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Purpose: Myopia, or nearsightedness, is highly prevalent in Asian countries and is considered a serious public health
issue globally. High-grade myopia can predispose individuals to myopic maculopathy, premature cataracts, retinal
detachment, and glaucoma. A recent study implicated zinc finger protein 644 isoform 1 (ZNF644) variants with non-
syndromic high-grade myopia in a Chinese-Asian population. Herein we focused on investigating the role for ZNF644
variants in high-grade myopia in a United States (US) cohort.
Methods: DNA from a case cohort of 131 subject participants diagnosed with high-grade myopia was screened for
ZNF644 variants. Spherical refractive error of -≤-6.00 diopters (D) in at least one eye was defined as affected. All coding,
intron/exon boundaries were screened using Sanger sequencing. Single nucleotide allele frequencies were determined by
screening 672 ethnically matched controls.
Results: Sequencing analysis did not detect previously reported mutations. However, our analysis identified 2 novel single
nucleotide variants (c.725C>T, c.821A>T) in 2 high-grade myopia individuals- one Caucasian and one African American,
respectively. These variants were not found in normal controls. A rare variant - dbsSNP132 (rs12117237→c.2119A>G)
- with a minor allele frequency of 0.2% was present in 6 additional cases, but was also present in 5 controls.
Conclusions: Our study has identified two novel variants in ZNF644 associated with high-grade myopia in a US cohort.
Our results suggest that ZNF644 may play a role in myopia development.

Myopia is a common ocular disorder resulting from
excessive axial elongation of the globe [1,2]. High myopia in
particular can predispose one to several ocular complications
such as myopic maculopathy, premature cataracts, retinal
detachment, and glaucoma, and is considered a public health
concern in numerous countries around the world [3]. Myopia
prevalence rates vary world-wide. A recent study by Vitale et
al. [4] reported that 33.1% of the USA population greater than
the age of 20 has some degree of myopia. Studies have shown
that prevalence rates in Asia countries are higher. For
example, 84% of school children in Taiwan develop myopia
by the age of 18 [5,6]. Additionally, more than 85% of Hong
Kong Chinese school children aged between 13 and 15 years
are myopic [7]. The economic impact of refractive error
management can be substantial- vision impairment correction
costs account for 3.8 to 7.2 billion dollars annually in the USA
alone [8].

Accepted as a common complex disorder, myopia is
thought to be influenced by both genetic and environmental
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factors [9,10]. To date, over 20 genetic loci have been mapped
using linkage analysis for both common myopia and high
myopia [11-17]. A recent plethora of genome wide association
studies have shown positive associations with refractive error
[14,18-25]. Of late, large parallel sequencing techniques have
been used to identify causal genes for ocular disorders
including myopia. Rare ocular diseases such as retinitis
pigmentosa and familial exudative vitreoretinopathy were
among the first where causative genes were successfully
identified using exome sequencing [26-28]. More recently,
Mordechai et al. [29] identified a leprecan-like 1 (LEPREL1)
mutation as causal for autosomal recessive high-grade axial
myopia in a large, consanguinous Bedouin Israeli kindred.
The mutation identified in their study demonstrated an
autosomal recessive mode of inheritance with variable
expressivity. As the lone finding for high myopia and
autosomal dominant inheritance, Shi et al. [30] recently used
exome sequencing to identify mutations in zinc finger protein
644 isoform 1 (ZNF644) – first in a large pedigree with
autosomal dominant high myopia, and then replicated in a
Chinese cohort. ZNF644 is a transcription factor gene, and is
expressed in the retina and retinal pigment epithelium (RPE)
[30]. To our knowledge, the role of ZNF644 has not been
studied in a myopic USA cohort composed primarily of
Caucasians. We therefore screened for ZNF644 mutations in
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a high-grade myopia USA population data set. The
identification of mutations in ZNF644 in other ethnicities
supplements existing knowledge of the etiology and
heterogeneity of this debilitating eye disorder.

METHODS
Patient information: Informed consent was obtained from all
participants before entering the study, with approval by the
Institutional Review Board according to the principles of the
Declaration of Helsinki. High-grade myopia cases were
defined as individuals with a spherical refractive error of
greater than or equal to −6.00 diopters (D) in at least one eye.
From venous blood samples, genomic DNA was extracted
using AutoPure LS® DNA Extractor and PUREGENE™
reagents (Gentra Systems Inc., Minneapolis, MN). DNA for
672 ethnically matched Caucasian healthy control participants
was purchased commercially (The Centre for Applied
Genomics, The Hospital for Sick Children, Toronto, Canada).
Although the controls had no documented ocular
malformations, refractive error information was not available
for these individuals. Additionally, 50 ethnically matched
African American participant controls with refractive error
data were ascertained, and blood for DNA extraction was
collected for this study.
PCR and sequence analysis: ZNF644 (NM_201269.1)
encodes for a zinc finger transcription factor which maps to
chromosome 1p22.2 (Chromosome1:91,380,860–91,487,671
– GRCh37.p5). The gene comprises 6 exons, five of which are
coding. Polymerase chain reaction (PCR) and sequencing
primers were designed to cover all coding and untranslated
gene regions (UTR) including intron-exon boundaries using
the ExonPrimer program (Helmholtz Center, Munich,
Germany). Primers were selected to produce amplification
products not to exceed 850 base pairs (bp) in size for optimal

sequence output and analysis. A total of thirteen primer sets
were designed to ensure full coverage of the exons and the
flanking intronic regions (Table 1).

Samples were amplified using standard PCR protocol and
amplicons were visualized after agarose gel (2%)
electrophoresis. Sequencing of the amplicons was then
completed on an Applied Biosystems ABI3730 xlrobotics
using BigDye™ Terminator 3.1 technology (Applied
Biosystems, Inc. [ABI], Foster City, CA). Sequences were
analyzed using the Sequencher 5.0™ program (Gene Codes,
Ann Arbor, MI), and were compared against the known
reference sequence (GRCh37.p5) and analyzed for sequence
variation. Single nucleotide variants (SNVs) that were novel
and/or coding non-synonymous with a minor allele frequency
(MAF) of less than 1% were checked for co-segregation in
remaining family member samples.
Genotyping: Allelic discrimination assays were employed to
measure the allelic frequencies in 672 Caucasian matched
control DNA samples using the TaqMan® SNP Genotyping
system (Applied Biosystems). Assays were designed
according to Applied Biosystems specifications using a
combination of unlabeled primers and minor groove binding
(MGB) probes with fluorescently labeled dyes (FAM and
VIC) to interrogate the base pair of interest. Reactions were
completed and ABI 7900 robotics was used to read the allelic
calls for each control sample (Applied Biosystems). SDS v2.4
Software provided by ABI was used to analyze each sample
and accurately analyze each genotype call.

RESULTS
Full ophthalmologic exams were performed on all subject
participants with one or more individual(s) with high grade
myopia. The average cycloplegic spherical refractive error for
131 high myopia cases was −11.22 D for the right eye (OD)

TABLE 1. PRIMERS FOR PCR AND SEQUENCING OF ZNF644.

ZNF644 exon Forward Reverse Product size
(base pair)

Exon 1 AAAATGCGTCCTTTTGGATG GGAGGTGACCTTGTTTGGTT 492
Exon 2 AATGATGGTATTCTGGTTG AAGTCAATTATTTGCATTTC 363

Exon 2* ATCAGACCTGGAGAGGCAAA TAGTCACATGAAGCCGAGCA 353
Exon 3.1 TCTGTGGTGTAGACAGCTGAA TTGTATACATGACGTATTGGACTGTT 697
Exon 3.2 CTTTTTGGGGATCCCAGTTT ACGTTGACTCTGCCTGAAGAA 580
Exon 3.3 TGAAAGTAGCAGGTGACTCAGAA GTGGATCAGCCAACAACAGA 778
Exon 3.4 CAGGTTCTTCAAGGATGTCATTT TGTGGAGAAGAGAGTTCACCTG 796
Exon 3.5 TTCTTTTCAGCAGAATTAAGTTTTTG AGCACACGGAGTACTTGCATT 742
Exon 3.6 AAACTGACCACCCTAAAATGAGTT TGGAGGGGAAGACTTGGATA 759
Exon 4 GCAGCTTAAACAGGAAGATTGTG GAATTAACTCATTTTAGGGTGGTCA 790
Exon 5 TTTTAAGCCTATCTCCAAAAGTTCA GAATGCATGCTTCAGGGAAT 395

Exon 6.1 TTAAAAACACATCTTCCACCCTA TGAATTGGGAGTTTTGATGTTT 564
Exon 6.2 CGTCTATTCTAAACTGTGTAGTGAGCA ACAGTGACATCAGAGCAAATTGA 829
Exon 6.3 CATTATATTGACCAATGAGGTGATTC TGCTTACAGGACAGGTTTGC 782

          *Denotes isoform 2 of exon 2, which is an untranslated exon.
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and −11.48 for the left eye (OS), and the range was from
−6.00 D to −50.00 D (OD) and −5.25 D to −50.00 D (OS)
across all cases. Of the 131 case participants screened for
ZNF644, 74% (97/131) were Caucasians, 12.2% (16/131)
were African Americans, 10% (13/131) were Asians, while 5
individuals (3.8%) were of Hispanic descent or declined to
self-identify.

The entire coding and untranslated DNA sequence of
ZNF644 was sequenced in 131 high myopia patients. In all,
we identified a total of 31 heterozygous SNVs in ZNF644, of
which 10 were missense, 7 silent, 9 untranslated, and 5
intronic (Table 2 and Table 3).

From seven synonymous sequence variants detected in
our cohort, we identified 4 novel SNVs in four separate
individuals, which were either within exon 3 or 6. We also
found 9 SNVs in the UTR, where 6 of 7novel variants were
unique to an individual. In addition to the exonic variants, 4
intronic variants were previously reported in the dbSNP132
database, while 1 was novel and unique to an individual. All
intronic variants observed had high MAFs, and/or were not
located near splice-site junctions (Table 2).

Of the 10 missense variants identified, 4 were novel and
6 were reported in the dbSNP132 database (Table 3). One
novel missense variant was identified in Caucasian individual

IND0603809. This adenine to thymine substitution at position
c.821A>T alters glutamic acid to valine (Glu274Val), and was
not found in other high myopic case samples. A second novel
missense variant was identified on exon 3 in African
American individual IND0603564. This cytosine to thymine
substitution (c.725C>T) results in a threonine to methionine
(Thr242Met) amino acid change was only present in this
individual. Due to the lack of additional family members for
these individuals, segregation analysis was not possible
(Figure 1). Novel variants c.2116C>T (His706Tyr) and c.
3299G>A (Arg1100His) were identified in Caucasian
individuals IND0519772 and IND0519764, respectively.
Neither variant segregated with disease after screening
available family members.

To confirm the rarity of c.821A>T, a TaqMan genotyping
assay was employed to screen a DNA sample data set of
Caucasian controls. The variant (c.821A>T) was not
replicated in 672 Caucasian controls by allelic discrimination
genotyping method. The novel variant found in African
American individual IND0603564 (c.725C>T) was not
replicated in 50 African American control samples via Sanger
sequencing (Figure 1).

Four missense variants in dbSNP132 were identified in
African American individuals IND0603564 and IND0603416
but were ruled out due to minor allele frequency not meeting

TABLE 3. SUMMARY OF VARIANTS IDENTIFIED IN ZNF644 IN 131 HIGH-GRADE MYOPIA CASES.

Chromosome 1 base
pair location*

Variant type dbSNP132 Allele change Amino acid
change

Population

91487710 UTR Novel A>G N/A Caucasian
91487657 UTR Novel C>T N/A Caucasian
91487013 UTR Novel G>T N/A Caucasian
91447985 Intronic rs358691 A>G N/A Caucasian
91406677 Synonymous rs17131243 G>A L78L African American
91406033 Synonymous Novel G>A R293Q Caucasian
91405699 Synonymous rs41286763 C>T T404T Caucasian
91405245 Nonsynonymous rs17131242 A>G M556V African American¥

91405215 Nonsynonymous rs60262072 A>T T566S African American¥

91404592 Synonymous Novel C>T H773H Hispanic
91404532 Synonymous Novel C>T D793D African American
91404530 Nonsynonymous rs10922938 C>T A794V African American¥

91404303 Nonsynonymous rs59922637 A>G T870A African American†

91404256 Nonsynonymous rs41286761 G>T E885D Caucasian
91383756 Intronic Novel A>G N/A Caucasian
91383589 Intronic rs2448020 G>T N/A Multiple
91382635 Intronic rs17131234 G>C N/A African American
91382406 Synonymous rs114618312 C>T A1311A African American
91382370 Synonymous Novel C>T A1323A Asian
91382086 UTR Novel A>T N/A African American
91381679 UTR rs1188952 C>T N/A Multiple
91381534 UTR Novel A>C N/A Caucasian
91381240 UTR Novel C>T N/A Caucasian
91381181 UTR Novel G>C N/A African American
91381105 UTR rs17131232 A>T N/A Multiple
91380797 Intronic rs115299241 C>T N/A African American

        Abbreviations: N/A- not applicable, UTR- untranslated region, Multiple - variant found in more than one population,
        dbSNP132. *GRCh37.p5. ¥-Identified in IND0603564. †-Identified in IND0603416.
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criteria below 1% (Table 3). Missense variant rs12117237, the
only variant in dbSNP132 with a minor allele frequency of
less than 1% in public databases was identified in 6 Caucasian
high myopia cases (0.2%). The minor allele was also seen in
0.75% (5/672) of controls. Fisher’s exact two-sided test for
rs12117237 demonstrated a p-value of 0.0015 when
comparing the prevalence rates of the allele between cases and
controls (SAS Institute Inc., Cary, NC). Other family
members of the cases were sequenced to determine co-
segregation. Two cases had uninformative family members or
were simplex cases, and thus were not useful for determining
segregation of the variant. Of the 6 myopia cases identified
with rs12117237, 4 families (MYP19, MYP83, MYP89, and
MYP113) had at least 3 additional family members. These
members were sequenced, and MYP19 and MYP89
demonstrated phenotype co-segregation with the SNV (Figure
2).

DISCUSSION
Mutation screening of ZNF644 has successfully identified 2
novel missense variants (c.725C>T, c.821A>T) in two
ethnicities within our US population, thus supporting the
original report of a causal candidate gene for high-grade
myopia (Table 2). The two novel variants from our study (c.

725C>T, c.821A>T) localize to a conserved region on the
third exon, where Shi et al. [30] previously identified several
mutations. The variants were not seen in 1344 and 100
ethnically matched chromosomes, respectively, confirming
their rarity. PolyPhen-2 software predicted c.725C>T to be
possibly damaging, while c.821A>T was tolerated. With the
additional variant information from our study, exon 3 may be
a hotspot for susceptibility for high-grade myopia in multiple
ethnicities. The clustering of variants in exon 3 may depict the
importance in protein domain structures and gene regulatory
functions of ZNF644.

The single nucleotide variant rs12117237 was present in
6 Caucasian case samples, but also present in 5 ethnically
matched control DNA samples. Public database dbSNP132
reports this variant’s MAF to be 0.2% in a European
population, and our p-value of 0.0015 by Fisher’s exact test
suggests presence of the alleles likely did not occur by chance.
As a result of sequencing additional family members in three
high myopia cases for the variant, we discovered 100% co-
segregation of the mutation with the disease phenotype in two
of four families. PolyPhen-2 software predicts the amino acid
change to be tolerated. The variant could be a common rare
variant, and proper functional validation would be important
to determine whether it is a risk or a causal allele [31].

Figure 1. Sequence chromatogram of
identified ZNF644 variants. Base pair
location in bold depicts the variant
change in affected individual compared
to an unaffected individual. A: Novel
variant identified in individual
MYP0603809 with E274V (c.821A>T)
change. B: Novel variant identified in
individual MYP0603564 with T242M
(c.725C>T) change. C: rs12117237
variant (K707E, c.2119A>G) that was
present in 5 high myopic cases.
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However, the MAF is in line with prevalence rates for high-
grade myopia in a general population and a founder mutation
effect may be plausible. Clinical information was missing
refractive error from the 5 ethnically matched controls who
also presented with the variant in the heterozygous state. The
prevalence rate of  high myopia  is  estimated  to be 4.5% in the
US population [32,33]. Moreover, a recent study suggests that
the rarer a variant, the higher the likelihood that the variant
functionally alters the protein – thus rs12117237 may be
associated with high-grade myopia in a Caucasian population
[34]. A larger case-control population data set should be tested
to understand the true significance of the association of this
variant to high-grade myopia in Caucasians.

ZNF644 is a transcription factor that may play a role in
protein domain structures or regulatory functions [30].
Expressed in all tissue types, it follows the trend of
ubiquitously expressed genes pathogenic to ocular diseases
[35]. To date, it is widely accepted that transcription factor
genes in both humans and mouse can play an important role
in mammalian eye growth and development. For example,
paired-like homeodomain transcription factors 2 and 3
(PITX2,PITX3) have been implicated in Axenfeld-Rieger
syndrome and cataracts, respectively [36-38].
Microphthalmia transcription factor (Mitf) is associated with
ocular albinism, and paired box 6 (PAX6) has been associated
with retinal degeneration, extreme myopia, and corneal
innervation [20,39-46]. However, the true function of
ZNF644 remains unclear, and molecular characterization of
ZNF644 is necessary.

To the best of our knowledge, this is the first successful
study confirming a gene implicated with non-syndromic high-
grade myopia determined by exome sequencing. We

identified two novel variants in ZNF644 in our cohort, in
addition to a known variant that demonstrated association.
The discovery of previously unidentified variants is not
expected due to genetic heterogeneity present in rare complex
disease across multiple populations [47]. Ethnic group
specific alleles due to founder effect may explain why the
previously reported variants were only present in the Asian
population whereas the variants discovered in this report
appear to be specific to the Caucasian and African American
ethnicities. Determining pathogenic rare missense variants
remains a challenge for complex diseases. Identification of
novel variants in separate ethnicities emphasizes the
importance and demonstrates the power of current research
approaches. 
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