð ÞT y − Xβð Þ

2σ2

 !
σ2
� �−p/2

rp/2 Λj j1/2 exp

� −
rβTΛβ

2σ2

 !
Λj j−1/2

Yp
j=1

λ2

2 exp −
λ2

2 τ2j

 !
σ2
� �−a exp

� −
b
σ2

� �
r−c exp −drð Þ λ2

� �−e exp −f λ2
� �

:

ð18Þ

Due to the fact that all the prior distributions are conju-
gated, the full conditional posterior distributions for the
parameters have closed forms.

p β,∣σ2, τ2, r, Y , X
� �

∝ exp −
Y − Xβð ÞT Y − Xβð Þ

2σ2

 !
exp

� −
rβΛβ
2σ2

� �
∝ exp −

X ′X + rΛ
� �

β2 − 2YXβ
2σ2

0
@

1
A:

ð19Þ

Let μ = ðX ′X + rΛÞ−1X ′Y , Σ = σ2ðX ′X + rΛÞ−1 , we have

β∣σ2, τ2, r, X, Y ∼Np μ, Σð Þ, ð20Þ

p σ2 ∣ β, τ2, r, Y , X
� �
∝ σ2
� �−n/2 exp −

y − Xβð ÞT y − Xβð Þ
2σ2

 !
σ2
� �−p/2 exp

� −
rβTΛβ

2σ2

 !
σ2
� �−a exp −

b
σ2

� �
∝ σ2
� �−n+p/2−a exp

� −
y − Xβð ÞT y − Xβð Þ + rβTΛβ

2 + b

 !
1
σ2

 !
,

ð21Þ
σ2∣β, τ2, r, Y , X ∼ Inverse Gamma

� n + p
2 + a, y − Xβð ÞT y − Xβð Þ + rβTΛβ

2 + b

 !
,

ð22Þ

p τ2 ∣ β, σ2, λ2, r
� �

∝ exp −
rβTΛβ

2σ2

 !
λ2

2 exp −
λ2

2 τ2
 !

:

ð23Þ
This implies that τ2 follows a generalized inverse Gauss-

ian distribution:

τ2j ∣β, r, σ2, λ2 ∼GIG 1
2 , λ

2,
rβ2

j

σ2

 !
, j = 1, 2,⋯, p, ð24Þ

p r ∣ β, σ2, τ2
� �

∝ rp/2 exp −
rβTΛβ

2σ2

 !
rc exp −drð Þ

∝ r
p/2+c exp −

βTΛβ

2σ2 + d

 !
r

 !
,

ð25Þ

r∣σ2, β, τ2 ∼Gamma p
2 + c, β

TΛβ

2σ2 + b

 !
, ð26Þ

p λ2 ∣ τ2
� �

∝
Yp
j=1

λ2

2 exp −
λ2

2 τ2j

 !
λ2
� �e exp −f λ2

� �

∝ λ2
� �p+e exp −

1
2〠

p

j=1
τ2j + f

 !
λ2

 !
,

ð27Þ

λ2∣τ2 ∼Gamma p + e, 12〠
p

j=1
τ2j + f

 !
: ð28Þ

The Gibbs sampling scheme iterates as follows:

(1) Update β by sampling from (20)

(2) Update σ2 by sampling form (22)

(3) Update τ2 by sampling from (24)

(4) Update r by sampling from (26)
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(5) Update λ by sampling from (28)

2.3. The Binary Response Case. Binary data such as absence or
presence or different types of a disease are often used as
response variables in gene selection problems. To perform
binary classification, we use probit regression using auxiliary
variables. Then, the model can be represented as follows:

P yi = 1ð Þ = Xiβ, ð29Þ

where Xi is the ith sample and Pðyi = 1Þ is the probability of
yi = 1. Here, latent variables Z = ðz1, z2,⋯, znÞ are defined as

zi = Xiβ + ε, ε ∼Nn 0, σ2In
� �

: ð30Þ

Then, the full conditional posterior distribution for each
zi is truncated normal:

zi∣β, Xi, yi ∼
N Xiβ, σ2
� �

I zi > 0ð Þ, yi = 1,

N Xiβ, σ2
� �

I zi ≤ 0ð Þ, otherwise:

(
ð31Þ

And Z follows a multivariate truncated normal
distribution:

p Z ∣ β, σ2, X, Y
� �

∝Nn Xβ, σ2In
� �Yn

i=1
I Aið Þ, ð32Þ

Ai =
Zi ∣ Zi > 0f g, Yi = 1ð Þ,
Zi ∣ Zi ≤ 0f g, Yi = 0ð Þ:

(
ð33Þ

Sampling from this distribution directly is difficult. We
use the method proposed in [26] to sample this latent
variable.

Then, the hierarchical Bayesian model is

Z∣X, Y , β, σ2 ∼Nn Xβ, σ2In
� �Yn

i=1
I Aið Þ,

β∣σ2, τ2, r ∼Np 0, σ
2

r
Λ−1

� �
,

τ2∣λ ∼ Λj j−1/2 λ
2

2 exp −
λ2

2 τ2
 !

,

σ2 ∼ Inverse Gamma a, bð Þ,
r ∼Gamma c, dð Þ,
λ ∼Gamma e, fð Þ:

ð34Þ

To derive the Gibbs sampling scheme, we only need to
replace Y with Z in the Gibbs sampling scheme defined in
Section 2.2. And the latent variables Z are sampled from (32).

3. Results

3.1. Datasets and Preprocessing. To demonstrate the effective-
ness of our methods, a regression microarray dataset and 5
real-life binary classification microarray datasets were tested
in this paper, which are described as follows. The pathway
information was obtained from the KEGG database.

A breast cancer dataset was used to predict the survival
time of patients [27]. We used gene expression profiles of
76 patients. Each patient was measured with 24481 probes.
3592 genes were found in the KEGG database from this data-
set. We used the logarithm of survival times of patients as the
response variable in this dataset.

The other 5 binary classification microarray datasets are
shown in Table 1. No. genes mean the genes we found both
existing in the microarray dataset and KEGG pathway
database.

Lastly, the gene expression values were normalized; thus,
its mean and standard deviation are 0 and 1.

3.2. Parameter Settings. In the procedure of Bayesian
network-constrained regularization, we recommend small
values for a, b, c, d, e, f in (16) and we set these values to
0:01 in our experiments. The Gibbs sampling iteration was
conducted 6000 times, and we chose the second half of the
samples to estimate the regression parameters. The posterior
estimates of all parameters were obtained through the poste-
rior averages of the chains. For the classification problem, the
classifiers were built by a support vector machine (SVM). In
this paper, we used the radial basic function as the kernel
function in SVM. And the regularization parameter and the
kernel width parameter were optimized by a grid search
approach. We used Libsvm [32] to model the SVM.

3.3. Results and Analysis. In this section, we will describe the
results on 6 microarray gene expression datasets (Table 1) to
evaluate the performance of the proposed method. Our
method was compared with the other three Bayesian regular-
ized regression methods, including Bayesian Lasso, Bayesian
Elastic Net, and Bayesian Fused Lasso. A comprehensive
review of these methods can be found in [23]. When L = I,
which means we know nothing about the pathway structure,
the Bayesian network-constrained regularization is equiva-
lent to Bayesian Elastic Net. And when L =O, our method
is equivalent to Bayesian Lasso. These three methods can also
be extended to perform binary classification through an aux-
iliary variable. We also used Gibbs sampling to perform
parameter estimation. Previous review [23] also shows that
these three Bayesian methods’ performances are similar to

Table 1: Binary classification microarray datasets used.

Dataset name No. genes Samples P/N References

Leukemia 1883 72 47/25 [28]

DLBCL 2427 77 58/24 [29]

Prostate 3238 102 50/52 [30]

GSE412 3234 108 60/48 [31]

GSE4922 4476 204 70/134 [26]
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and in some cases better than the frequentist methods. Pre-
diction mean square error was used to evaluate the perfor-
mance on regression problem. Meanwhile, ACC and AUC
were used as the evaluation criteria for binary classification
problem. According to previous studies, the number of
important genes is probably about 50 [28]; thus, we selected
the top 50 genes based on the absolute value of their regres-
sion coefficient for the binary classification problem.

Figure 1 shows the performance of all the four methods
on the regression microarray dataset. And the classification
performances on the five binary classification microarray
datasets are summarized in Table 2. In the binary classifica-
tion datasets, the first three datasets are usually treated as
easy classification datasets, while the other two datasets are
relatively hard to classify. From Figure 1, we can see that
the PMSE of our method is lower than other Bayesian
methods. Table 2 also shows that on the four easy binary clas-
sification datasets, our method achieves the highest ACC and
AUC. In the other two hard classification datasets, our
method achieves the highest ACC and AUC on GSE412.
Although the AUC of Bayesian Elastic Net is higher than
our method on GSE4922, our method achieves the highest
ACC. In general, Bayesian network-constrained regulariza-
tion shows better prediction and classification ability than
other three Bayesian methods, which is similar to the results
implied by [15]. Since our method can be transferred to

0.700

0.675

0.650

PM
SE

0.625

0.600

BEN Bfused

Methods

BLasso BNR

BEN
Bfused

BLasso
BNR

Figure 1: PMSE performance on regression microarray dataset.

Table 2: Comparison of results of 4 Bayesian methods.

Dataset Methods AUC ACC

Leukemia

BEN 0.9955 0.9600

BFused 1 0.9733

BLasso 1 0.9447

BNR 1 0.9733

DLBCL

BEN 0.9674 0.9223

BFused 0.9674 0.9223

BLasso 0.9485 0.9223

BNR 0.9958 0.9482

Prostate

BEN 0.9784 0.9414

BFused 0.9655 0.9314

BLasso 0.9784 0.9419

BNR 0.9900 0.9510

GSE412

BEN 0.9428 0.8498

BFused 0.9046 0.8619

BLasso 0.9541 0.8792

BNR 0.9637 0.9074

GSE4922

BEN 0.6274 0.6666

BFused 0.6028 0.6523

BLasso 0.6132 0.6860

BNR 0.6132 0.6860

6 Computational and Mathematical Methods in Medicine



Bayesian Lasso or Bayesian Elastic Net when the normalized
Laplacian matrix L =O or L = I, the results also show that
pathway information indeed contributes to the accuracy of
the gene selection.

Consistent with previous studies [33, 34], all the Bayesian
regularization regression methods could classify Leukemia,
DLBCL, Prostate, and GSE412 dataset accurately. However,
the performances of all the methods were poor on GSE
4922 dataset. Therefore, we demonstrate the effectiveness of
our method by selecting the top 18 genes which make the
prediction accuracy to achieve the highest value and most
of those genes are associated with breast cancer (Table 3).

4. Conclusion

In this paper, we propose a Bayesian approach to perform
gene selection, which can incorporate the pathway informa-
tion as prior biological knowledge through network-
constrained regularization to improve the accuracy of gene
selection. All the prior distributions we propose are strictly
conjugated; thus, all the conditional posteriors of the model
are available in closed form. An auxiliary variable is also
introduced to extend the regression model to perform binary
classification. An efficient Gibbs sampling method is used to
estimate regression coefficients and tune parameters simulta-
neously, which can perform feature filter feasible for high
dimensional microarray datasets. The performance of the
proposed method is demonstrated by applying it to a
regression microarray dataset and five binary classification
microarray datasets. The results show that compared with
Bayesian Lasso, Bayesian Elastic Net, and Bayesian Fused

Lasso, our method performs better both in prediction and
classification. And the pathway information indeed improves
the accuracy of gene selection.

Data Availability

The breast cancer dataset could be obtained from the R pack-
age breast cancer NKI. Leukemia, DLBCL, and Prostate data-
sets are available on the website http://portals.broadinstitute
.org/cgi-bin/cancer/. GSE412 and GSE4922 datasets are
available in the GEO of NCBI under accession GSE412 and
GSE4922.
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