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Abstract
To raise the power of genome-wide association studies (GWAS) and avoid
false-positive results in structured populations, one can rely on mixed model
based tests. When large samples are used, and when multiple traits are to be
studied in the ’omics’ context, this approach becomes computationally
challenging. Here we consider the problem of mixed-model based GWAS for
arbitrary number of traits, and demonstrate that for the analysis of single-trait
and multiple-trait scenarios different computational algorithms are optimal. We
implement these optimal algorithms in a high-performance computing
framework that uses state-of-the-art linear algebra kernels, incorporates
optimizations, and avoids redundant computations,
increasing throughput while reducing memory usage and energy
consumption. We show that, compared to existing libraries, our algorithms and
software achieve considerable speed-ups. The OmicABEL software described
in this manuscript is available under the GNU
GPL v. 3 license as part of the GenABEL project for statistical genomics at
http: //www.genabel.org/packages/OmicABEL.
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Introduction
Current biomedical research is experiencing a large boost in the 
amount of data generated. In particular, investigations involve 
human cohorts comprising hundreds of thousands of participants 
as part of nation-wide biobanking initiatives; furthermore, by 
using both arrays that include hundreds of thousands of single 
nucleotide polymorphisms (SNPs), and more recently, exome and 
whole-genome re-sequencing, the genomes of these participants 
are being characterized at an increasing level of detail, bringing 
the number of features assessed to tens of millions. At the same 
time, technologies for high-throughput assessment of different 
molecular “omics” phenotypes in large study cohorts are becoming 
more and more affordable. These molecular phenotypes character-
ize different classes and sub-classes of biological molecules, their 
functional modifications and relationships. Examples include hun-
dreds of thousands of epigenetic modifications (epigenome1), levels 
of tens of thousands of transcripts (transcriptome2,3), metabolites 
(metabonome or metabolome4,5), glycans (glyco(protein)ome6,7), 
and proteins (proteome8). The evolution of current molecular tech-
niques expands our capacity to access different components in the 
omics space, and new prominent omics emerge (e.g. cellomics, 
interactomics, activomics). The study of the genetic control of dif-
ferent omics brings the promise of new fundamental and applied 
biological discoveries; however, such analyses pose “big data” 
challenges.

Genome-Wide Association Studies (GWAS) is an established tool 
for analyzing the genetic control of complex traits9. In GWAS, the 
association between millions of genetic markers (usually SNPs) 
and phenotype(s) of interest is studied, with significant associa-
tions highlighting the genomic regions harboring the functional 
variants involved in the control of the trait. While initially GWAS 
were mostly used to study common diseases, with the rising avail-
ability and affordability of omics phenotypes, this methodology is 
now also applied to investigate the omics space6,7,10–13, providing 
important insights into both the mechanisms underlying the genetic 
regulation of particular biological systems, and the determinants of 
human health and disease14–16.

In this work, we address the computational challenges posed by 
big-data GWAS. These challenges arise when size of sample under 
analysis is very large or when (potentially hundreds of) thousands 
of omics phenotypes are studied. We consider analyses facilitated 
by the use of linear mixed models (LMMs)17,18, which allow for 
modeling of correlations between phenotypes of relatives. The 
LMMs are among the most flexible and powerful methods to 
account for the genetic (sub)structure that inevitably occurs even 
in carefully designed large population-based studies. However, the 
increase in power and precision achieved through the use of mixed 
models comes with considerable costs in terms of computing time.

Recent advances in GWAS using mixed models19–25 represent a 
breakthrough compared to older methods, and allow analyses of 
a limited number of traits in reasonably sized samples even on 
personal computers. Still, current algorithms and software may be 
prohibitively expensive for analysis of large samples when deal-
ing with omics data, since the time needed for a multi-trait analy-
sis is essentially that of a one-trait study multiplied by the number 

of traits. Under this scenario, the analysis of even relatively small 
samples sizes leads to extremely long wait times. Therefore at the 
moment, the LMM-based GWAS analysis of large cohorts (tens to 
hundreds of thousands of participants), and even small (thousands 
of participants) studies involving omics measurements, represents 
a considerable problem. This limitation compromises the analyses 
availability, the data-to-knowledge turnaround time, and leads to 
excessive energy spending.

With this work, we aimed to address the aforementioned problems 
for big-data LMM-based GWAS. To do so, we took advantage of 
properties specific to the LMM formulation of GWAS, and ana-
lyzed a number of possible algorithms applicable to the analysis of 
large data. By combining sophisticated linear algebra and optimi-
zation techniques, we produced a fast and scalable software. Our 
software facilitates GWAS of tens of thousands of samples and 
hundreds of thousands of omics phenotypes, without the need for 
super-computing facilities.

Methods
Linear Mixed Models for GWAS
In a nutshell, LMM models the phenotypes of a group of n stud-
ied individuals as a point in an n-dimensional space, which comes 
from a multivariate Normal distribution. The expected mean is 
modeled using a standard regression model as E[Y] = Xβ, where X 
is the design matrix which includes the genotypes of interest and 
other covariates, and β are fixed effects. The variance-covariance 
matrix is defined as M = σ 2  · (h 2Φ + (1 − h2)I); here, σ 2  is the total 
variance of the trait, h2 is the heritability coefficient, I is the iden-
tity matrix, and Φ is the matrix containing the relationship coef-
ficients for all pairs of studied individuals. GWAS are performed 
by consecutively including SNPs in the analysis model (usually 
one SNP at a time) and computing the association statistics for 
the included SNP, thus iteratively applying the model throughout 
the genome.

The statistical model considered in this work is the same as that 
outlined in previous works19–21, and proceeds with analysis in two 
steps: for each trait considered, we first estimate the matrix of 
(co)variances between phenotypes, and then we use it when esti-
mating the SNP effects (see Supplementary Note S1 for mathemati-
cal details).

Figure 1 illustrates how a multi-trait analysis consists of a series of t 
separate single-trait analyses, each of which, in turn, consists of a 
series of m Generalized Least-Squares (GLS) problems. The key 
to fast analysis algorithms is the realization that such problems are 
correlated, both along the m and the t direction; in big-data GWAS, 
any approach that ignores such correlations cannot be feasible in 
terms of time-to-solution.

Efficient algorithms for single-trait and multi-trait GWAS
Aiming at supporting computational scientists in the design of effi-
cient software, two of the authors recently developed CLAK, an 
algebraic system that replicates the reasoning of human experts for 
the automatic discovery of linear algebra solvers26. The core idea 
is to first decompose a target matrix-based problem in terms of 
library-supported kernels, and then apply algorithmic and algebraic  
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optimizations. Since the decomposition is not unique, CLAK 
returns not one but a family of possible solutions, all mathemati-
cally equivalent, but exhibiting different space and time complexity.

With the help of CLAK, we generated many solutions to perform 
the aforementioned GWAS analyses (for a representative list, see 
Table S2). Each solution was subjected to the analysis of its com-
putational complexity, expressing the cost in terms of the number 
of samples, markers, and traits in question. Interestingly, depend-
ing on the number of traits, the best theoretical performance was 
attained by two different solutions, which we named CLAK-Chol 
and CLAK-Eig (described in Table S1), respectively. Figure 2 
shows the surfaces representing the time complexity of CLAK-
Chol and CLAK-Eig as a function of the number of traits and 

markers analyzed; the solid curve denotes the crossover between 
the surfaces. When fewer than four traits are considered, CLAK-
Chol attains better theoretical performance; on the contrary, for a 
higher number of traits, CLAK-Eig is expected to perform better 
(see also Table 1, and Supplementary Methods).

The idea underlying CLAK-Chol is to linearly transform the input 
data to de-correlate the observations. To this end, the variance-
covariance matrix M is formed explicitly, and its triangular Cholesky 
factor L is computed (LLT = M); through this factor, each SNP X and 
each trait y is then linearly transformed, giving raise to a sequence 
of Ordinary Least Squares problems of the form b := (X T X)-1X Ty . 
While such problems are solvable with standard techniques, CLAK-
Chol takes advantage of the fact that the covariates are fixed for 

Figure 1. Interpretation of multi-trait GWAS as a two-dimensional grid of generalized least-squares problems (b := (XT M-1X)-1XT M-1y). 
GWAS with multiple phenotypes requires the solution of m × t correlated Generalized Least-Squares (GLS) problems, originating a three-
dimensional object B of size m × t × p. Along the t direction, the variance-covariance matrix M and the phenotype y vary, while the design 
matrix X does not; conversely, in the m direction, M and y are fixed while X varies. Specifically, X can be viewed as consisting of two parts, 
XL and XR, where the former is constant across the entire grid and the latter changes along m. The figure also captures GWAS with single 
phenotype, in which case the dimension t reduces to 1.

Figure 2. Cost analysis for CLAK-Eig and CLAK-Chol. The brown and blue surfaces indicate the number of operations performed by 
CLAK-Eig and CLAK-Chol, respectively, for a given number of SNPs and traits. The crossover curve suggests that for analyses with more 
than just a handful of traits, CLAK-Eig is the fastest algorithm.
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all SNPs, hence lowering the computational complexity. In single-
trait analyses, it is also possible to exploit the fact that the matrix 
M is symmetric and positive definite. Although asymptotically the 
Cholesky factorization is equivalent to an eigen-decomposition, in 
practice it requires 10 times fewer operations. Moreover, instead 
of using the eigenvectors (a full matrix) to rotate the SNPs, the 
Cholesky factor (a triangular matrix) allows us to transform them 
at half the cost. For more details, see the work we have previously 
published27 describing the CLAK-Chol algorithm.

The design of CLAK-Eig is based on three insights: 1) For a given 
study, the relationship matrix Φ is constant across both SNPs and 
traits; 2) since the variance-covariance matrix M is built by merely 
shifting and scaling relationship matrix, its eigenvectors are the 
same as those of Φ, and its eigenvalues are obtained by shifting 
and scaling those of Φ; 3) the inverse of M is easily expressed by 
inverting the diagonal matrix containing its eigenvalues (note that 
in our solutions we never explicitly invert matrices; we instead fac-
tor them, and operate with their factors). Together, these insights 
suggest that the eigen-decomposition of Φ can be computed once 
and for all, and most importantly, the eigenvectors of the rela-
tionship matrix can be used to rotate all the SNPs and traits only 
once. After the data is rotated, the computation of the mixed model 
based GWAS can be carried out by means of a grid of inexpensive 
Weighted Least Squares problems.

Once the initial eigen-decomposition of Φ is available, the complex-
ity of CLAK-Eig is determined by three operations: the rotation of 
the SNPs, the rotation of the traits, and the solution of the Weighted 
Least Squares problems. The dominant term depends on the size of 
population (n), number of SNPs (m), and number of traits (t). When 
n > t (or n > m), the overall time complexity comes from the rota-
tion of the SNPs (or the traits), and amounts to O(n2m) (or O(n2t)); 
if instead both t and m are larger than n, then the dominant term 
comes from the Least Squares problems, and is linear in population, 
SNPs and traits: O(nmt) (Table 1). Note that the CLAK-Eig algorithm 
is a generalization of the eigen-decomposition based algorithms  
published before (e.g.22,28) for a case of multiple trait analysis.

Compared with current state-of-the-art algorithms19,21,22 in multi-
trait analyses, CLAK-Eig achieves a lower computational complexity. 
As shown in Table 1, there are two scenarios of interest, depending 
on whether the number of traits is larger than the population size 
or not. In the first case (t > n), which is probably the most typi-
cal for current and near-future omics studies, the time complexity 
of CLAK-Eig is linear on the number of markers, traits, and sam-
ples; by contrast, all the other methods have quadratic complex-
ity with the sample size. In the second case (n > t), which takes 
place for smaller ‘omics’ and also will become more common with 
the increasing affordability of omics technologies and hence larger 
sample sizes, the cost of CLAK-Eig is determined by the sample 
size and the number of SNPs, and its complexity is a factor t lower 
than other methods.

For both CLAK-Eig and CLAK-Chol, the space complexity is 
mainly determined by the square of the sample size; also, a min-
imum of one trait, one SNP, and the p covariates must reside in 
memory. In total, our methods only require enough memory to 
accommodate n2+(2+p)n entries. If multiple SNPs and/or traits fit 
in main memory at once, —e.g., dozens or hundreds of them—the 
computational throughput of our methods improves noticeably. In 
this case, the space requirement becomes n2+(k+p)n, where k is the 
number of SNPs and traits resident in memory. As examples, for 
sample sizes of 10,000, 20,000 and 40,000, the n2 space require-
ment translates to 1, 3, and 12 GBs, respectively. More details on 
space complexity are provided in Supplementary Note S1. 

Results
Implementation and comparison
To demonstrate the practical advantages of CLAK-Eig and CLAK-
Chol, we implemented these algorithms in the OmicABEL software 
package. In doing so, we tailored our implementations to save inter-
mediate results across adjacent problems; we also re-organized the 
calculations to fully benefit from both the efficiency of highly opti-
mized linear algebra kernels, and the parallelism offered by modern 
computing platforms.

Since the size of the datasets involved in GWAS is considerably 
larger than the memory capacity of current processors, input and 
output data can only be stored in disk devices. Aware that the pen-
alty for accessing information residing on disk is enormous—several 
orders of magnitude greater than the cost for performing one arith-
metic operation—it is imperative to handle these big-data efficiently. 
By means of asynchronous transfers between memory and disk, our 
algorithms achieve a perfect overlap of computation and data move-
ment. As long as the relationship matrix fits in the main memory, 
and regardless of the size of the data sets—both in terms of SNPs 
and phenotypes—, the processor never idles waiting for a transfer 
to complete, thus computing at maximum efficiency.

We compared the GWAS run-time of CLAK-Chol and CLAK-Eig 
as implemented in OmicABEL with that of several well-established 
packages: EMMAX19, FaST-LMM22 (two-step approximation), and 
GWFGLS (implementation of the mmscore method of ProbABEL21 
in the MixABEL-package29). In the experiments, we considered 

Table 1. Computational costs for the solution of single-trait and 
multiple-trait analyses. The variables n, m and t denote the sample 
size, the number of genetic markers, and the number of traits, 
respectively. v is the average number of iterations necessary to 
estimate the model parameters σ 2 and h2 (see “Time complexity” in 
Supplementary Note S1).

Algorithm Estimation 
of σ 2 and h2

Single-trait 
analysis

Multi-trait 
analysis 
(t > n)

Multi-trait 
analysis 
(n > t)

CLAK-Chol O(n3 + tvn) O(mpn2) O(tmn2) O(tmn2)

CLAK-Eig O(n3 + tvn) O(mpn2) O(tmn) O(mn2)

FaST-LMM O(n3 + tvn) O(mpn2) O(tmn2) O(tmn2)

GWFGLS O(n3 + tvn) O(mpn2) O(tmn2) O(tmn2)

EMMAX O(n3 + tvn) O(mpn2) O(tmn2) O(tmn2)
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three different scenarios, varying one among sample size n, number 
of SNPs m, and number of traits t, while keeping the other two 
values constant (Figure 3). A description of the experimental setup 
is provided in Supplementary Note S2 and Supplementary Note S3.

In the first scenario (single trait and m = 10,000,000 SNPs; the 
sample size varies from 1,000 to 40,000), all methods exhibit a 
quadratic behavior, and CLAK-Chol is the only algorithm that 
completed all tests within 25 hours (Figure 3(a)). For the largest 
problem considered (sample size n = 40,000), the speed-up over the 
next-fastest software (FaST-LMM) is 8.3: 205 vs. 25 hours; when  
n = 1,000, the speed-ups over GWFGLS, FaST-LMM and EMMAX 
are 24, 32 and 68, respectively: 86, 112 and 240 vs. 3.5 minutes.

The second scenario (single trait and sample size of 10,000; the 
number of markers varies between 1 and 36 millions) shows a linear 
dependence on the number of genetic markers for all software pack-
ages. Again, CLAK-Chol attains the best timings, outperforming 
FaST-LMM, GWFGLS and EMMAX by a factor of 11.7, 93.6 and 
298, respectively (Figure 3(b)), when the number of analysis SNPs 
is 36 millions.

Finally, the third scenario illustrates the analysis of multiple pheno-
types (sample size of 1,000 and 1,000,000 genetic markers; num-
ber of traits varies between 1 and 100,000). The (estimated) time 
required for these analyses is presented in Figure 3(d). Note that the 
time scale on this graph is in years. Due to CLAK-Eig’s linear time 
complexity with respect to sample size, SNPs and traits, its advantage 

becomes most apparent: when thousands of traits are considered, 
CLAK-Eig outperforms GWFGLS, FaST-LMM and EMMAX by a 
factor of 1012, 1352, and 2789, respectively (Figure 3(d)), bringing 
the execution time down from months to hours.

Demonstration of application to real data
We applied the OmicABEL (CLAK-Eig) to study 107,144 metabo-
lomic traits in a sample of 781 people from a genetically isolated 
population of the Vis island (Croatia). These data are part of the 
EUROSPAN data set reported in the works of 11, and 12. In short, 
the data comprise plasma levels of 23 sphingomyelins (SPM),  
9 ceramides (CER), 56 phosphatidylcholines (PC), 15 lysophos-
phatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 
19 PE-based plasmalogens (PLPE). From these data, additional 
traits were defined by aggregating species into groups with similar 
characteristics (e.g. unsaturated ceramides), and also by express-
ing data as molar percentages (instead of absolute concentra-
tions) within classes. Following the standards accepted in genetic 
analysis of metabolomics data30, in this work, 328 such measure-
ments served as a base to compute all pair-wise ratios, resulting in 
107,584 traits, which were analyzed for association with 266,878 
SNPs. More details about the data are provided in Supplementary 
Note S4.

Previously, it took several weeks to accomplish the original analysis 
of only few hundreds “original” traits. However, using our OmicABEL 
software and a computer with 40 cores, we were able to finish the 
analysis of more than 100,000 traits in only 8 hours.

Figure 3. Timings comparison. Panels (a) and (b) include timings for EMMAX, GWFGLS, FaST-LMM, and our OmicABEL software, for single 
trait analyses; (c) and (d) present a comparison of EMMAX, GWFGLS, FaST-LMM, and our OmicABEL software, in the case of multiple traits. 
In (a), the number of SNPs is fixed to m = 107 and the sample size n ranges from 1,000 to 40,000. In panel (b), the sample size is fixed to  
n = 10,000 and the number of SNPs m ranges between 106 and 3.6 × 107. In (c) and (d), n = 1,000, m = 106 and t ranges from 1 to 100,000.
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Table S4 shows the results for five SNPs previously reported11 to be 
significantly associated with levels of circulating sphingolipid con-
centrations. The best results obtained for these SNPs when using 
the original and derived traits are reported. The implicated traits 
were also analyzed by using other approaches: the full likelihood 
ratio test based LMM18,22 (as implemented in MixABEL::FMM), 
Grammar-γ 25 (as implemented in the GenABEL-package29), and the 
two-step approach19–21 (as implemented in MixABEL::GWFGLS). 
From Table S4 one can see that our results are consistent with those 
obtained by other methods. Additionally, Table S3 summarizes the 
results concerning heritabilities of analyzed traits, while Table S5 
lists the Genomic Control inflation factor λ obtained when ana-
lyzing the selected traits with different methods. More details of 
the analysis of this human metabolomics data set are provided in 
Supplementary Note S4.

Discussion
In contemporary human genomics, methods and tools face the addi-
tional challenge posed by the sheer size of the datasets. Big data 
are produced from the investigation of large human cohorts includ-
ing hundreds of thousands of participants; these massive samples 
facilitate the identification of small effects and lead to important 
biological insights. Large data also come from the field of func-
tional (gen)omics, which aims at establishing the functional roles of 
genetic variants; hence GWAS are increasingly applied not only to 
study complex traits in large cohorts, but also to understand the reg-
ulation of human and animal transcriptome15,31,32, metabolome10–12, 
glyco(protein)ome6,7 and other types of omics data. Results of these 
studies are used to uncover the link between these molecular pheno-
types and high-level complex traits, including human diseases14–16.

In recent years, linear mixed model was accepted as a powerful tool 
for whole-genome analysis of genetic associations17,18. Most current  
LMM-based methods for GWAS19–24 exhibit linear dependency of 
the compute time on the number of genetic polymorphisms and 
traits studied, but at least quadratic dependency on the sample size. 
A notable exception from the latter “at-least-quadratic” rule is the 
GRAMMAR-Gamma method25 and a method based on low rank 
approximation of the similarity matrix22 - with the latter exploit-
ing the ideas similar to EIGENSTRAT approach33 and the methods 
assuming the adjustment of the model for top Principal Compo-
nents of the kinship matrix variation. However, the computational 
advantage of these methods comes at the cost of mathematical 
approximation. For example, the GRAMMAR-Gamma method, 
while extremely fast, and showing excellent results for human stud-
ies, is less suited for analyses of samples with uneven genetic struc-
ture; adjusting for top principle components (and EIGENSTRAT) 
is known to provide incomplete correction for stratification in case 
of complex kinship. Increasing sample sizes and availability of 
molecular omics phenotypes lead to “big data challenges” and the 
computational throughput of LMM’s starts being more and more of 
an issue, which at present sometimes cannot be resolved without 
resorting to supercomputing facilities.

With this work, we address the problem of mixed-model based 
whole-genome analysis of genetic association for an arbitrary 
number of traits. We describe the CLAK-Chol and CLAK-Eig 
algorithms and software tools (OmicABEL package) to address 

LMM-based GWAS. Specifically, our CLAK-Chol will be useful 
for investigation of complex traits in very large (tens of thousands 
of individuals) samples, while CLAK-Eig will be a useful tool for 
the investigation of genetic control of different omics, potentially 
including hundreds of thousands or even millions of features.

As for our CLAK-Chol approach, we are not aware of similar, 
Cholesky-based solutions proposed before. The CLAK-Eig approach 
behind our solutions bear similarities, and actually reduces to previ-
ously suggested methods (e.g.22,28) when the number of traits is one. It 
is also worth mentioning the Matrix eQTL software34, which, while 
not implementing the LMM, in many respects exploits the problem-
specific properties of multi-trait GWAS in the ways similar to ours.

The key achievement of this research is that it facilitates big-data 
LMM-based GWAS without supercomputers. For a sample prob-
lem with a population of 1,000, three covariates, one million SNPs 
and 100,000 traits, we estimate that the available methods would 
require the entire Sequoia supercomputer (equipped with 1.5 million 
cores)1 for about 3 minutes; by contrast, using a common 40-core 
compute node (see Supplementary Methods, Note S2), our method 
completes within a day and reduces the energy consumption by a 
factor of 200 (estimated). It should be noted that this impressive 
speed-up comes at the price of additional assumption of complete 
data. For many types of omics assays assumption of absence of 
missing data could be (almost) true, and a small proportion of miss-
ing data could be imputed (in the simplest case – replaced with 
average value) with little negative effect onto statistical properties 
of the method. However, for the omics assays which produce large 
proportion of missing data, our CLAK-Eig method in its current 
formulation and implementation would be inapplicable, unless the 
missing values could be reliably imputed.

In case of single-trait analysis, our results are somewhat less 
impressive, and our CLAK-Chol solution outperforms advanced 
current methods (e.g. FaST-LMM) by about one order of magni-
tude for large-sample-size problems. It is worth mentioning that the 
latter speed-up becomes possible because we show that for single-
trait GWAS problems our CLAK-Chol algorithm is superior to 
CLAK-Eig, but other current methods are actually implementing 
solutions similar to our CLAK-Eig algorithm to address the single-
trait GWAS problem.

Further optimizations of our solutions are possible, for instance 
by exploiting the structure of the kinship matrix. A “compressed 
MLM” approach was proposed for decreasing the effective sample 
size of datasets by clustering individuals into groups20; similarly, the 
fast decaying and possibly sparse structure of the kinship matrix can 
be exploited to lower the number of mathematical operations. Cau-
tion must be exercised in the interpretation of findings resulting from 
GWAS analyses as they may generate false positives if the multiple 
testing problem is not addressed adequately. A conservative strategy 
to determine whether an association is statistically significant would 
be to apply a Bonferronni correction, that is, in our example analysis 
of 107,144 traits, the conventional genome-wide significance thresh-
old p-value of 5 · 10-8 should be replaced by 4.7 · 10-13. This is the 
common approach applied in the metabolomics studies (see10,30). On 
the other hand, this threshold would probably be too conservative, 
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given that many of the measurements may be highly correlated. 
Several methods have been introduced recently35–37, which may 
help to overcome this problem; however, this topic lays outside the 
scope of the current work.

For the analysis of specific omics data, our methods (and software) 
might require some modifications. For example, in the genetic regu-
lation of human transcriptome, large attention is dedicated to cis-
eQTLs, computationally a relatively simple task. In contrast, our 
implementation is tailored to perform full GWAS for every trait 
analyzed. While OmicABEL could be used for the identification of 
trans-eQTLs, one should be aware of the specifics of the analysis of 
this type of data (e.g. allele-specific expression in RNAseq studies) 
and a body of methods developed (e.g. methods to account for influ-
ences of hidden factors38,39).

We foresee that the primary use of our algorithms and software is 
within the domain of analysis of complex traits in very large sam-
ples and for the genetic analysis of “omics” data. However, poten-
tially, there are other uses. The same set of methods and tools can 
be used for scanning through other omics in e.g. search for bio-
markers for a complex trait or in order to determine functional rela-
tions between different omics. For example, one may be interested 
in doing epigenome-wide scans relating the epigenome to a com-
plex trait (or other omics, such as metabolome). Under this use, the 
genomic inputs would be replaced by epigenomic data. Advanced 
statistical and machine learning methods, such as penalized regres-
sion, can make use of joint analysis of up to several hundreds of 
thousands of predictors40. One of the common scenarios include the 
construction of millions of features, and their filtering for further 
joint analysis—a task which can be also effectively addressed by 
our methods. Finally, our algorithms can be easily extended, e.g. to 
search for interactions.

Conclusions
We demonstrated that different computational algorithms are opti-
mal for the problems of single- and multi-trait Mixed-Model based 
GWAS, and implemented these algorithms in a freely available 
OmicABEL software.
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Table S1. The CLAK-Chol and CLAK-Eig algorithms for single-trait and multi-
trait analyses, respectively.

CLAK-Chol: Single-trait analysis      CLAK-Eig: Multi-trait analysis

1    M̂ := 2σ̂ ( 2ĥ Φ + (1 – 2ĥ )I )

2   LLT = M̂

3   XL := L–1XL

4   XR := L–1XR

5   y := L–1y

6   STL := X
L

T XL 
 
7   bT := X

L

T y 
 
8   for   i = 1:m 
 

9           
*

:
i i i

TL
T T
R L R R

S
S

X X X X

 
 =
  

 
 
 

10       :
i

T
i T

R

bb
X y

 
=  

 
 

 

11         b
i
 := S

i
–1b

i

 
1   ZWZ T = Φ 
 
2   XL := Z T XL 
 
3   XR := Z T XR 
 
4   Y := Z T Y 
 
5   for   j = 1: t 

6       D := ( 2ˆ
jσ ( 2ˆ

jh W + (1 – 2ˆ
jh )I))–1 

 
7       KK T = D 
 
8       Yj := K T Yj 
 
9       WL := K T XL 
 
10      STL := W

L

T WL 
 
11      bT := W

L

T Yj 
 
12      for   i = 1:m 
 
13         WR := K T XRi

 
 

14         
*

: TL
T T

R L R R

S
S

W W W W

 
=  

  
 

 

15          : T
ij T

R j

bb
W Y

 
=  

 
 

 

16         b
ij
 := S

 
–1b

ij
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Table S2. Representative list of algorithms for solving a single generalized least-squares 
problem, as generated by the CLAK expert system.

CLAK-Chol’s for a single GLS problem       CLAK-Eig’s for a single GLS problem

1    M̂ := 2σ̂ ( 2ĥ Φ + (1 – 2ĥ )I ) 

2   LLT = M̂  
 
3   X := L–1X 
 
4   y := L–1y 
 
5   S := X TX 
 
6   b := X Ty 
 
7   b := S 

–1b

1   ZWZ T = Φ 

2   D := ( 2σ̂ ( 2ĥ W + (1 – 2ĥ )I))–1 
 
3   KK T = D 
 
4   X' := Z TX 
 
5   y' := Z Ty 
 
6   V := K TX' 
 
7   ν := K Ty' 
 
8   S := V TV 
 
9   b := V Tν 
 
10   b := S 

–1b

Algorithm 7 Algorithm 13

1    M̂ := 2σ̂ ( 2ĥ Φ + (1 – 2ĥ )I) 

2   LLT = M̂  
 
3   X := L–1X 
 
4   QR := X 
 
5   y := L–1y 
 
6   b := Q Ty 
 
7   b := R 

–1b

1   ZWZT = Φ 

2   D := ( 2σ̂ ( 2ĥ W + (1 – 2ĥ )I ))–1 
 
3   KK T = D 
 
4   X' := Z TX 
 
5   V := K TX' 
 
6   QR := V 
 
7   y' := L–1y 
 
8   ν := K Ty' 
 
9   b := Q Tν 
 
10   b := R 

–1b

Page 10 of 19

F1000Research 2014, 3:200 Last updated: 11 FEB 2015



Table S3. Regression analysis of heritability estimates in 
different traits classes. The label “Original” refers to the average 
heritability of the original traits (intercept of the model); similarly, 
“cer-cer” refers to the heritability of ratios involving CER, “cer-lpc” to 
the heritability of ratios involving CER and LPC, and so on.

Trait Estimate Std. Error t value Pr(> |t |)

Original 0.310493 0.007645 40.613 < 2e-16
cer-cer 0.126283 0.009268 13.625 < 2e-16
cer-lpc 0.009870 0.008183 1.206 0.22777
cer-pc 0.012576 0.007833 1.606 0.10838
cer-pe -0.016897 0.007982 -2.117 0.03426
cer-pls -0.008811 0.008176 -1.078 0.28119
cer-spm 0.067942 0.008095 8.393 < 2e-16
lpc-lpc 0.009306 0.008364 1.113 0.26590
lpc-pc -0.035843 0.007769 -4.614 3.96e-06
lpc-pe -0.053195 0.007868 -6.761 1.38e-11
lpc-pls -0.024212 0.008001 -3.026 0.00248
lpc-spm -0.021573 0.007942 -2.716 0.00660
pc-pc -0.062170 0.007732 -8.041 9.03e-16
pc-pe -0.063491 0.007722 -8.222 < 2e-16
pc-pls -0.059816 0.007767 -7.702 1.36e-14
pc-spm -0.044365 0.007749 -5.725 1.04e-08
pe-pe -0.041556 0.007922 -5.246 1.56e-07
pe-pls -0.056304 0.007864 -7.160 8.13e-13
pe-spm -0.049549 0.007834 -6.325 2.54e-10
pls-pls -0.056809 0.008341 -6.811 9.75e-12
pls-spm -0.039083 0.007941 -4.922 8.60e-07
spm-spm -0.010163 0.008164 -1.245 0.21319

Table S4. Nominal p-values for the analysis of SNPs previously associated with circulating 
sphingolipid concentrations in Vis data. Lead trait: the original trait for which the association 
signal was most significant in Vis data. Lead percentage: the molar percentage, for which the 
most significant association was obtained. Lead Ratio: the ratio, for which the most significant 
association was obtained. OmicA: OmicABEL, our implementation of CLAK-Eig; FASTA: the 
two-step approach19–21 (as implemented in MixABEL::GWFGLS); LRT: the full likelihood ratio test 
based LMM18,22 (as implemented in MixABEL::FMM); Gra-γ: Grammar-γ25 (as implemented in the 
GenABEL-package29).

SNP Trait
Method

OmicA FASTA LRT Gra-γ 
Original traits

rs10938494 
rs1000778 
rs4902242 
rs7258249 
rs680379

PC 40:6 
PC 38:4 
SPM 14:0 
SPM 18:1 
C23:0

3.83E-03 
4.07E-06 
3.42E-13 
3.93E-08 
9.90E-05

3.66E-03 
3.49E-06 
2.70E-13 
3.71E-08 
9.53E-05

3.71E-03 
3.14E-06 
1.03E-13 
2.42E-08 
8.69E-05

3.89E-03 
3.39E-06 
2.75E-13 
3.97E-08 
9.77E-05

Molar percentages
rs10938494 
rs1000778 
rs4902242 
rs7258249 
rs680379

% PC 40:6 
% PC 36:4 
% SPM 14:0 
% SPM 18:1 
% C16:0

8.42E-03 
2.90E-04 
1.32E-13 
2.30E-05 
9.43E-04

8.25E-03 
2.92E-04 
1.11E-13 
2.33E-05 
8.91E-04

8.04E-03 
2.29E-04 
4.08E-14 
1.92E-05 
8.61E-04

8.25E-03 
2.30E-04 
1.19E-13 
2.35E-05 
9.07E-04

Ratios
rs10938494 
rs1000778 
rs4902242 
rs7258249
rs680379

SPM 24:1 / glucosylceramide 
% SPM 23:0 / % PC 36:4 
SPM 14:0 / % SPM 23:0 
SPM 16:1 / SPM 18:1
SPM 16:1-OH / % C16:0

2.29E-06 
8.83E-09 
1.71E-15 
6.41E-08
1.56E-07

1.72E-06 
8.16E-09 
1.35E-15 
5.72E-08
1.52E-07

1.31E-06 
6.04E-09 
4.44E-16 
3.74E-08
1.17E-07

1.89E-06 
7.64E-09 
8.95E-15 
6.23E-08
1.60E-07
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Supplementary Note S1

Methods and algorithms
Mixed Models for GWAS
The Variance Components model for a quantitative trait can be for-
mulated as

			   Y = Xβ + R,

where Y is the vector containing the phenotypes for n individuals, 
X is the design matrix, and β and R are the vectors of fixed and ran-
dom effects, respectively. The partitioning X = [1|L|g] indicates that 
the design matrix is composed of three parts: 1 denotes a column-
vector (corresponding to the intercept) containing ones, L is an n × p 
matrix corresponding to fixed covariates such as age and sex, and g 
typically consists of a single column-vector containing genotypes. 
The vector of random effect R is assumed to be distributed as a Mul-
tivariate Normal with mean zero and variance-covariance matrix  
M = σ 2 (h2Φ + (1 − h2)I); here, σ 2  is the total variance of the trait, 
h2 (in the range [0, 1]) is the heritability coefficient, I is the identity 
matrix, and Φ is the matrix containing the relationship coefficients 
for all pairs of studied individuals. The relationship matrix Φ can be 
estimated from the pedigree or from the genomic data18.

In GWAS, the quantity of interest is the effect of the genotype, that 
is, the element(s) of β corresponding to g. Technically, a GWAS 
with mixed model consists of traversing all measured polymorphic 
sites in the genome, substituting the corresponding g into X, and 
fitting the above model; the result is millions of estimates of genetic 
effect together with their p-values.

Table S5. Genomic Control λ estimates for traits analyzed in Table S4 
(main text).

Trait

Method

OmicA FASTA LRT Gra-γ 

Original traits

PC 40:6 
PC 38:4 
SPM 14:0 
SPM 18:1 
C23:0

0.995 
0.987 
0.992 
0.998 
0.995

1.008 
1.000 
0.999 
1.005 
1.004

0.999 
1.001 
0.996 
1.014 
0.999

0.989 
1.026 
0.998 
0.995 
0.993

Molar percentages

% PC 40:6 
% PC 36:4 
% SPM 14:0 
% SPM 18:1 
% C16:0

1.007 
0.964 
0.995 
0.998 
0.989

1.015 
0.995 
1.005 
1.002 
1.001

1.006 
1.006 
1.004 
1.002 
1.008

0.985 
1.010 
0.993 
0.994 
0.991

Ratios

SPM 24:1 / glucosylceramide 
% SPM 23:0 / % PC 36:4 
SPM 14:0 / % SPM 23:0 
SPM 16:1 / SPM 18:1 
SPM 16:1-OH / % C16:0

0.975 
1.008 
1.006 
1.008 
0.997

1.005 
1.007 
1.009 
1.010 
1.002

0.998 
1.006 
0.997 
0.999 
1.003

0.994 
1.011 
0.994 
0.994 
0.993

One of the most used mixed model-based approaches used in GWAS 
relies on a two-step analysis methodology19–22,41. In the first step, the 
reduced model (with X = [1|L]) is fit to the data, thus obtaining the 
estimates { 2σ̂ , 2ĥ }; the variance-covariance matrix corresponding to 
such estimates is denoted by M̂  = 2σ̂ ( 2ĥ Φ + (1 – 2ĥ )I). In the sec-
ond step, for each g

i
 and corresponding X

i
 = [1|L|g

i
], the estimates 

of the effects and the variance-covariance matrix are respectively 
obtained as

	           ( ) 1
1 1ˆ ˆ ˆ ,T T

i i i iX M X X M yβ
−

− −= 		  (1)

and

	     ( ) ( ) 1
2 1ˆ ˆˆ ,T

i i iVar X M Xβ σ
−

−=

with i = 1, . . . , m, where m is the number of genetic markers 
considered.

In this work, we consider an extended formulation of this problem 
to the case of multiple phenotypes, that is, Y is a collection of t vec-
tors, with y

j
 (j = 1, . . . , t) being a vector corresponding to a specific 

trait. In this case, trait-specific estimates 2ˆ
jσ , 2ˆ

jh  need to be obtained, 
resulting in t different ˆ sjM . As the result of the analysis, m × t vec-
tors of estimates of ˆ

ijβ  and corresponding Var( ˆ
ijβ ) are generated. In 

summary, the problem we are facing is
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1: ( ) ,T T T T T Tb X ZKK Z X X ZKK Z y−=

and the algorithm proceeds by computing V := X TZK (matrix-
matrix multiplication and scaling), obtaining b := (VV T)–1VK TZ Ty. 
Similar to CLAK-Chol, b is finally obtained through matrix-vector 
multiplications and a linear system, for a total cost of ( )3 210

3
n O n p+ .

Effectively solving the grids of Generalized Least-Squares 
problems
As shown in Table 1, the strength of the algorithms CLAK-Chol 
and CLAK-Eig becomes apparent in the context of 1D and 2D grids 
of GLS problems, corresponding to GWAS with single and multiple 
phenotypes, respectively. The straightforward approach, which is 
the only alternative provided by current general-purpose numerical 
libraries, lies in a loop that utilizes the best performing algorithm 
for a single least-square problem. No matter how optimized the 
GLS solver, such an approach is prohibitively expensive for either 
single or multiple phenotypes, due to the unmanageable complex-
ity of O(mn3) and O(tmn3), respectively. By contrast, the versions 
of CLAK-Chol and CLAK-Eig shown in Table S1 are the product 
of a number of optimizations aimed at saving intermediate results 
across successive problems, thus avoiding redundant calculations. 
For instance, the matrix X is logically split as [X

L
|X

R
], where X

L
 

includes the intercept and the covariates ([1|L]), while X
R
 is the col-

lection of all the genetic markers g
i
. Thanks to these savings, both 

algorithms achieve a lower overall complexity.

Unfortunately, the reduced complexity of algorithms CLAK-Chol 
and CLAK-Eig is not enough to guarantee high-performance 
implementations. It is well known that in terms of execution time, 
the difference between a straightforward translation of an algorithm 
into code and a carefully assembled routine is of at least one order 
of magnitude. In other words, the benefits inherent to our new algo-
rithms might go unnoticed unless paired with state-of-the-art imple-
mentation techniques. In this following, we detail our strategy to 
attain high-performance routines.

Both CLAK-Chol and CLAK-Eig are entirely expressed in terms 
of standard linear algebra operations, such as matrix products and 
matrix factorizations, provided by the BLAS42 and LAPACK43 
libraries. Since LAPACK itself is built in terms of BLAS kernels, 
these are the main responsible for the overall performance of an 
algorithm. BLAS consists of a relatively small set of highly opti-
mized kernels, organized in three levels (1, 2, and 3), corresponding 
to vector, matrix-vector, and matrix-matrix operations, respectively.

A common misconception is that all the BLAS kernels, across 
the three levels, attain a comparable (and high) level of efficiency. 
Instead, it is only BLAS-3—when operating on large matrices—
that fully exploits the processors’ potential; as an example, the 
matrix-vector multiplication, matrix-matrix multiplication on small 
matrices, and matrix-matrix multiplication on large matrices attain 
an efficiency of ≈ 5%, ≈ 15%, and more than 95%, respectively. In 
this context, the linear systems X := L−1X in CLAK-Chol (Line 3 of 
the top-left algorithm in Table S2), to be solved for each individual 
SNP, should ideally be aggregated into a single—very large—linear 
system X

R
 := L−1X

R
, in which X

R
 is the collection of the genetic 

    

( )
( )

( )( )

1
1 1

1
2 1

2 2 2

ˆ ˆ ˆ

ˆ ˆˆ( ) with 1

ˆ ˆˆ ˆ 1 and 1 ;

T T
ij i j i i j j

T
ij j i j i

j j j j

X M X X M y

Var X M X i m

M h h I j t

β

β σ

σ

−
− −

−
−

 =
 = ≤ ≤

 = Φ + − ≤ ≤
          

 

(2)

see Figure 1 for a visual description. For each i and j, Equation (2) 
represents a generalized least-square (GLS) problem. Single-
trait and multiple-trait analyses correspond to the solution of m×1 
(1-dimensional) and m×t (two-dimensional) grids of GLS prob-
lems, respectively.

Single-instance algorithms
We provide here an overview of a simplified version of CLAK-Chol 
and CLAK-Eig to solve a single GLS; the versions tailored for one-
dimensional and two-dimensional grids of GLS’s are discussed in 
the Methods section and presented in Table S1. In the following, 
we use b to indicate β̂ ; in both our algorithms, the computation of 
Var(b) represents an intermediate result towards b.

CLAK-Chol. The approach for CLAK-Chol (Table S2, top-left) is 
to first reduce the initial GLS b := (XT M̂ –1X)–1XTM̂ –1y to a linear least-
squares problem, and then solve this via normal equations. Spe-
cifically, the algorithm starts by forming M̂  = 2σ̂ ( 2ĥ Φ + (1 – 2ĥ )I), 
which is known to be symmetric positive definite, and by comput-
ing its Cholesky factor L. This leads to the expression b := (XT L−T 
L−1X)–1XTL−TL−1y, in which two triangular linear systems can be iden-
tified and solved— X  := L−1X and y  := L−1y —thus completing the 
reduction to the standard least-squares problem b := ( X T X )–1 X T y . 
Numerical considerations allow us to safely rely on the Cholesky 
factorization of S := X T X  without incurring instabilities. The algo-
rithm completes by computing b  := X T y  and solving the linear 

system b := S –1b , for a total cost of ( )3 21

3
n O n p+ .

CLAK-Eig. Instead of forming the matrix M̂ , Algorithm CLAK-
Eig (Table S2, top-right) operates on the matrix Φ: At first, it diago-
nalizes Φ as ZWZT, leading to the expression

		
2 2 2ˆ ˆˆ ˆ: ( (1 ) ),TM h ZWZ h Iσ= + −

with diagonal W. By orthogonality of Z, the inverse of M̂  can be 
represented as

	          
1 2 2 2 1ˆ ˆˆ ˆ: ( ( (1 ) )) TM Z h W h I Zσ− −= + −

and easily computed with a cost of O(n) operations via

		
2 2 2 1ˆ ˆˆ: ( ( (1 ) )) ;D h W h Iσ −= + −

the solution to the GLS is thus given by

	         
1 1 1: ( ) .T T T Tb X ZD Z X X ZD Z y− − −=  	    (3)

Moreover, since D is symmetric positive definite, Equation 3 can 
be rewritten as
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markers of all SNPs (Line 3 of the left Algorithm in Table S1). An 
analogous comment is valid for CLAK-Eig (see the multiplications 
at Lines 3 and 4 of the right Algorithm in Table S1), in which the 
number of markers accessed at once is a user-configurable input 
parameter.

Since all the current computing platforms include multicore pro-
cessors, we briefly discuss how to take advantage of this architec-
ture. An effective practice is to invoke a multi-threaded version of 
the BLAS library. Both in CLAK-Chol and CLAK-Eig (Table S1) 
we rely on such a solution for the sections leading up to the outer 
loop (Lines 1–7 and 1–4, respectively). In the remainder of the 
algorithms (Lines 8–11 and 5–16), due to the lack of matrix-matrix 
operations, we instead apply a thread-based parallelization in con-
junction with single-threaded BLAS. This mixed use of multi-
threading becomes more and more effective as the number of 
available computing cores increases.

Time complexity
Prior to solving a grid of GLS, the heritability (h2) and the total 
variance (σ2) have to be estimated. For this first step, our algorithms 
use an approach similar to Software packages such as GenABEL29, 
EMMAX, and FaST-LMM: First, the eigen-decomposition of the 
kinship matrix is performed, for a computational cost of O(n3). 
Then, the model parameters are estimated using an iterative proce-
dure based on the Maximum Likelihood (GenABEL, FaST-LMM) 
or Restricted Maximum Likelihood (EMMAX, CLAK-Chol, 
CLAK-Eig) methods, for a cost of O(tvnp2), where v is the average 
number of iterations required to reach convergence. In total, the 
parameter estimation has a complexity of O(n3 + tvnp2) operations.

In the second step, a 1D or 2D grid of GLS is solved, correspond-
ing to single and multiple phenotype analysis. For 1D grids, all the 
considered methods share the same asymptotic time complexity, 
but the constant factor for CLAK-Chol is the lowest, yielding a 
speedup factor of at least 6. In 2D grids, EMMAX, FaST-LMM 
and GenABEL simply tackle each individual trait independently, 
one after another, for a total complexity of O(tmpn2). By exploiting 
the common structure of the variance-covariance matrix of differ-
ent phenotypes, CLAK-Eig reduces the complexity by a factor of n, 
down to O(tmpn). As a result, our algorithm outperforms the other 
methods by factors higher than 1,000.

Space requirement
CLAK-Chol. To form and factor the variance matrix, the algorithm 
uses n2 memory (Lines 1–2 in the left Algorithm of Table S1). 
The overall space requirement is determined by the triangular solve 
(Line 4), which necessitates the full L and a portion of X to reside in 
memory at the same time. This operation is performed in a stream-
ing fashion—operating on k SNPs at the time—and overwriting X. 
All the other instructions do not require any extra space. In total, 
CLAK-Chol uses about n2 + kn memory.

CLAK-Eig. The initial eigen-decomposition (Line 1 in the right 
Algorithm of Table S1) needs 2n2 memory. The following matrix-
matrix multiplications (Lines 2, 3 and 8) overwrite the input matrices 

and again are performed in a streaming fashion; in terms of space, 
the analysis is similar to that for the triangular solve in CLAK-
Chol. The remaining instructions do not affect the overall memory 
usage. In total, the space requirement is 2n2 + kn.

If memory is a limiting factor, one can set k to 1 in either algorithm, 
possibly at the cost of exposed data movement. Moreover, by using 
a different (slower) eigensolver, the eigenvectors Z can overwrite the 
input matrix Φ, effectively saving n2 memory. These considerations 
indicate that our algorithms are capable of solving GWAS of any 
size, as long as the kinship matrix, one SNP, and one trait fit in RAM.

Supplementary Note S2

Computing environment
All the computing tests were run on a symmetric multiprocessor 
system consisting of four Intel Xeon E7-4850 10-core processors, 
operating at a frequency of 2.00 GHz. The system is equipped with 
256GB of RAM and 4TB of disk as secondary memory2. The rou-
tines were compiled with the GNU C Compiler (gcc v4.4.5) and 
linked to Intel’s MKL multi-threaded library (v12.1). For double-
buffering, our out-of-core routines make use of the AIO library, one 
of the standard libraries on UNIX systems. The available multi-core 
parallelism is exploited through MKL’s multi-threaded BLAS and 
OpenMP’s pragma directives.

Supplementary Note S3

Simulated data
A data set for GWAS can be characterized by the number of indi-
viduals in the sample (n), the number of measured and/or imputed 
SNPs (m) to be tested, the number of outcomes to be analyzed (t), 
and the number of covariates (p) to be included in the model. In cur-
rent GWAS, a typical scenario consists of a few covariates (for exam-
ple, two, such as sex and age), 105–107 SNPs, and thousands or tens 
of thousands individuals. In our experiments, we assumed that the 
number of covariates is two (p=2), and we varied the three other char-
acteristics (n, m, t) of the data set, leading to these three scenarios.

(A)	 The number of SNPs was fixed to m = 10,000,000 and one 
single outcome (t = 1) was studied. As sample size, we used 
1,000, 5,000, 10,000, 20,000, and 40,000. The latter test rep-
resents a scenario with large number of individuals.

(B)	 The number of individuals was fixed to n = 10,000 and one 
single outcome (t = 1) was studied. The number of mark-
ers m to be analyzed was set to 1,000,000, 10,000,000, and 
36,000,000. The latter test is a scenario that represents a 
whole genome re-sequencing.

(C)	 The number of individuals and markers were fixed to n = 
1,000 and m = 1,000,000, respectively. The number of 
outcomes t studied varied (1, 10, 100, 1,000, 10,000, and 
100,000), corresponding to an Omics analysis.

For testing purposes, we generated artificial data sets which met 
pre-specified values of t, m, p, and n.
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Supplementary Note S4 

Application to human metabolomics data
CROATIA-Vis study
The CROATIA-Vis study includes 1056 unselected Croatians, aged 
18–93 years, who were recruited into the study during 2003 and 
2004 from the villages of Vis and Komiza on the Dalmatian island 
of Vis44,45. The settlements on Vis island have unique population 
histories and have preserved their isolation from other villages and 
from the outside world for centuries. Participants were phenotyped 
for more than 450 disease-related quantitative traits. Biochemical 
and physiological measurements were performed, detailed gene-
alogies reconstructed, questionnaire of lifestyle and environmental 
exposures collected, and blood samples and lymphocytes extracted 
and stored for further analyses. Samples in all studies were taken 
in the fasting state. The CROATIA-Vis study was approved by the 
ethics committee of the medical faculty in Zagreb and the Multi-
Centre Research Ethics Committee for Scotland.

Metabolomics measurements
We applied the OmicABEL to study 107,144 metabolomic traits in 
a sample of 781 people from a genetically isolated population of the 
Vis island (Croatia). These data are a part of the EUROSPAN data 
set reported in work of Hicks11 and Demirkan and colleagues12. In 
short, the data comprise plasma levels of 23 sphingomyelins (SPM), 
9 ceramides (CER), 56 phosphatidylcholines (PC), 15 lysophos-
phatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 19 
PE-based plasmalogens (PLPE). From these data, additional traits 
were then defined by aggregating species into groups with similar 
characteristics (e.g. unsaturated ceramides), and also by expressing 
data as molar percentages (instead of absolute concentrations) within 
classes. In this work, 328 such measurements served as a base to com-
pute all pair-wise ratios, resulting in 107,584 traits. The traits with 
>95% of measured values without ties were sex- and age-adjusted 
and then Gaussianized using the quantile normalization. The result-
ing 107,144 traits were subject to GWAS with 266,878 SNPs.

Here we report several findings showing the power of this approach 
to large-scale hypothesis-free analysis; while such an analysis 
was hardly conceivable before, is now within the reach for most 
researchers by using our new methods, algorithms and software.

Results
In total, heritability was >0 for 102,985 (96.1%) traits, with an aver-
age heritability of 27%, and a maximum of 85%. We investigated 
if there were systematic differences in heritabilities between differ-
ent classes of measurements. The average heritability of the origi-
nal traits was 0.31 (see Table S3). We observed that heritabilities 
were specific for different classes of ratios. For example, the ratios 
involving ceramides were more heritable than the “original” traits, 
especially for the ratios CER:CER (h2

CER:CER
 = 0.44 vs. h2

orginal
 = 0.31, 

p < 10–15) and CER:SPM (h2
CER:SPM

 = 0.38, p < 10–15). All ratios 
involving LPC, PC, PE, PLS, and SPM had significantly lower 
(all p < 0.01) heritabilities, except for the cases when CER’s were 
involved in the ratio or, in the biologically plausible case in which 
the ratios were derived within the same lipids class (i.e. LPC:LPC, 
PE:PE, etc.).

To this end, we re-analyzed the associations for five SNPs pre-
viously reported11 to be significantly associated with levels of 
circulating sphingolipid concentrations. Table S4 reports the 
best results obtained for these SNPs when using the original and 
derived traits. The traits implicated were also analyzed by using 
the full likelihood ratio test based LMM (MixABEL::FMM), 
Grammar-γ25, and MixABEL::GWFGLS (which is very similar to 
OmicABEL) methods. All p-value were corrected for the Genomic 
Control inflation factor (presented in Table S5). From Table S4 
one can see that our results are consistent with these obtained by 
other methods.

Note that we have analyzed only a subset of the data reported by 
Hicks et al.11, and therefore our lead concentrations did not always 
come from the class reported in previous work (e.g. ATP10D was 
reported to be associated with glucosylceramides and FADS with 
SPM).

Notes
1As of January of 2014, Sequoia is the third fastest supercomputer 
in the world: http://www.top500.org/lists/2013/11/.

2Recall that our algorithms do not require large amounts of avail-
able RAM, as long as it accommodates the kinship matrix, the algo-
rithms will complete.
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This is a very well written report on a very important topic of very high impact in the actual of omics and
multi-level omics data, allowing beyond sheer analysis (which in large data sets is very demanding indeed
in terms of runtime and memory) many more questions answered also for methods research.

The methods put forward present a very major step forward for this type of analysis. The methodology is
very sound and promising. A tool to actually use is provided, which is also not always the case.

The authors are to be commended for this work.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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This article introduces a new software tool (omicABEL) for performing rapid association analyses
between SNP data and high-dimensional "omics" data (e.g. gene expression) using mixed models. This is
an extremely important development for the following reasons:

Identification of genetic variants associated with gene expression (eQTLs), methylation (mQTLs)
etc is becoming ever more important in understanding the biology of complex genetic disorders.
 
It is desirable, when performing association analyses, to allow for population stratification and/or
cryptic relatedness among members of the sample. Mixed models are an effective way of doing
this.
 
The high dimensionality of the "omics" data (tens or even hundreds of thousands of
measurements) has made the application of mixed model association approaches computationally

prohibitive up to now. In addition to detailing an application of considerable practical utility, the

Page 17 of 19

F1000Research 2014, 3:200 Last updated: 11 FEB 2015

http://dx.doi.org/10.5256/f1000research.5195.r5915
http://dx.doi.org/10.5256/f1000research.5195.r5916


F1000Research

3.  

1.  

2.  

3.  

prohibitive up to now. In addition to detailing an application of considerable practical utility, the
article is also clearly written and mathematically rigorous.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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 Dirk Jan de Koning
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Sweden

The manuscript shows a computational approach that enABELs the use of linear mixed mixed models for
large pedigrees, large numbers of markers and large numbers of (omics) traits.
 
While the work is interesting, several things need to be clarified before the work can be of interest to the
wider community.
 
I assume that the manuscript is aimed at the potential users: researchers in genetics with an interest to
analyze their 'big data' in a correct fashion and in a repeatable fashion. The manuscript is compact but
possibly too compact in places. I would like the following points to be addressed:
 

Accuracy of estimates and comparison of results. The authors make a big deal about comparing
the approaches in terms of computing time. They should also be compared systematically in terms
of type I error, accuracy of estimates etc. The computational approximations that are made must
come at some cost and as researchers we need to know this cost. There are some token
comparisons in the supplementary tables but these deal with heritability and P values. Not with the
actual SNP effects which are what we want from these analyses. Some scatter plots between
different methods may be helpful.
 
We need more detail about the simulations. You simulate different population sizes but you must
clarify the family structures and the family complexity. How many generations? All family sizes
equal? etc. Also how you simulate marker data in terms of historical population size, lD structure
etc. Likewise for correlation structure among the multiple traits.
 
In many places, variables are used before they are defined. p appears in Table 1 but is only
clarified later in the text. The tables are currently not readable on their own and the acronyms and
variables should be explained within the tables.

 
In general, the mathematical notation as well as the language in general needs a bit of work. Some
sentences are too long with too many clauses, for example CLAK is not defined at first use. X and y are
linearly transformed: should you not introduce new variables for the transformed data?

Some parts of result should be in the Materials and Methods.
Figure 3C could have a logarithmic Y-axis.
Figure 3D could omit line for CLAK-Eig and CLAK-Chol is unlabeled.
The abbreviation in Table S3 cer-cer lpc, pls spm pc pe etc. makes no sense to me. They are
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The abbreviation in Table S3 cer-cer lpc, pls spm pc pe etc. makes no sense to me. They are
different trait classes but still the table adds very little.

 
The manuscript has the promise to introduce an interesting new computational approach, but we need
more details to make up our mind.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.
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