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Diverse RNA5′ ends are generated through both transcriptional and post-transcriptional processes. These important modes

of gene regulation often vary across cell types and can contribute to the diversification of transcriptomes and thus cellular

differentiation. Therefore, the identification of primary and processed 5′ ends of RNAs is important for their functional

characterization. Methods have been developed to profile either RNA 5′ ends from primary transcripts or the products

of RNA degradation genome-wide. However, these approaches either require high amounts of starting RNA or are per-

formed in the absence of paired gene-body mRNA-seq data. This limits current efforts in RNA 5′ end annotation to whole

tissues and can prevent accurate RNA 5′ end classification due to biases in the data sets. To enable the accurate identification
and precise classification of RNA 5′ ends from standard and low-input RNA, we developed a next-generation sequencing-

based method called nanoPARE and associated software. By integrating RNA 5′ end information from nanoPARE with

gene-body mRNA-seq data from the same RNA sample, our method enables the identification of transcription start sites

at single-nucleotide resolution from single-cell levels of total RNA, as well as small RNA-mediated cleavage events from at

least 10,000-fold less total RNA compared to conventional approaches. NanoPARE can therefore be used to accurately

profile transcription start sites, noncapped RNA 5′ ends, and small RNA targeting events from individual tissue types.

As a proof-of-principle, we utilized nanoPARE to improve Arabidopsis thaliana RNA 5′ end annotations and quantify

microRNA-mediated cleavage events across five different flower tissues.

[Supplemental material is available for this article.]

Diverse RNA 5′ ends are generated during and after transcription as
the result of a varietyof gene regulatory functions. Alternative tran-
scription start sites (TSSs) can generate RNA isoforms that differen-
tially impact cellular activities. Alternative TSSs have also been
demonstrated to affect downstream translation and protein func-
tion through inclusion or exclusion of regulatory N-terminal
peptides such as upstream open reading frames or protein localiza-
tion sequences (Haberle et al. 2014; Ushijima et al. 2017; Cheng et
al. 2018). Post-transcriptionalmaturationof noncodingRNAs such
as those involved in splicing (snoRNA) or translation (rRNAs,
tRNAs) also generates diverse RNA 5′ ends (Wang et al. 1988;
Filipowicz and Pogačic ́ 2002; Granneman et al. 2011; Henras
et al. 2015). Moreover, small regulatory RNAs such as microRNAs
(miRNAs) and small interfering RNAs (siRNAs) can mediate endo-
nucleolytic cleavage of target RNAs and are important regula-
tors of development, genome stability, and defense (Bartel 2004;
Borges and Martienssen 2015). Therefore, the identification of
RNA 5′ ends derived from transcriptional and post-transcriptional
processes is important for the functional characterization of RNA
molecules.

Next-generation sequencing (NGS)-based methods have re-
cently been used to identify RNA 5′ ends genome-wide. For exam-
ple, TSS profiling using cap analysis of gene expression (CAGE) led
to the annotation of TSSs from polyadenylated mRNA and long
noncoding RNA (Andersson et al. 2014; Hon et al. 2017). TSS pro-

filing has also provided fundamental insights into how RNA iso-
forms with different 5′ ends modulate gene function, as recently
demonstrated in Arabidopsis thaliana (Arabidopsis) where the phy-
tochrome photoreceptor regulates alternative promoter usage in a
light-dependent manner that ultimately leads to gene products
with distinct functions and subcellular localization (Ushijima
et al. 2017). Methods referred to as PARE (parallel analysis of
RNA ends), or degradome, sequencing enrich for 5′ monophos-
phorylated RNAs, which include small RNA (sRNA)-mediated
cleavage products. PARE methods therefore enable the genome-
wide profiling of sRNA target sites and have been instrumental
in characterizing themechanistic basis of sRNA-mediated develop-
mental and physiological processes (Addo-Quaye et al. 2008;
German et al. 2008; Gregory et al. 2008).

Cell-type–specific TSSs and sRNA-mediated cleavage events
contribute to the diversification of cellular transcriptomes and
thus can impact cellular differentiation (Kidner and Martienssen
2004; Williams et al. 2005; Carlsbecker et al. 2010; Knauer et al.
2013; Miyashima et al. 2013; Zhou et al. 2015; Karlsson et al.
2017). However, due to technical limitations, RNA 5′ ends have
traditionally been profiled on whole organisms or tissues com-
posed ofmultiple cell types, and thus RNA 5′ ends that exist in spe-
cific cell types will be depleted in the corresponding final data sets.
Recently, methods utilizing reverse transcriptase template-switch-
ing have been developed to profile TSSs from the low amounts of
RNA obtainable from specific cell types and individual cells (Islam
et al. 2011; Arguel et al. 2017; Cole et al. 2018). However, it remains
a challenge to identify and confidently assign bona fide TSSs to
their corresponding genes due to technical artifacts and variable

2These authors contributed equally to this work.
3Present address: MRC Laboratory of Molecular Biology, University of
Cambridge, Cambridge CB2 0QH, UK
Corresponding author: michael.nodine@gmi.oeaw.ac.at
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.239202.118.
Freely available online through the Genome Research Open Access option.

© 2018 Schon et al. This article, published inGenome Research, is available un-
der a Creative Commons License (Attribution 4.0 International), as described at
http://creativecommons.org/licenses/by/4.0/.

Method

28:1931–1942 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/18; www.genome.org Genome Research 1931
www.genome.org

mailto:michael.nodine@gmi.oeaw.ac.at
mailto:michael.nodine@gmi.oeaw.ac.at
mailto:michael.nodine@gmi.oeaw.ac.at
mailto:michael.nodine@gmi.oeaw.ac.at
mailto:michael.nodine@gmi.oeaw.ac.at
http://www.genome.org/cgi/doi/10.1101/gr.239202.118
http://www.genome.org/cgi/doi/10.1101/gr.239202.118
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


performance between protocols (Cocquet et al. 2006; Tang et al.
2013; Adiconis et al. 2018). Moreover, PARE methods require
high amounts of input RNA that limit their application to samples
that can be collected in bulk.

Results

RNA 5′ end enrichment from low-input RNA samples

To profile RNA 5′ ends genome-wide from low amounts of total
RNA,wedeveloped anNGS-basedmethod callednanoPARE (paral-
lel analysis of RNA 5′ ends from low-input RNA) (Fig. 1A,B; see
Methods). First, we followed the Smart-seq2 protocol through
cDNA preamplification to produce full-length cDNAs with tem-
plate-switching oligonucleotide (TSO) sequences at their 5′ ends
(Picelli et al. 2013). Tn5 transposase was then used to fragment
the cDNA and ligate adapters for NGS library preparation (Ram-
sköld et al. 2012). To selectively amplify the 5′ ends of the cDNAs,
we performed PCR on the tagmented products using primers com-
plementary to TSOs and inserted transposase adapter sequences.
The resulting amplicons were then used for final PCR amplifica-
tionwith indexed Illumina-adapter primers for next-generation se-
quencing. Additionally, tagmented products corresponding to
nonterminal, or body, regions of transcriptswere amplified accord-
ing to theSmart-seq2method (Picelli et al. 2013). Bycombining the
5′ end and body sequence information from the cDNA of a single
sample, the 5′ ends of RNA can be precisely identified at single-nu-
cleotide resolution as demonstrated below.

Identification of capped and noncapped 5′ end features

Template switching readily occurs at the 5′ ends of RNA templates
with or without 7-methylguanosine (m7G) cap structures (Cloo-
nan et al. 2008; Harbers et al. 2013). We reasoned that template

switching could be used to identify RNA 5′ end features genome-
wide regardless of their cap structure. However, spurious 5′ ends
could be produced by a variety of technical artifacts, including ran-
dom fragmentation of RNA in vitro, stalling of the reverse tran-
scriptase enzyme, PCR amplification bias, or “strand invasion”
by the template-switching oligo (Cocquet et al. 2006; Tang et al.
2013), which makes it difficult to distinguish biological signal
fromnoise. Amajor source of nonrandom bias is internal template
switching at sites complementary to the TSO 3′ end, and signal at
these sites can be removed in silico (Tang et al. 2013). For other
sources of noise, we developed a “scaling factor” for comparing
nanoPARE libraries to a counterpart Smart-seq2 library from the
same cDNA (seeMethods). The scaling factor estimates the expect-
ed ratio of 5′ end containing cDNA fragments to gene body frag-
ments after tagmentation with the assumption that all RNA is
full-length. After applying this scaling factor, genomic regions
are identified that producemore terminal signal than nonterminal
signal, and these regions are isolated as 5′ end features using the
software EndGraph (see Methods).

We applied EndGraph to a paired collection of nanoPARE/
Smart-seq2 libraries prepared from 5 ng of total RNA isolated
from Arabidopsis floral buds in biological triplicate and reproduc-
ibly identified a total of 22,8525′ end features frompolyadenylated
RNA in at least two of the three biological replicates (Supplemental
Data S1, S2). Reverse transcriptionproduces untemplated cytosines
at the template 5′ terminus that can base-pair with a m7G cap to
yield an untemplated upstream guanosine (uuG) in the cDNA be-
tween the TSO and genome-matching sequence (Cumbie et al.
2015; de Rie et al. 2017). These uuGs can be used to filter 5′ end
data produced by template-switching protocols and isolate 5′-
capped transcription start sites (Cumbie et al. 2015). Indeed, uuG
consistently appeared in roughly 15% of nanoPARE reads per li-
brary, occurring from four to 10 times more frequently than other

A B

Figure 1. Workflow of nanoPARE and EndGraph. (A) Diagram of the nanoPARE protocol, which enables construction of a stranded 5′ end library (left) in
parallel with a nonstranded transcript body library (Smart-seq2, (Picelli et al. 2013) from the same RNA sample. All oligonucleotides are labeled in the leg-
end below. (B) Workflow of the nanoPARE data analysis pipeline for identifying distinct capped and noncapped 5′ end features from a paired nanoPARE and
Smart-seq2 sequencing library. Diagram represents the output of each step, using HAM2 as an example.
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nucleotides (Supplemental Fig. S1). We analyzed the total pro-
portion of reads in all 5′ end features that contained uuG, and we
could observe a striking bimodal distribution, with most 5′ end
features (20,679; 90.5%) containing >10% uuG reads (Fig. 2A).
We hypothesized that this bimodal distribution indicated two
populations of RNA 5′ ends: high-uuG “capped” features that con-
tain anm7G cap, and low-uuG “noncapped” features that contain
alternative 5′ end structures, predominantly monophosphates.
The yeast Xrn1 exoribonuclease specifically degrades 5′-mono-
phosphorylated RNA in the 5′-to-3′ direction, leaving capped
RNA intact (Nagarajan et al. 2013). We performed nanoPARE on
the same total RNA samples after subjecting them to exonucleo-
lytic digestion by Xrn1 and found that, as expected, nearly
all capped features showed no significant change in abundance af-
ter Xrn1 digestion (Fig. 2B). In contrast, a global decrease was ob-
served in the abundance of putative noncapped features after
Xrn1 digestion, with amean reduction of 19.5%, and a statistically
significant reduction in 314 of 2173 noncapped features (14.5%)
(Fig. 2C).

Genomic distributions of capped and noncapped 5′ features

Capped and noncapped features have distinct distributions in the
genome. Capped features have an even distribution across the
noncentromeric region of the nuclear genome, whereas non-
capped features are highly concentrated on the mitochondrial
and chloroplast genomes andmore sparsely dispersed in the nucle-

ar genome (Supplemental Fig. S2). The 5′ ends of chloroplast and
mitochondrial RNA do not possess m7G caps (Grohmann et al.
1978;Monde et al. 2000; Legen et al. 2002). Accordingly, the 5′ fea-
tures mapping to chloroplasts and mitochondria were classified as
94% and 95% noncapped, respectively. Moreover, capped and
noncapped features localized to different gene types (Fig. 2D).
Consistent with caps being associated only with RNA polymerase
II (Pol II) transcripts, nanoPARE identified predominantly capped
features for mRNA, long noncoding RNA, and primary microRNA
(Supplemental Fig. S3). Several noncapped features mapping to
pre-tRNA and rRNA loci, which are not transcribed by Pol II, could
also be identified (Supplemental Figs. S4, S5).While these products
normally do not possess a poly(A) tail, a subset will be transiently
polyadenylated by the TRAMP complex prior to their degradation
(Hopper et al. 2010), and nanoPARE may be detecting this subset.
Evenwithin a class of RNA, the behavior of capped andnoncapped
features is quite distinct. For example, a majority of snoRNAs in
Arabidopsis are transcribed in tandem arrays of two ormore species
from a single Pol II precursor (Dieci et al. 2009). EndGraph identi-
fied both a noncapped feature at the mature 5′ terminus and a
capped feature upstream of many annotated snoRNAs (Fig. 2D).
Several primary snoRNAs contained additional noncapped fea-
tures not predicted by TAIR10 annotations, and these are support-
ed by genome-wide profiling of noncoding RNAs (Supplemental
Fig. S3; Wang et al. 2014).

Protein-coding mRNA also displays a distinct distribution of
capped and noncapped 5′ end features. Among capped features

A B C
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Figure 2. Identification of capped and noncapped 5′ end features with EndGraph. (A) RNA 5′ end features identified from 5 ng of floral bud total RNA,
distributed by the proportion of nanoPARE reads containing an upstream untemplated guanosine (uuG). The vertical line separates putative noncapped
features (low-uuG, orange) from putative capped features (high-uuG, blue). (B) Volcano plot of the change in read abundance for putative capped features
after digestion with Xrn1 exonuclease. Bar plots depict the distribution of all capped features by fold change versus control. Dotted lines delimit a twofold
change in feature abundance. Log2 fold change and Benjamini-Hochberg adjusted P-values (BH) were calculated by DESeq2. Horizontal line demarcates an
adjusted P-value of 0.05. (C) Volcano plot as in B for putative noncapped features. (D) Capped and noncapped features overlapping TAIR10 genes classified
by gene type. Lighter bars include features up to 500 nt upstream of the annotation. (E) Positional distribution of capped (top) and noncapped (bottom)
features that overlap protein-coding genes.
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overlapping nuclear protein-coding genes, 95%mapped to the an-
notated 5′ UTRs (Fig. 2E). Noncapped features showed an opposite
trend, accumulating closer to the 3′ termini of protein-coding
genes, particularly just upstream of the stop codon. This pattern
closely resembles the reported pattern of cotranslational decay de-
tected in PARE data, which is mediated by the major cytoplasmic
exonuclease EXORIBONUCLEASE4 (XRN4) (Hou et al. 2016; Yu
et al. 2016). To test whether we detect the steady state by-products
of XRN4 digestion with nanoPARE, we generated nanoPARE and
Smart-seq2 libraries for floral buds of xrn4-5 mutants and per-
formed de novo 5′ feature identification. All features identified
in wild-type floral buds (with or without Xrn1 digestion) and/or
xrn4-5 floral buds were combined to produce a unified set of 5′

end features (Supplemental Data S2). Because XRN4 is restricted
to the cytoplasm (Kastenmayer and Green 2000), noncytoplasmic
5′-monophosphorylated ends should not be increased in xrn4-5
loss-of-functionmutants. As predicted, noncytoplasmic 5′ end fea-
tures associated with mature or primary noncoding RNAs includ-
ing nuclear 3′ cleavage products of pri-snoRNA, pre-miRNA, as
well as mitochondrial and chloroplast pri-tRNA (Supplemental
Data S3), were not increased in xrn4-5 floral buds relative to wild
type. In contrast, these features were sensitive to Xrn1 digestion
in vitro (Supplemental Fig. S6).

Consistent with wild-type XRN4 digesting full-length dec-
apped mRNA, noncapped features upstream and adjacent to stop
codons were globally decreased in relative abundance in xrn4-5
mutants, concomitant with a relative increase in reads contained
by capped features (Supplemental Fig. S7). Together, these trends
predict an increase in full-length transcripts with 5′-monophos-
phates in xrn4 mutants. Indeed, the accumulation of full-length
decapped mRNA has been reported for some transcripts in xrn4
mutants (Gregory et al. 2008). We reanalyzed public PARE data
from wild-type and xrn4-5 inflorescences (German et al. 2008)
and found a global average increase by more than threefold in
the proportion of 5′ monophosphorylated RNA ends mapping to
all capped features defined by nanoPARE (Supplemental Fig. S7).
Overall, the capped and noncapped 5′ features identified with
nanoPARE support the existing model of XRN4 as a general RNA
decay factor that acts downstream from decapping.

TSS characterization

To test the reproducibility of nanoPARE to detect 5′ end features
from low-input RNA, we generated nanoPARE libraries from a dilu-
tion series of the original floral bud total RNA in triplicate: 1 ng,
100 pg, and 10 pg of total RNA input, which is typically less
than or equal to the amount of total RNA found in a single cell
(Ramsköld et al. 2012; Brennecke et al. 2013). We performed de
novo feature identification using the Smart-seq2 libraries from 5
ng of RNA as a background model. To assess the sensitivity of
the method at recovering genuine capped transcription start sites,
we compared the capped features of the dilution series to a set of
9326 transcription start sites identified by a cap-specific 5′ se-
quencing protocol (paired-end analysis of transcription start sites;
PEAT) applied to whole Arabidopsis roots (Morton et al. 2014). As a
baseline, we tested whether the Arabidopsis reference annotations,
TAIR10 and Araport11, contained a transcript model with a 5′ end
within 50 bp of a given PEAT peak. TAIR10 detected 75% of PEAT
peaks under this definition (Fig. 3A). The more recent Araport11
annotations performed much worse at accurately detecting tran-
scription start sites. Only 2239 (24%) of PEAT peaks fell within
50 bp of any transcript 5′ ends defined in Araport11,which is likely

due to the systematic overextension of transcript UTRs during
transcript model assembly. Despite the different tissue type and
preparation method, nanoPARE outperformed both reference an-
notations at detecting experimentally validated transcription start
sites, down to 1 ng of total RNA (Fig. 3A). Furthermore, when com-
paring the precision of peaks, all nanoPARE dilutions, including
those generated from 10 pg of total RNA, had a higher likelihood
of agreeing with the PEAT data on the exact nucleotide position
of the transcription start site peak (Fig. 3A,B). Finally, we examined
the sensitivity of the method by comparing identified capped fea-
tures with the transcript abundance as measured by Smart-seq2
(Fig. 3C). Remarkably, nanoPARE reproducibly identified at least
one capped feature overlapping 76.6% of all protein-coding tran-
scripts detected at or above 0.1 transcripts per million (TPM)
when libraries were generated from 5 ng of total RNA (18,295/
23,900 genes). This value increased to 91.9% for transcripts detect-
ed at a threshold of 1 TPM (18,111/19,706 genes), and 99.0% for
transcripts of at least 10 TPM (11,165/11,294 genes). In contrast,
only 0.4% of transcripts not detected with Smart-seq2 (0 TPM,
20/5419 genes) were assigned a capped feature. Overall, the 5-ng,
1-ng, and 100-pg samples performed similarly well, especially
for robustly detected transcripts. Sensitivity reduced substantial-
ly between 100 and 10 pg of total RNA without affecting the
precision of the capped features identified (Fig. 3A,B). Multiple
distinct TSSs could even be identified at all dilutions for certain
highly expressed genes (Fig. 3D; Supplemental Data S2). Therefore,
nanoPARE capped features represent genuine transcription start
sites and can be used for transcription start site annotation with
as little as 10 pg of input RNA.

Detecting sRNA-mediated cleavage sites

In plants, Argonaute-bound sRNAs recognize highly comple-
mentary 20- to 22-nt target sites and mediate target RNA cleavage
precisely between the tenth and eleventh nucleotides of the sRNA-
target duplex (Llave et al. 2002; Kasschau et al. 2003; Jones-
Rhoades and Bartel 2004). Because nanoPARE reads map to the
5′ ends of noncapped transcripts (Fig. 2), we reasoned that the first
position of nanoPARE reads should also be enriched precisely at
sRNA target cleavage sites and thus allow their identification
from low-input RNA samples. To test whether nanoPARE reads
from libraries generated with low-input RNA samples were en-
riched at sRNA target cleavage sites, we examined predicted cleav-
age sites for either miRNAs or trans-acting siRNAs (tasiRNAs) in
libraries prepared from 5 ng of total RNA isolated from floral
buds. The 5′ ends of nanoPARE reads were enriched at cleavage
sites pairing to highly complementary miRNAs, including those
from previously characterized miRNA cleavage sites in wild-type
(Col-0) flowers (Fig. 4A,B; Supplemental Figs. S8, S9). As expected
for sRNA-directed cleavage products that are 5′ monophosphory-
lated, the number of nanoPARE reads at cleavage sites were re-
duced when RNA was incubated with the Xrn1 exoribonuclease
prior to library generation. Conversely, nanoPARE read enrich-
ment at cleavage sites was increased in xrn4-5 exoribonuclease
mutants which stabilize sRNA cleavage products (Fig. 4A,B; Sup-
plemental Figs. S8, S9; Souret et al. 2004; German et al. 2008).

In addition to biological variation between tissues or geno-
types, variability between nanoPARE/PARE libraries can also be
largely due to technical differences in RNA quality and quantity,
as well as library complexity and sequencing depth. Therefore,
we developed software called EndCut that employs empirically de-
termined null models from randomized versions of each sRNA to
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compute the likelihood that nanoPARE read 5′ ends are enriched at
predicted target sites greater than expected by chance in each li-
brary (Fig. 4C,D; Supplemental Fig. S10; see Methods). EndCut
uses two metrics to calculate this likelihood: the level of sRNA-tar-
get complementarity (Allen score) and the number of read 5′ ends
at predicted cleavage sites divided by the maximum number de-
tected at a single site within 20 or 50 nt of flanking transcribed re-
gions (fold change).

To assess the validity of EndCut, we examined the propor-
tions of nanoPARE read 5′ ends within and adjacent to miRNA
cleavage sites determined to be significant in at least one of the
nanoPARE libraries prepared from Col-0 floral bud RNA without
Xrn1 treatment (Col-0 [−Xrn1]). As expected for miRNA cleavage
sites, the number of nanoPARE reads at these siteswas significantly
decreased 9.7-fold uponXrn1 treatment (Col-0 [+Xrn1]) or signifi-
cantly increased 1.8-fold in xrn4-5mutants (P-values = 1.08×10−26

and 0.037, respectively; one-tailed K-S tests) (Fig. 4B). Moreover,
we compared the number of significant cleavage sites identified
by EndCut in Col-0 floral buds either treated or not treated with
Xrn1 prior to library construction, as well as from xrn4-5 and
tasiRNA-deficient dcl234 mutant floral buds (Gasciolli et al.
2005; Yoshikawa et al. 2005; Henderson et al. 2006; Howell et al.
2007). We identified 58 total miRNA target sites in Col-0 floral
buds with a mean of 32.7 miRNA target sites among three biolog-
ical replicates (Supplemental Data S4). The mean number of
miRNA target sites identified upon Xrn1 treatment was signifi-
cantly reduced sevenfold and significantly increased 1.6-fold in
xrn4-5 (P-values = 1.52×10−3 and 0.041, respectively; one-tailed
t-tests) (Fig. 4E). We also identified 26 significant miRNA target

cleavage sites in at least two biological replicates of Col-0, and
these high-confidence sites had decreased and increased numbers
of nanoPARE read 5′ ends in libraries from Xrn1-treated RNA and
xrn4-5 mutants, respectively (Fig. 4G).

In addition to miRNAs, we also detected four significant
tasiRNA target sites in Col-0 (−Xrn1) floral buds, including two of
which were detected in at least two biological replicates. Similar
to what was observed for miRNA cleavage sites, tasiRNA cleavage
sites significantly detected in Col-0 (−Xrn1) samples had reduced
numbers of reads mapping to cleavage sites upon Xrn1 treatment
(Fig. 4F,G; Supplemental Data S5). In contrast, both the number
of significantly detected tasiRNA target sites and reads mapping
to cleavage sites were increased in xrn4-5 mutants (Fig. 4F,G).
Importantly, whereas miRNA target sites significantly detected in
Col-0 (−Xrn1) samples were generally unaffected in tasiRNA-defi-
cient dcl234 mutants, none of the corresponding tasiRNA target
sites were significantly detected in dcl234mutants, and zero reads
corresponding to these target sites were observed (Fig. 4E–G). Out
of the 58high-confidencemiRNAand tasiRNA target sites detected
in either Col-0, xrn4-5, or dcl234, 49 (84.5%) had been previously
validated by a modified 5′ RACE technique (Supplemental Data
S6), while five of the remaining nine have genetic or expression
data indicating that they are sRNA targets (Wu et al. 2006, 2009;
Wang et al. 2009; Nodine and Bartel 2010). Based on the above
biochemical and genetic tests, EndCut enables the accurate identi-
fication of sRNA-mediated cleavage events from nanoPARE data
generated with as low as 5 ng of total RNA.

PARE methods capture sRNA cleavage products through
a series of adapter-RNA ligations, Type IIS restriction enzyme

B

D

A C

Figure 3. Sensitive low-input transcription start site detection with nanoPARE. (A) Recall of capped peaks identified with PEAT (Morton et al. 2014) in two
Arabidopsis reference annotations (TAIR10 and Araport11) and in nanoPARE features detected from a dilution series of total RNA input. Numbers indicate
how many PEAT peaks have a 5′ end feature within 50 bp in the test data set. (B) Cumulative frequency distribution of positional error for all 5′ features
within 200 nt of a PEAT peak. (C ) Sensitivity of nanoPARE in detecting capped 5′ features for nuclear protein-coding genes as a function of their abundance
measured by Smart-seq2. Points indicate the percent of transcripts above the given threshold abundance (in transcripts per million, TPM) that contain a
capped feature identified in at least two of three biological replicates. (D) Integrated Genomics Viewer (IGV) browser image of nanoPARE reads from the
dilution series mapping to two transcription start sites of the PSY locus. y-axis showsmean reads permillion (RPM) across three biological replicates for each
dilution. Solid colored bars mark capped features identified by EndGraph in each dilution.
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Figure 4. Detection of sRNA-mediated cleavage sites. (A) Scatter plot illustrating the number of nanoPARE read 5′ ends per million transcriptome-map-
ping reads within 50 nt of predicted miR173-5p–directed cleavage sites in TAS1a (top), TAS1c (middle), and TAS2 (bottom) transcripts. Mean RPM values of
three biological replicates are shown for libraries prepared from 5 ng of total RNA from wild-type (Col-0) floral buds either not incubated with Xrn1 (Col-0
[−Xrn1]) or incubated with Xrn1 (Col-0 [+Xrn1]), or xrn4-5 mutant floral buds (xrn4). Error bars represent standard errors of the means. (B) Number of
nanoPARE read 5′ ends mapping within 50 nt of miRNA cleavage sites significantly detected by EndCut (Benjamini-Hochberg adjusted P-values < 0.05) in
Col-0 (−Xrn1) libraries are shown as bar charts of the percentage of the total number of nanoPARE reads detected for each transcript in libraries prepared
from Col-0 (−Xrn1) (top), Col-0 (+Xrn1) (middle), and xrn4 (bottom) samples. Percentages of all predicted miRNA cleavage sites are shown as line graphs.
∗ and ∗∗∗ indicate that the mean number of reads at predicted cleavage sites are significantly different in Col-0 (−Xrn1) libraries compared to either Col-0
(+Xrn1) or xrn4 libraries (P-values <0.05 and 0.001, respectively; one-tailed K-S tests). (C,D) Cumulative fractions of fold changes (C ) and Allen scores (D)
are shown for target sites predicted for either miR173-5p (test) or its randomized cohorts (control). (E,F ) One-dimensional scatter plots illustrating the
number of significant miRNA (E) or tasiRNA (F ) target sites (Benjamini-Hochberg adjusted P-values < 0.05) detected in libraries prepared from Col-0
(−Xrn1), Col-0 (+Xrn1), xrn4, or dcl234 samples. Values for individual biological replicates (bioreps), all detected sites (union), and significant interactions
observed in at least 2/3 bioreps (High conf.) are shown. (G) Heat maps depicting the number of nanoPARE read 5′ ends per 10 million transcriptome-
mapping reads (RPTM; log10) mapping to the high-confidence miRNA- (top) or tasiRNA- (bottom) directed cleavage sites denoted in panels E and
F. Small RNA families and corresponding targets are indicated beside each row, and targets previously verified by 5′ RACE are annotated. (H) One-
dimensional scatter plot showing the number of significant miRNA and tasiRNA target sites detected with EndGraph from nanoPARE libraries prepared
from Col-0 or xrn4 floral bud total RNA (nanoPARE) or published degradome/PARE libraries prepared from Col-0 or xrn4 floral tissue total RNA.
Published degradome/PARE libraries are indicated by the first author of the corresponding study: Addo-Quaye (Addo-Quaye et al. 2008), German
(German et al. 2008), Gregory (Gregory et al. 2008), Willmann (Willmann et al. 2014), Hou (Hou et al. 2016), Yu (Yu et al. 2016), and Creasey
(Creasey et al. 2014). The amounts of total input RNA (µg) used in each publication are indicated. The asterisk denotes that the Addo-Quaye samples
were prepared from polyadenylated RNA instead of total RNA.
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digestions, and PCR amplifications
(Addo-Quaye et al. 2008; German et al.
2008; Gregory et al. 2008). Because End-
Cut utilizes empirically determined null
models based on randomized sRNAs, it
can also be used to mitigate the effects
of technical biases in conventional PARE
data sets and help identify high-confi-
dence target sites. As a proof-of-principle,
EndCut was applied to 15 publicly avail-
able degradome/PAREdata sets generated
fromat least10µgof total RNA fromwild-
type (Col-0) or xrn4-5 mutant floral tis-
sues. The number of significant cleavage
sites detected with EndCut varied be-
tween publicly available data sets, but
more sRNA-mediated cleavage events
were detected from most PARE libraries
compared to nanoPARE libraries, indicat-
ing that PARE libraries detect a greater
diversity of cleavage sites when the start-
ing amount of total RNA is not limiting
(Fig. 4H; Supplemental Data S7, S8).

Tissue-specific miRNA-mediated

cleavage sites

To test whether nanoPARE can detect
small RNA-mediated cleavage sites that
occur in specific tissue types, we applied
the method to five different tissues dis-
sected from whole flowers immediately
after anthesis (Fig. 5A). The flower is
comprised of four concentric whorls of
tissues, which are specified by three tran-
scription factor groups functioning in
overlapping domains within the devel-
oping primordia. The coordinated action
of these genes is described as the “ABC
model” of flower development (Bow-
man et al. 1991b; Coen and Meyerowitz
1991). These transcription factors are
known as group A, B, or C genes if they
are expressed in the outer two whorls,
middle two whorls, or inner two whorls
of the developing flower, respectively.
Arabidopsis possesses two A genes, two
B genes, and a single C gene whose tran-
script spatial distributions are main-
tained through late flower development
except for APETALA2 (AP2) mRNA,
which has been observed in all four
whorls of mature flowers (Bowman et
al. 1991a; Jack et al. 1992; Mandel et al.
1992; Goto and Meyerowitz 1994; Jofuku et al. 1994). Upon com-
paring the relative abundance of 5′ capped transcript ends, we ob-
served that nanoPARE faithfully recapitulated the expected spatial
transcript patterns of all five homeotic genes (Fig. 5B). Therefore,
these data sets can be used to quantify tissue-specific variation in
RNA abundance.

Tissue-specific variation ofmiRNA-target interactions on a ge-
nome-wide scale has not been reported in flowers, but individual

studies indicate that miRNAs can suppress their targets in a tis-
sue-specific manner (Wu et al. 2006; Wollmann et al. 2010;
Liang et al. 2014). Upon performing nanoPARE on 10 ng of total
RNA from either whole flowers or five individual floral tissues,
we identified 41 miRNA target sites in at least two biological repli-
cates of the same floral tissue (high-confidence sites) (Fig. 5C;
Supplemental Data S4). While the target cleavage sites directed
by three miRNAs (miR160, miR171, and miR173) are robustly

A

B

E

F

G

C D

Figure 5. Tissue-specific miRNA-target interactions with nanoPARE. (A) Diagrams of a longitudinal sec-
tion (top) and cross-section (bottom) of an Arabidopsis flower at the onset of anthesis. Tissue types isolated
for nanoPARE libraries are color-coded as shown. (B) Relative expression of the five ABC model homeotic
genes across the five tissue types in panel A. Each row is scaled from zero to themaximum observed reads
per million of a gene’s capped feature. Expected spatial distributions based on the ABCmodel are shown
as blocks above. (C,D) Heat maps of 41 high-confidence miRNA cleavage sites detected by nanoPARE in
whole flowers (fb) and individual tissue types illustrating either the number of biological replicates in
which the cleavage site was significantly detected (EndCut events) (C) or the proportion of cleaved signal
to total full-length and cleaved signal (D). Each row is scaled to the maximum proportion observed for
that interaction, which is indicated on the right. (E–G) (Left) Heat maps of the summed primary transcript
levels for three families of miRNA genes in flowers as measured by nanoPARE. Floral tissues match those
labeled in panel A. (Right) Bar charts depicting the relative abundance of full-length RNA, truncated RNA
with a 5′ end matching the miRNA cleavage site, and the proportion of cleaved RNA to the total cleaved
and full-length signal, for the most strongly cleaved target of each of the three miRNA families to the left.
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detected across all tissues examined, over half of the high-confi-
dence interactions were enriched in specific tissues. To better esti-
mate differences in miRNA-guided cleavage activity, we calculated
the proportion of nanoPARE signal at the cleavage site relative to
the total cleaved and capped (full-length) signal for each gene
(Fig. 5D; Supplemental Fig. S11). For most miRNA target interac-
tions, the proportion of cleaved transcripts varied strongly be-
tween tissues. For example, we found that AUXIN RESPONSE
FACTOR 6 and 8 (ARF6/8) transcripts were preferentially cleaved
in sepals, anthers, and ovules, which is consistent with both
MIR167 transcript levels as well as previous reports (Fig. 5E;
Wu et al. 2006; Rubio-Somoza andWeigel 2013). miR396 spatially
restricts seven transcripts encoding GROWTH-REGULATING
FACTOR proteins (GRF1/2/3/4/7/8/9) to the developing carpel
(Liang et al. 2014). Although only one target (GRF1) was identified
in wild-type flowers, six were identified in xrn4-5 mutant flowers,
indicating that the cleavage products from this gene family are
efficiently cleared from wild-type cells (Fig. 4G; Supplemental
Fig. S11). Despite their transient nature, miR396-directed GRF1
cleavage products accumulated to a higher proportion in noncar-
pel tissues than in stigmas or ovules (Fig. 5F), and full-length tran-
scripts for the other targeted GRFs were restricted almost
exclusively to ovules (Supplemental Fig. S11). Lastly, genetic data
supports a model whereby miR172 represses AP2 in whorl 3 to
maintain stamen identity (Wollmann et al. 2010). Consistent
with this model, we detected higher miR172 activity in anthers
compared to other tissues (Fig. 5G). Because the tissue-enriched
miRNA-guided cleavage events detected by nanoPARE are in
good agreement with these experimentally supported examples,
we conclude that nanoPARE can be used to detect sRNA-guided
cleavage events in specific tissue types.

Discussion

NanoPARE can accurately profile RNA 5′ ends genome-wide from
low amounts of total RNA. Because TSSs partition the genome
into transcribed and cis-regulatory regions, their accurate identifi-
cation is critical for transcriptome assembly and prediction of reg-
ulatory binding sites. Moreover, TSS can vary among cell types,
and thus their identification from low-input RNA samples can in-
crease our understanding of diverse RNA processing events and
corresponding functions. NanoPARE’s integrative approach of
combining RNA 5′ end enrichment and full-length Smart-seq2
data sets from the same sample enables TSS identification at sin-
gle-nucleotide resolution from single-cell to standard levels of total
RNA. Accordingly, we have improved current Arabidopsis TSS an-
notations using this technique. NanoPARE’s low-input RNA re-
quirements and the simplicity of the protocol should enable TSS
annotation improvements in other eukaryotic species, as well as
in rare tissues and individual cell types.

The identification of sRNA-directed cleavage targets is essen-
tial to understand the molecular basis of sRNA functions during
cellular differentiation, physiology, and defense. Conventional
PARE/degradomemethods have been key technologies for charac-
terizing the molecular basis of sRNA-mediated regulation but re-
quire high amounts of input RNA typically only obtainable from
bulk samples. NanoPARE allows identification of sRNA-mediated
cleavage products from at least 10,000-fold less input RNA com-
pared to these conventional methods and thus can be applied to
specific tissue types. As a case study, we utilized nanoPARE to
quantify miRNA-mediated cleavage events across five different
flower tissues. In addition to detecting the previously reported tis-

sue-enriched activities of three miRNA families, nanoPARE also
identified several novel tissue-enriched miRNA-guided cleavage
events, indicating that it can be used to profile differential sRNA
activities across tissue types.

Moreover, nanoPARE enables 5′ endRNAprofiling fromexist-
ing full-length Smart-seq2 libraries, which has become a common-
ly used single-cell sequencing method (Ziegenhain et al. 2017).
Such resampling at the level of cDNA rather than tissue is unique
and not possible with technologies such as CAGE, STRT-Seq, Tn5-
Prime, and PARE. We therefore envision future applications of
nanoPARE on both existing and new data sets for dissecting cell-
type–specific transcriptional and post-transcriptional RNA regula-
tory mechanisms.

Methods

Plant material and growth

Wild-type and mutant (xrn4-5, dcl234) seeds were in Col-0 acces-
sion backgrounds and were grown in climate-controlled growth
chambers with 20°C–22°C temperature and 16 h light/8 h dark cy-
cle. The dcl234mutants were composed of dcl2-1, dcl3-1, and dcl4-
2 alleles (Henderson et al. 2006), and xrn4-5 mutants were as pre-
viously described (Souret et al. 2004).

RNA extraction

Total RNA was extracted from stage 12 floral buds using TRIzol
(Life Technologies). Stage 13 flowers were collected in 1 mL of
500 µM DTSSP (3,3′-dithiobis-[sulfosuccinimidyl propionate])
(Thermo Fisher, Cat. #21578) with 1× PBS, pH 7.4, vacuum-infil-
trated for 5min, and incubated for 10min. Individual floral tissues
were dissected under a binocular microscope on a silanized slide
and snap-frozen in liquid nitrogen. Tissues were then homoge-
nized using Mixer Mill MM 400 (Retsch), and the resulting pellets
were resuspended in 300 µL TRIzol (Life Technologies). Total RNA
was extracted using a Direct-zol kit (ZymoResearch) according to
the manufacturer’s instructions. RNA integrity was assessed by a
Fragment Analyzer (AATI) using the standard RNA sensitivity kit
(DNF-471).

NanoPARE library preparation

A detailed protocol can be found in Supplemental Methods. In
brief, cDNA library preparation from 5 ng or less total RNAwas car-
ried out according to the original Smart-seq2 method (Picelli et al.
2013). cDNA was tagmented using the Illumina Nextera DNA li-
brary preparation kit, purified using the Zymo 5× DNA Clean
and Concentrator kit (ZymoResearch), and eluted with nuclease-
free water. For final enrichment PCR, the purified reaction was
split and amplified either with Tn5.1/TSO enrichment oligonucle-
otide or Tn5.2/TSO enrichment oligonucleotide primer sets
(Supplemental Table S1). PCR reaction products with Tn5.1/TSO
enrichment oligonucleotide and Tn5.2/TSO enrichment oligonu-
cleotide primer sets were pooled and purified using AMPureXP
DNA beads.

For in vitro biochemical degradation of 5′ monophosphate-
containing RNA, 100 ng of total RNAwere treated with XRN1 exo-
ribonuclease (NEB) for 60 min at 37°C in a 20-µL reaction volume
containing 1× NEB Buffer 3 and 1 U of XRN1. The equivalent of
5 ng total RNA (1 µL of XRN1-treated reaction) was used for
Smart-seq2 cDNA synthesis without additional purification.
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Next-generation sequencing

To control for library quality, final nanoPARE libraries were
checked on an Agilent DNA HS Bioanalyzer Chip. Libraries with
size ranges between 150 and 800 bp were diluted and sequenced
to 10–15million single-end 50-bp reads per sample using a custom
sequencing primer (TSO_Seq) and a custom P5/P7 index primer
mix on an Illumina HiSeq 2500 instrument (Supplemental Table
S1; Supplemental Data S1).

Classification of RNA 5′ ends
The nanoPARE analysis pipeline was written to identify capped
and noncapped 5′ end features in the genome using paired
nanoPARE (5P) reads Smart-seq2 (BODY) reads. Analysis is divided
into four major steps:

1. Mapping of 5P and BODY reads to the genome (EndMap)
2. 5P end feature identification (EndGraph)
3. Classification of capped and noncapped 5P features (EndClass)
4. Transcript-level output of read noncapped reads (EndMask)

EndMap

FASTQ files were mapped to the Arabidopsis thaliana TAIR10 ge-
nome (Lamesch et al. 2012). EndMap first trims the appropriate
adapter sequences using Cutadapt (Marcel 2011). To prevent reads
with low sequence complexity frommapping to the genome, the I-
complexity (Becher and Heiber 2012) of each FASTQ read was cal-
culated, and reads with a per-nucleotide I-complexity <0.15 were
removed. The remaining reads were then aligned to the genome
with STAR (Dobin et al. 2013). Mapping behavior differs slightly
between BODY and 5P libraries. All reads were mapped using the
STAR settings:

‐‐alignIntronMax 10000; ‐‐alignMatesGapMax 11000;
‐‐alignSJDBoverhangMin 1; ‐‐alignSJoverhangMin 10
‐‐outFilterMismatchNmax 2; ‐‐outFilterMismatchNoverLmax .05;
‐‐outFilterMultimapNmax 100; ‐‐outSAMprimaryFlag
AllBestScore; ‐‐outSAMtype BAM Unsorted

BODY reads were mapped with the additional settings:

‐‐alignEndsType EndToEnd

5P reads were mapped with the additional settings:

‐‐alignEndsType Local; ‐‐outFilterMatchNminOverLread 0.9

After alignment to the genome, a bias correction algorithm
was applied to the aligned BAM file to adjust for sequence-specific
biases in the BODY and 5P libraries. The bias correction method
defined by Wang et al. (2017) was used, with two modifications
to make it suitable for RNA rather than DNA data: (1) Only reads
within exons of annotated genes were used to calculate the k-
mer frequency matrix, and (2) the read depth for all positions
with >1 read was set to 1, because RNA seq reads are not expected
to have even coverage at all genomic locations. After bias correc-
tion, reads that mapped to more than one genomic location
were assigned via a “rich-get-richer” algorithm similar to that em-
ployed by the softwareMuMRescue andMuMRescueLite (Faulkner
et al. 2008;Hashimoto et al. 2009). First, coverage depth of unique-
ly mapping reads is calculated for each position in the genome.
Multimappers are then binned by their mapping multiplicity
(i.e., a read that maps to 10 locations in the genome has a multi-
plicity of 10). Beginning with a multiplicity of 2, all reads in that
bin are sorted from lowest possible genomic position to highest,
and each read is assigned in amultistep process: If ≥1mapping po-
sition contains ≥1 existing read, the read is considered “unambig-
uous” and is assigned proportionally to its mapping locations

using the formula Pi = Ci/
∑n

j=1 Cj, where Pi is the proportion of
reads assigned to mapping location i, Ci is the total existing read
coverage assigned to the genomic positions that comprise location
i, and n is the number of mapping locations for the read. If the ex-
isting read coverage at all locations is 0, that read is not yet as-
signed. The process is repeated until no more unambiguous
reads can be identified, then all remaining reads are assigned
with equal weighting, or Pi=1/n. This is repeated for multiplicities
of 3–100. A bedGraph file of 5′ end counts is written for both
strands of the genome. For 5P libraries, all nucleotides softclipped
from the 5′ end of reads are stored as upstream untemplated nucle-
otides (uuNs).

EndGraph

Discrete 5P features were identified genome-wide via subtractive
kernel density estimations. bedGraph files output from EndMap
corresponding to a sample’s 5P and BODY libraries were evaluated
together. First, strand invasion artifacts (Tang et al. 2013) were
masked based on complementarity to the last four bases of the
template switching oligo, allowing up to one mismatch. Then, a
scaling factor (S) was estimated to normalize the read depth of
the 5P library against the BODY library using the formula

S = 2F∗106
∑n

i=1 (TPMi∗Li)
∗RB

RE
,

where n is the total number of transcripts, TPMi is the abundance
of a transcript in transcripts per million, Li is the length of a tran-
script in nucleotides, F is the mean fragment length of the BODY
library, RB is the total number of mapped BODY reads, and RE is
the total number of mapped 5P reads. Then, a Laplace kernel
with a bandwidth of 15 nt was fit over the set of values (ER ∗ S) –
BR, where ER is the set of 5P end read counts and BR is the set of
body read counts. Regions of continuous positive density were ex-
tracted and written as discrete features to a bed file.

EndClass

If a 5P experiment was designedwithmultiple replicates, EndClass
merged all 5P features that could be reproducibly identified in ≥2
replicates. Then, the presence of a m7G cap was predicted for each
replicable feature by calculating the proportion of reads contain-
ing upstream untemplated guanosine (uuG). A feature was consid-
ered capped if ≥10% of all reads from a sample type that map
within the feature contained uuG; otherwise, the feature was con-
sidered noncapped.

EndMask

EndMask prepared a bedGraph file of 5P read positions relative to
the start site of the dominant isoform of each gene in the reference
annotation. Dominant isoforms were defined as the transcript iso-
form containing the most mapped reads. For nanoPARE libraries,
this transcript-level bedGraph was generated with a cap-masked
input inwhich 5P reads containedwithin replicable capped 5P fea-
tures were discarded.

Detection of sRNA-mediated cleavage sites with EndCut

Sequences of miRNAs and tasiRNAs annotated in TAIR10 or
miRBase21 (Lamesch et al. 2012; Kozomara and Griffiths-Jones
2014) were selected (i.e., anno.mir.tas.fa) and randomized
1000 times each by the Python script sRNA_shuffler.py to pro-
duce anno.mir.tas.i.fa files, where i is an integer between 0
and 999. For annotated miRNA, tasiRNA and the corresponding
1000 randomized variants for each miRNA/tasiRNA, GSTAr.pl
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(https://github.com/MikeAxtell/GSTAr) was used to predict target
sites in transcript models annotated as protein-coding genes,
transposable element genes, or other RNAs (i.e., TAIR10_pc_teg_
other_transcripts.fasta). Target sites were determined based on
the level of complementarity between sRNAs and transcripts com-
puted using previously developed criteria based on the frequency
and position of the miRNA-target duplex mismatches (i.e., Allen
scores) (Allen et al. 2005). As described above, nanoPARE data
were processed by EndMask to exclude capped regions of tran-
scripts from further analyses. Publicly available PARE data sets
were downloaded from the Sequence Read Archive (NCBI)
(Supplementary Data S1), but alignments overlapping capped fea-
tures were not excluded from downstream analyses.

Predicted target sites and EndGraph output were used by
EndCut_step1.sh to quantify the number of reads at predicted tar-
get sites and in adjacent 20-nt or 50-nt regions on the sense strand
of the same transcript. Adjacent sites within 1 nt of predicted
cleavage sites were not considered in order to not penalize sites
for sRNA isoforms with slightly offset target recognition sites.
The local enrichment of nanoPARE read 5′ ends at predicted cleav-
age sites relative to surrounding transcribed regions, or fold chang-
es, were calculated by dividing the numbers of nanoPARE read 5′

ends at predicted cleavage sites +1 by the maximum numbers of
reads in adjacent transcript regions +1. Allen scores were also as-
signed to each predicted cleavage site detected. For each random-
ized sRNA control set, EndCut_step2.R computed empirical
cumulative distribution functions of fold changes (ECDFFC) and
Allen scores (ECDFAS). These were then used as null models to
test whether the observed cleavage site fold changes were not
equal to or lesser than ECDFFC, as well as if the observed site
Allen scores were not equal to or greater than ECDFAS. Final P-val-
ues were computed for each site by combining these two P-values
using Fisher’s combined probability test and then adjusted for
multiple testing using the Benjamini-Hochberg method. For our
analyses, we defined significant cleavage sites that had adjusted
P-values < 0.05, fold changes > 1.0, and that were also represented
by at least one read per 10 million transcriptome-mapping reads.

Data access

All sequencing data generated in this study have been submitted to
the NCBI Gene ExpressionOmnibus (GEO; https://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE112869. All software
code is publicly available at GitHub (https://github.com/Gregor-
Mendel-Institute/NanoPARE) and is available as Supplemental
Code S1.
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