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ABSTRACT

Eukaryotic cells begin to assemble discrete,
nucleoplasmic repair foci within seconds after the
onset of exposure to ionizing radiation. Real-time
imaging of this assembly has the potential to
further our understanding of the effects of medical
and environmental radiation exposure. Here, we
describe a microirradiation system for targeted
delivery of ionizing radiation to individual cells
without the need for specialized facilities. The
system consists of a 25-micron diameter
electroplated Nickel-63 electrode, enveloped in a
glass capillary and mounted in a micromanipulator.
Because of the low energy of the beta radiation and
the minute total amount of isotope present on the
tip, the device can be safely handled with minimum
precautions. We demonstrate the use of this system
for tracking assembly of individual repair foci in real
time in live U20S human osteosarcoma cells.
Results indicate that there is a subset of foci that
appear and disappear rapidly, before a plateau level
is reached ~30min post-exposure. This subset of
foci would not have been evident without real-time
observation. The development of a microirradiation
system that is compatible with a standard biomed-
ical laboratory expands the potential for real-time
investigation of the biological effects of ionizing
radiation.

INTRODUCTION

Tonizing radiation affects living tissue in a unique way, by
depositing energy along discrete, nanometer-scale tracks.

When a track intersects DNA, damage can occur on both
DNA strands simultaneously, leading to an outright
chromosome break. Even one such break can cause
chronic genetic instability or cancer-associated gene re-
arrangements. It is thus not surprising that ionizing radi-
ation evokes complex biological defense and repair
mechanisms. A central aspect of the radiation response
is the self-assembly of nucleoplasmic repair foci, which is
characterized by specific histone modifications, accumula-
tion of DNA damage sensing and signal transduction
proteins, and assembly of the DNA repair machine
proper from pre-existing components. Repair foci begin
to appear shortly after irradiation and resolve over the
course of several hours (1,2)

Conventional methods for evoking this radiation
response require placing cells or tissues in the proximity
of a radiation source. These ‘off-line’ methods require
physical transfer of samples from the irradiator to a
microscope stage for observation, which precludes obser-
vation of early-stage assembly of repair foci in real time.
In addition, one of the most common methods for labora-
tory irradiation requires a high-activity '*’CsCl, source.
These sources face increasing restrictions because they are
perceived as threat to public health and safety in the event
of an accident or attack (3). An inexpensive replacement
technology using smaller amounts of isotope would
address this concern.

One approach to address the shortcoming of conven-
tional irradiation methods is to position a small radioiso-
tope source in proximity to the sample on a microscope
stage. One of the first examples of this approach was the
use of a polonium-coated tungsten microneedle to deliver
o particles to living cells (4). Recently, Steeb er al. (5)
described an updated version of the microirradiator
concept based on the deposition of isotopes by
electroplating on a microelectrode enveloped by a glass
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capillary. Importantly, the diameter of the microelectrode
is on the same order as the size of a mammalian cell.
Concentrated deposition of isotope within this small
area allows for a high local radiation flux (10°~10°Bq/
cm?) using subnanogram amounts of isotope. In
addition, the electroplated surface can be recessed within
the capillary, which allows the glass walls to act as a col-
limator for the beam (5). The concept was implemented
using ®Ni, a long-lived, low-energy p particle emitter. The
maximum range of the emissions is only ~60 um in water
or tissue, which allows the user to handle the device
without special radiological precautions.

Here, we describe the first use of the ©*Ni
microirradiator in a biological application. We mounted
the device in a micromanipulator on the stage of a decon-
volution microscope and used it to irradiate cultured
human cells. Cells were transfected with expression con-
structs for fluorescently-tagged 53BP1, a widely used
marker for DNA double-strand break repair foci
[reviewed in (6,7)]. We collected real-time image data,
which enabled quantitative characterization of the appear-
ance, disappearance and motion of these foci. Initial
studies suggest heterogeneous rates of formation and reso-
lution, which could not have been observed using a con-
ventional off-line radiation source.

MATERIALS AND METHODS
Microirradiator

The microirradiator was fabricated as described (5) with
modifications as indicated below. “*Ni is a low-energy B
particle emitter (maximum energy 67 keV, average energy
17keV) with a 100-year half life. The maximum range of
the B particle emission in water is 60 um (average range,
30 um). A 25-um Pt wire was threaded through a 0.5-cm
bore diameter borosilicate glass capillary, which was
flame-sealed and pulled in a glass electrode pulling appar-
atus at 800°C with a pull length of 3cm. The end of the
pulled Pt wire in glass was polished to produce a smooth
disk. After cleaning, the electrode was electrochemically
plated using a 50mCi*NiCl, (1.6 x 10'°Bq/g) source
(NRD LLC, Grand Island, NY, USA). This source was
transformed into a pseudo Watts bath with the addition of
NiSO4 and H3;BOy4 for optimum Ni deposition. The Pt
surface was deposited and monitored by constant poten-
tial (—0.75V) until ample charge was passed (107" C) to
indicate ®*Ni had plated the surface, extending slightly
past the capillary. After “*Ni deposition, a micron layer
of Poly(3,4-ethylenedioxythiophene) (PEDOT) was de-
posited to ensure Ni did not interact with the cellular
medium. A 0.1-mM solution of PEDOT was dissolved
in 1 mM tetraecthylammonium perchlorate in acetonitrile
for 20s at 0.25 V. Total activity of the microirradiator was
2000 Bq, as measured by liquid scintillation counting. The
microirradiator was rinsed after each use and stored in a
detergent solution.

Reporter plasmid

A  PCR-XL-TOPO vector containing the human
full-length 53BP1 open reading frame (ORF; locus
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accession number BC112161) was purchased from Open
Biosystems (Huntsville, AL, USA). It was digested with
Kpnl and Xhol to release the 53BP1 ORF together with
upstream and downstream untranslated regions (UTRs).
The recipient vector, pENTR/D-TOPO (Invitrogen,
Carlsbad, CA, USA) was first modified by insertion of
an Xhol/Kpnl polylinker and the 53BPl-encoding
fragment was inserted between these two sites. To delete
unwanted 5-UTR sequences, a 520 nt N-terminal segment
of the 53BP1 ORF was amplified using primers d(GGCG
CTCGAGATGGACCCTACTGGAAGT) and d(GGCG
CATATGGCACAGTATTTTCC), digested with Xhol
and Ndel to create cohesive ends, and substituted for
the corresponding Xhol-Ndel fragment in the natural
cDNA, resulting in the promoterless pENTR/53BP1
vector. To insert an N-terminal fluorescent tag, the
EYFP coding sequence was amplified, together with
flanking Kozak consequence sequence, using primers
d(GGCGGCGGCCGCGCCACCATGGTGAGCAAGG
GCGAGQG) and d(GCGCTCGAGCTTGTACAGCTCG
TCCATGC). The product was cleaved with Notl and
Xhol and inserted between the Notl and Xhol sites of
pENTR/53BP1, upstream of and in frame with the
53BP1 ORF. The resulting construct was transferred
using phage lambda recombinase into pcDNA-DEST40
(Invitrogen) for mammalian expression under the
control of the CMV promoter/enhancer. The full
sequence of the expression construct is provided in
Supplementary Data.

Cells and electroporation conditions

U20S 2-6-3 cells (8) were maintained in high glucose
DMEM supplemented with GlutaMAX-1 (Invitrogen),
10% fetal bovine serum, 100 U/ml penicillin, 100 pg/ml
streptomycin =~ and  0.25pg/ml  Amphotericin ~ B.
Electroporation was performed using 3 ug of plasmid
DNA and 40 ug of sheared salmon sperm DNA carrier
(Ambion, Austin, TX, USA) using a Gene Pulser II
(BioRad, Hercules, CA, USA). Electroporation was per-
formed in a 0.4-cm cuvette containing 120 ul of culture
medium, with settings of 170V and 975 pF, resulting in
a 60-90 ms time constant. Following electroporation, cells
were seeded into glass bottom culture dishes (MatTek,
Ashland, MA, USA) and incubated at 37°C to allow
protein expression. Irradiation and imaging were per-
formed 2448 h post-clectroporation.

Conventional y irradiation and cell imaging

Cells were electroporated with plasmids encoding
EYFP-53BP1 and H2B-diHcRed, a nuclear marker $9).
Cells were irradiated using a self-contained '*’Cs
irradiator (Gammacell 40 Exactor, MDS Nordion,
Ottawa, ON, Canada) at a dose rate of 0.84 Gy/min,
then transferred to the WeatherStation environmental
chamber of an Applied Precision Deltavision microscope,
where incubation was continued at 37°C in a humidified,
5% CO, atmosphere. Live cell images were collected using
a 60X Plan Achro oil objective beginning 25-30 min
post-irradiation. Filter sets were as follows: EYFP,
500nm excitation/535nm emission; diHcRed, 572nm
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excitation/632 nm emission. Z stacks of 15-24 images were
collected using a 0.4-pm step size and deconvoluted using
soft WoRx software. Projection images were prepared and
nuclear foci were scored manually. Analysis was restricted
to cells that were positive for both EYFP and the diHcRed
nuclear marker (>80% of the population). To determine
the dose response, regression analysis was performed
using SigmaPlot v11.0 software (Systat Software, San
Jose, CA, USA).

®3Ni microirradiator B-irradiation

A micromanipulator (World Precision Instruments,
Sarasota, FL, USA) was mounted inside the
WeatherStation environmental chamber of the Applied
Precision Deltavision microscope to facilitate precise pos-
itioning of the microirradiator tip. The microirradiator
probe was secured in an acrylic electrode holder. Cells
were electroporated, incubated 24-48 h, transferred into
the environmental chamber, and the microirradiator was
positioned directly over a target cell, as determined by
observation through the Deltavision optics. Time-lapse
exposures were performed, with 15-24 Z-stack sections
per timepoint, 0.4-pm section thickness, 0.5s exposure
time and auto-focusing in the EYFP channel. Images
were deconvoluted, projection images were prepared and
foci were scored manually. Foci present prior to irradi-
ation were excluded.

To track and quantify individual foci, a region of
interest was defined within the projection images,
exported in TIF format, and loaded into DeCyder 6.5
software (GE Healthcare, Buckinghamshire, UK).
Automated spot detection was performed, foci (‘spots’)
were matched across the time-lapse images, and spot
volumes were determined and plotted as a function of
time.

RESULTS
Microscope stage-mounted irradiation system

The microirradiator was made bﬁy electrochemical depos-
ition of an ~1-pm thick layer of ®*Ni on a 25 pm-diameter
microelectrode wire enveloped in a glass capillary (5). The
configuration of the device used here was similar to the
‘recessed disk’ design reported earlier (5), except that the
device was prepared without etching the tip of the
microelectrode, allowing **Ni to be plated directly onto
a flush, polished Pt surface. This design change eliminates
concern over attenuation of activity due to trapping of
medium or debris in the cavity of the ‘recessed disk’ con-
figuration. The isotopic enrichment of the **Ni was higher,
resulting in a more highly active probe surface. In
addition, a polymer PEDOT coating was applied to
prevent direct contact between the Ni surface and the
cell medium.

The microirradiator was mounted within the
WeatherStation environmental chamber of an Applied
Precision Deltavision microscope (Figure 1A), using a pre-
cision micromanipulator with an acrylic electrode holder
(Figure 1B). The micromanipulator allows precise manual
adjustment of the position along three orthogonal axes.
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A bend was introduced in the capillary such that the ca-
pillary tip is coaxial with the optical path (Figure 1C). A
dissecting microscope view showing the flush tip is shown
in Figure 1D. The microirradiator was positioned so that
the tip of the capillary was slightly above the target cell
and was visible through the microscope optics (Figure 1E).
The plane of the active surface is parallel to the plane of
the culture dish.

Calibration of biological reporter system

The EYFP-53BP1 expression construct was as described
in ‘Materials and Methods’ section (Figure 2A) and
consists of an intrinsically fluorescent enhanced yellow
fluorescent protein domain joined to full-length 53BPI.
It is essentially identical to constructs used in previous
live-cell imaging studies [e.g. (10-12)]. The U20S 2-6-3
recipient cells (8) are derived from the U20S osteosar-
coma cell line, which has been widely used in prior
studies of 53BP1 foci formation (11,13).

To calibrate the number of foci per unit dose of radi-
ation in this system, cells were exposed to 0-3 Gy of '*’Cs
radiation and imaged 25-30 min post-exposure, at which
time the response has reached a maximum. H2B-diHcRed
(9) was co-expressed as a registration marker (14). Live
cell images were collected (Figure 2B) and nuclear foci
were scored manually using 8-24 nuclei for each dose
point (Figure 2C). Regression analysis indicated forma-
tion of 27.4 foci per nucleus per Gy. The slope of the
53BP1 dose response curves is 1.4-fold greater than
reported in a prior live-cell imaging study (12). This is
consistent with the fact that the hypertriploid U20S
cells contain about 1.5-fold more DNA per nucleus than
the quasi-diploid HT1080 cells in the prior study and thus
present a larger target for radiation damage.

Real-time observation of microirradiator-induced foci
formation

Results of several microirradiator experiments are shown
in Figure 3. Cells were electroporated with EYFP-53BP1
and H2B-diHcRed expression constructs. After 24-48 h,
they were transferred to the stage of the Deltavision
microscope, where they were maintained in growth
medium in a humidified 5% CO, atmosphere at 37°C.
The microirradiator was positioned above a target cell
and image collection was initiated within 1min
(Figure 3A). Z-stack images were collected at 5 min inter-
vals. The irradiator was withdrawn after the 16min
timepoint and cells were allowed to recover for a further
46 min. Images were deconvoluted, projections were
prepared and foci were counted manually. Results for
three individual cells are presented in Figure 3. In all
three instances, foci appear with no discernible lag and
increase to a maximum ~35min after the probe was
withdrawn and 50 min after the start of the experiment.
The absolute number of foci varied between experiments,
perhaps reflecting slight differences in the position of the
probe. In order to pool the data from the three experi-
ments, we normalized the data to the percent of maximum
response in each experiment. We calculated the mean and
SD to obtain the data in the rightmost panel of Figure 3B.
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Figure 1. Microscope stage-mounted microirradiation system. (A) Gross view of microirradiation system. Device is mounted on a micromanipulator
housed within a heated, humidified, environmental chamber of the Applied Precision Deltavision microscope. (B) Close-up view showing attachment
of device to the micromanipulator. (C) Detail showing the bend in enclosing capillary, which allows positioning of the active surface directly above
the target cell. (D) View of the microirradiator tip in dissecting microscope. (E) Close-up view through Deltavision microscope optics. Cell has been
transfected with EYFP-53BP1 and H2B-diHcRed expression plasmids as described in ‘Materials and Methods’ section. Scale bar, 10 microns.
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Figure 2. Calibration EYFP-53BP1 reporter system. (A) EYFP-53BP1 primary structures. EYFP coding sequence is joined to full-length 53BP1,
with Tudor and BRCT domains indicated. EYFP1-53BP coding sequence was inserted into pcDNA-DEST40 (Invitrogen) for expression under
control of the CMV promoter. (B) Dose response to calibrated doses of '*’Cs reference radiation. Cells were co-transfected with EYFP-53BP1 WT
and H2B-diHcRed. Live-cell images were collected 30 min post-irradiation. (C) Quantification of dose response. Foci were scored using 8-24
individual nuclei at each dose point, and linear regression was performed to obtain the slope of the dose-response curve.
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Figure 3. Real-time imaging of microirradiator-induced 53BP1 foci. (A) Representative images of same cell collected at indicated time points.
Microirradiator was introduced 1 min prior to the first time point and withdrawn after the 16 min. Z-stacks containing 15-24 individual images
were collected at each time point and deconvoluted. Projections are shown. PO, probe on; PF, probe off. (B) Quantification of
microirradiator-induced foci from three independent experiments. Cell 1 corresponds to images in Panel A. Rightmost panel shows pooled data
from the three experiments. Data were normalized to maximum response = 100%, averaged, and plotted. Error bars denote SD.

The result is a smooth curve showing an increase with
approximately linear kinetics until a plateau is reached.
No foci were seen in control cells imaged under the
same  conditions  without the  microirradiator
(Supplementary Figure S1)

To estimate the radiation dose based on foci numbers to
radiation dose, we compared the maximum number of foci
attained in each experiment in Figure 3 to the calibration
curves in Figure 2. We did not make an adjustment for the
different radiation types (high energy y rays versus p par-
ticles) as they may be considered as radiobiologically
equivalent. We also did not adjust for dose rate. Because
of this, the number of foci in Figure 3 may be slightly
underestimated (i.e. a lower dose rate affords more time
for the earliest foci to be resolved before the maximum is
attained). Subject to these caveats, comparison with the
standard curve indicates that the apparent dose delivered
by the microirradiator in a 16 min exposure was 2.8, 2.0
and 3.6 Gy for cells 1, 2 and 3, respectively. The variability
between cells could be due to differences in the intrinsic
sensitivity of different cells (e.g. position in the cell cycle
or, perhaps, to small differences in the positioning of the
probes. These doses equate to dose rates range of 0.12—
0.22 Gy/min. This is about an order of magnitude less
than predicted by modeling a source with this activity
and geometry (‘Discussion’ section), and the reason for
the difference is still to be determined.

Although an effort was made to minimze the light
exposure during imaging, we were aware of the possibility
that phototoxicity might itself result in repair foci forma-
tion. We therefore performed a mock irradiation under
the same conditions, but without the microirradiator.

No time-dependent accumulation of foci was seen above
the background present at the beginning of the experiment
(Supplementary Figure S1).

Dynamic behavior of individual foci

The time course in Figure 3B shows that the time between
initial traversal of a radiation track and appearance of foci
is variable, as some foci appeared immediately after the
onset of irradiation, whereas others did not appear until
30 min after microirradiator was removed. It also follows
from inspection of the shape of the curve that the time
required for resolution of foci must also be variable. If the
foci appeared at variable times post-exposure, but all were
long-lived (i.e. persistent throughout the experiment), then
a plot of foci versus time should be strongly sigmoidal.
This was not the case. Instead, the system rapidly ap-
proached a steady state, showing a quasilinear response
over the first S0 min. To account for this steady state,
some of the foci that appear rapidly must also disappear
rapidly.

To test this prediction, we tracked the behavior of indi-
vidual foci over time. Figure 4A shows the same nuclei as
in Figure 3A, but with expansion of a region of interest.
Eighteen foci (‘spots’) were matched manually across the
time series and intensities were quantified as described in
‘Materials and Methods’ section (refer also to
Supplementary Figure S2). Figure 4B shows plots of
spot volumes as a function of time. Several patterns are
seen in these data. Foci 7, 9 and 11 appear and disappear
rapidly, losing at least half their peak intensity within
10 min. Foci 1, 2, 5, 10, 12 and 15 decay with intermediate
kinetics, losing half their peak intensity within 15-30 min.
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Foci 3, 6, 14, 16, 17 and 18 were stable for the duration of
the experiment. Foci 4, 8 and 13 showed somewhat irregu-
lar behavior.

Clearly, it will be of interest to collect longer and
finer-grained time series, to analyze larger numbers of
foci, and to perform a more computationally intensive
analysis using the original 3D imaging data, rather than
the 2D projections that were analyzed here. Even this
limited analysis, however, suggests that foci fall into
several classes, with some appearing and disappearing
rapidly and others that are stable over the period of
observation.

DISCUSSION

We describe here the first biological application of a novel
microirradiator that is designed specifically for compati-
bility with a standard cell biology laboratory environment.
The device is characterized by small physical dimensions,
radiation flux sufficient for many types of biological ex-
periments and minimal radiological hazards. We demon-
strate the use of the device in experiments to track and
characterize the induction of repair foci in irradiated cells.
The microirradiator is a potential replacement for a
self-contained '*’CsCl, irradiator in certain cell and mo-
lecular biology research applications, particularly where
biological response is measured at the single cell level.
The device is made from inexpensive, commercially avail-
able materials, and the low total activity mitigates the
public health and security concerns that have been
raised for high-activity *’CsCl, radiation sources (3).

Because the microirradiator can be mounted directly to
a microscope stage, it provides a capability for real-time
observation of the early stages of the radiation response.
This early response has not been well studied, particularly
for sparsely radiation such as 7y rays and X-rays.
Preliminary analysis has revealed heterogencous
behavior of repair foci. In particular, there is a class of
rapidly resolved foci that would not be apparent in experi-
ments using conventional irradiation methods. The exist-
ence of a rapidly resolved subset of foci is significant
because it may account for a small, but unexplained, dis-
crepancy between the best estimate of the number of
double strand breaks determined by physical methods
(~30 DSBs per Gy per diploid genome) (15,16) and the
number of breaks estimated by careful counting of
ionizing radiation-induced foci (~10-25 foci per Gy per
diploid genome) (6,12) reviewed in (1). Several explan-
ations for the heterogeneous behavior of repair foci may
be contemplated, including heterogeneity in the structure
of the radiation-induced DNA breaks and the existence of
competing repair or signaling pathways. Potentially, these
explanations could be investigated by selective
knockdown of individual DNA processing and repair
enzymes in the target cells.

The present dose rate, estimated to be in the range of
0.12-0.22 Gy/min, is sufficient for many experiments to
investigate the biology of the low-dose radiation
response. A higher dose rate would be useful for experi-
ments that require synchronous induction of large
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numbers of DSBs. The thickness of the nickel layer is
sufficient that self-absorption is a limiting factor in
controlling surface flux density, so that deposition of
more radioisotope would not result in a corresponding
increase in dose rate. The specific activity of the
nickel-63 used here is the highest that is commercially
available. However, the activity as stated by the vendor
equates to <10% isotopic enrichment, so improvement is
theoretically possible.

We have attempted to compare the dose rate estimated
from the biological response to the predicted dose rate
based on probe activity (as determined by liquid scintilla-
tion counting) and modeling as described in (5) (refer to
Supplementary Data for details). A discrepancy between
this predicted dose rate (2.65 Gy/min) and the estimated
dose rate based on biological response suggests either that
there is a flaw in the modeling or that the B emissions are
attenuated in some unanticipated way. Further insight
may be provided by experiments currently underway to
characterize P particle flux and emission spectrum using
solid-state scintillation counting (J.S. and J.J., unpub-
lished data).

It is useful to compare the microirradiator to two other
approaches that are currently in use to introduce targeted
DNA damage into samples on a microscope stage. One of
these is the particle microbeam. More than 50 years ago,
Zirkle and Bloom (17) described the use of a Van de Graaf
generator and microaperture to deliver an intense proton
beam to a 2.5-um diameter spot within living cells. It is
now estimated that there are 30 operational microbeam
facilities worldwide (18). Microbeam facilities have been
developed that are capable of delivering precisely targeted
heavy particles, electrons or ultrasoft X-ray photons, with
varying degrees of real-time imaging capability [e.g. (19—
23)]. As currently configured, the microirradiator lacks the
capabilities for precision targeting and particle counting
that are found at the most advanced microbeam facilities.
The portability of the microirradiator and its potentially
low cost of manufacture provide offsetting advantages,
however, for many applications. Localized ultraviolet ir-
radiation (or, equivalently, 2-photon absorption in the
near infrared range) provides another approach that is
useful in analysis of the DNA damage response
[reviewed in (24), see also (25)]. The value of the
approach is its ability to induce dense, near-instantaneous
damage in a precisely localized region. This is also,
however, its main limitation, as the dense DNA damage
has no clear physiological equivalent, whereas the
low-energy P particles from the nickel-63 microirradiator
are expected to produce damage that is similar in type and
distribution to that from common medical and environ-
mental exposure sources. Thus, the characteristics of the
Ni-63 microirradiator make it a useful complement to
other technologies that are currently in use.

In principle, it should be possible to adapt the same
electroplating  technology to construct analogous
microirradiators using other radioisotopes. For example,
252Cf could be used as a source of fission neutrons or
2TAm as a source of o particles. Both of these isotopes
are used industrially and are potentially available for con-
struction of research microirradiators. The cellular and
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Figure 4. Tracking of individual 53BP1 foci. (A) Images are from nuclei from Cell 1 in Figure 3. Inset panels show enlargement of region of interest
marked by white rectangle. Eighteen individual foci were identified manually and are marked. (B) Quantification of image intensity for individual
foci. The 2D image projections were loaded in DeCyder v6.5 (GE Healthcare, Buckinghamshire, UK) and automated spot detection was performed
(Supplementary Figure S2). Volumes corresponding to integrated signals for each spot were quantified. Plots show image intensity for individual foci
as a function of time. The same arbitrary units are used in all panels. Time is indicated in min.
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molecular response to high LET radiation, such as
neutrons and o particles, has not been as extensively
studied as low LET radiation, in part because convenient
sources are not available outside the radiation community.
Concentrated deposition of isotope on a very small surface
in the microirradiator allows experiments to be performed
using very small total amount of isotope, mitigating health
and safety concerns that pose barriers to access to nuclear
materials.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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