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Abstract: RNA interference (RNAi) is a powerful tool that is being increasingly utilized for crop
protection against viruses, fungal pathogens, and insect pests. The non-transgenic approach of
spray-induced gene silencing (SIGS), which relies on spray application of double-stranded RNA
(dsRNA) to induce RNAi, has come to prominence due to its safety and environmental benefits in
addition to its wide host range and high target specificity. However, along with promising results
in recent studies, several factors limiting SIGS RNAi efficiency have been recognized in insects and
plants. While sprayed dsRNA on the plant surface can produce a robust RNAi response in some
chewing insects, plant uptake and systemic movement of dsRNA is required for delivery to many
other target organisms. For example, pests such as sucking insects require the presence of dsRNA in
vascular tissues, while many fungal pathogens are predominately located in internal plant tissues.
Investigating the mechanisms by which sprayed dsRNA enters and moves through plant tissues and
understanding the barriers that may hinder this process are essential for developing efficient ways to
deliver dsRNA into plant systems. In this review, we assess current knowledge of the plant foliar and
cellular uptake of dsRNA molecules. We will also identify major barriers to uptake, including leaf
morphological features as well as environmental factors, and address methods to overcome these
barriers.

Keywords: RNAi; SIGS; double-stranded RNA; foliar dsRNA spray; nanoparticles; plant uptake
of dsRNA

1. Introduction

First discovered in plants, a natural regulatory mechanism known as RNA interference
(RNAi) or post-transcriptional gene silencing (PTGS) has been intensively studied for
its role in various developmental processes, responses to stress stimuli, and antiviral
defense in many eukaryotes [1–6]. This mechanism in plants utilizes Dicer-like proteins
(DCLs) to process endogenously expressed or exogenously introduced double-stranded
RNAs (dsRNAs) into small interfering RNA (siRNA) duplexes [7]. These siRNA duplexes
are then incorporated onto ARGONAUTE proteins (AGOs), and the passenger strand is
degraded [8]. The multiprotein complex guided by AGOs will form RISC (RNA-induced
silencing complex) with the remaining guide strand. The RISC will bind to and cleave
complementary transcripts, thereby downregulating gene expression.

Since its discovery, the potential of RNAi to facilitate resistance against viruses, viroids,
nematodes, insect pests, and fungi in plants has been intensively investigated [9–14]. Host-
induced gene silencing (HIGS) has been an effective RNAi approach in some crop species
and involves transformation of dsRNA expressing gene cassettes into plants, followed by
propagation. However, the lack of transformation protocols for many key crop species
as well as exceedingly high costs, long development timelines and, frequently, issues
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associated with public acceptance of GMOs has led to significant interest in non-GM
exogenous approaches [15,16]. Exogenous application can effectively trigger the RNAi
pathway by delivering dsRNA molecules onto plant surfaces or internal tissues, which in
turn target vital genes of feeding insect pests, and viral and fungal pathogens. Application
techniques for delivery include foliar application, seed treatment, injection in woody plants,
and absorption by plant cuttings or roots [17–21]. With the advances in dsRNA production
systems, the cost of dsRNA synthesis has been noticeably reduced from US$12,000/g to less
than US$0.5/g [22–24]. Thus, for large-scale protection in many broadacre and horticultural
crops, foliar spray application is one of the most effective dsRNA delivery methods in
terms of cost, time consumption, and labor intensity. Nevertheless, many questions remain
regarding the deployment of SIGS as a viable next-generation crop protection system,
notably whether intact plants in field environments can take up sufficient sprayed dsRNA
for efficacy, and whether dsRNA that is taken up can move systemically to impact hard-to-
reach pests and pathogens.

RNAi efficiency depends on the delivery of sufficient dsRNA or siRNA molecules to
target pests/pathogens (Figure 1). In many crop protection scenarios, topically applied
intact dsRNA needs to be internalized and systematically transported to distal plant tissues
(Figure 1A,B). Fates for internalized dsRNA include cellular uptake and processing into
siRNAs (which is desirable for protection against viruses), movement to vascular tissues
and systemic transport as intact molecules, or degradation. Potent RNAi effects in insects
could be achieved by ingesting long dsRNAs or in some cases siRNAs [25–28]. However,
protection from insect pests is a multifaceted scenario whereby the dietary RNAi response
can be affected by feeding behavior, life stage and the insect’s preferred attack point on the
plant [29,30]. Chewing insects are an ideal candidate for SIGS, as they can easily take up a
large amount of topically applied dsRNA by feeding on leaves. Plant uptake of dsRNA
provides few benefits in this scenario. In contrast, RNAi-based protection from sap sucking
pests predominantly relies on dsRNA uptake into and movement through the host plant’s
vascular tissues (Figure 1C). Eggs laid on the plant can be challenging to target due to
hard shells and relatively little active interaction with dsRNA-treated plant surfaces [31].
Insects such as stem borers may not receive a sufficient dsRNA dose due to reliance on high
cellulose content food rather than live tissues and, additionally, they can also disrupt the
plant’s dsRNA transport system. In some circumstances, dsRNAs can be sprayed directly
on insect pests residing on plants, as dsRNAs can penetrate the cuticle of species such as
Ostrinia furnacalis, Acyrthosiphon pisum and Diaphorina citri [32–34]. However, the traditional
cuticle penetration route for dsRNA application is not applicable to all insect pests; for
example, in insects with thick cuticles like coleopteran insects [35], or insects preferring to
hide in plant parts where spray application is not possible.

A critical characteristic of the RNAi mechanism in plants is the self-amplifying gene
silencing effect facilitated by RNA dependent RNA polymerase (RdRp) enzymes. Unfor-
tunately, active RdRps are generally not found in some agricultural pests such as insects
but are found in others like fungi [36]. In addition, although siRNAs can trigger the RNAi
effect in some insects, it has been reported that the environmental RNAi response in others
such as western corn rootworm (WCR) could only effectively be triggered by dsRNAs
longer than 50 bp in length [27,37,38]. This suggests that unprocessed exogenous dsRNAs
inside the plant system could be essential for successful RNAi-based biocontrol in many
insect pests (Figure 1B,C). A notable example includes, but is not limited to, the western
corn rootworm larvae and adults’ indifference to siRNA in transgenic RNAi maize [21].
However, sustainable dsRNA production through chloroplast transformation to overcome
the processing issue could provide sufficient unprocessed dsRNA effector molecules to
effectively control various insect pests in major crops such as WCR, cotton bollworm, and
Colorado potato beetle [39–41]. As well as the previously mentioned public acceptability
and crop transformation issues associated with GM technology, application of exogenous
dsRNA may also circumvent insect efficacy limitations associated with dsRNA processing
in plant cells, provided cellular uptake is minimal.
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to enter the cytoplasm, the plant RNAi machinery can process dsRNAs into siRNAs. Produced siR-
NAs can lead to degradation of viral transcripts in local cells and also be transported to adjacent 
cells. siRNAs are likely to participate in long distance signaling through vascular bundles to other 
parts of the plant. It is uncertain how non-processed dsRNA in the apoplastic pathway are translo-
cated systemically. (C). dsRNA/siRNAs from the plant surfaces or in the plant system can be taken 
up by different targets and trigger an RNAi response depending on their sensitivity to dsRNA or 
siRNA. Figure created with BioRender.com.  
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pathogenicity through the cross-kingdom RNAi and environmental RNAi [42,43]. For ex-
ample, siRNA duplexes and long dsRNAs from the plant surfaces can be taken up by 
Botrytis cinerea and Fusarium species and effectively inhibit fungal growth [20,42,44,45]. 
Several studies have also described vesicle mediated transport of small RNAs between 
host plants and fungal pathogens [43,46,47]. However, some fungal pathogens such as 
Zymoseptoria tritici and Colletotrichum gloeosporioides appear recalcitrant to exogenous 
RNAi even though they have functional RNAi pathways, due to the inability to take up 
dsRNAs or siRNAs. Additionally, some fungal species lack key RNAi components alto-
gether, as observed in examples such as Ustilago maydis and Saccharomyces cerevisiae, which 
are undesirable targets for RNAi-mediated control [48]. 

Despite extensive studies on the RNAi effect via SIGS on various pests and pathogens 
[20,22,28,49–53], the mechanisms for foliar dsRNA uptake and subsequent entry into cells 
are yet to be fully recognized. Understanding these mechanisms is however crucial for 

Figure 1. Functional crop protection via a foliar dsRNA spray to induce RNAi. (A). Plant uptake of
dsRNA can be divided into two stages: foliar uptake where sprayed dsRNA molecules from the leaf
surfaces enter the interior of the leaf tissue, and cellular uptake where dsRNA molecules get taken
up into plant cells. Following foliar uptake, sprayed dsRNAs may diffuse through the leaf interior
and cellular uptake may occur. (B). Once dsRNA penetrates the cell wall pores and cell membrane to
enter the cytoplasm, the plant RNAi machinery can process dsRNAs into siRNAs. Produced siRNAs
can lead to degradation of viral transcripts in local cells and also be transported to adjacent cells.
siRNAs are likely to participate in long distance signaling through vascular bundles to other parts
of the plant. It is uncertain how non-processed dsRNA in the apoplastic pathway are translocated
systemically. (C). dsRNA/siRNAs from the plant surfaces or in the plant system can be taken up by
different targets and trigger an RNAi response depending on their sensitivity to dsRNA or siRNA.
Figure created with BioRender.com.

Recent studies have confirmed the potential of RNAi in inhibiting fungal growth and
pathogenicity through the cross-kingdom RNAi and environmental RNAi [42,43]. For
example, siRNA duplexes and long dsRNAs from the plant surfaces can be taken up by
Botrytis cinerea and Fusarium species and effectively inhibit fungal growth [20,42,44,45].
Several studies have also described vesicle mediated transport of small RNAs between
host plants and fungal pathogens [43,46,47]. However, some fungal pathogens such as
Zymoseptoria tritici and Colletotrichum gloeosporioides appear recalcitrant to exogenous RNAi
even though they have functional RNAi pathways, due to the inability to take up dsRNAs
or siRNAs. Additionally, some fungal species lack key RNAi components altogether,
as observed in examples such as Ustilago maydis and Saccharomyces cerevisiae, which are
undesirable targets for RNAi-mediated control [48].

Despite extensive studies on the RNAi effect via SIGS on various pests and pathogens
[20,22,28,49–53], the mechanisms for foliar dsRNA uptake and subsequent entry into cells
are yet to be fully recognized. Understanding these mechanisms is however crucial for
development and optimization of RNAi-based crop protection at scale. For a significant
RNAi response and effective control of pests and pathogens, sprayed dsRNAs must over-
come several barriers of the leaf surface prior to uptake, then translocate to various parts
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of the plant for systemic protection. In some situations, such as protection against viral
pathogens, cellular uptake and dsRNA processing is essential (Figure 1B).

To date, no specific path has been confirmed for foliar dsRNA uptake, though stomata
have been suggested as an entry point [54]. Once internalized, dsRNA may be partially
processed into small RNA duplexes by the plant’s DCLs upon traversing the plasma mem-
brane [20]. These small RNA duplexes could then be transported via the plasmodesmata
(symplastic pathway) to adjacent cells, most likely by the vascular bundles to distal tissues,
or by extracellular vesicles to fungal pathogens [45,46,55–57]. On the other hand, if not
processed or degraded, dsRNAs could remain in the apoplast and follow the apoplastic
pathway to the vascular tissues for distal translocation (Figure 1B) [20,58].

Since various physiological, molecular, and environmental factors can constrain/limit
the efficacy of topical RNAi, a better understanding of these limiting factors is fundamental
for the application of a sustainable foliar spray in crop protection. In this review, we discuss
the current knowledge of foliar and cellular uptake of dsRNAs, with an aim to identify
barriers to efficient RNAi and to propose future directions for improvements of dsRNA
delivery methods.

2. Environmental Factors as Barriers to Efficient Plant Uptake of dsRNA

RNAi efficacy can be impacted by the persistence and stability of topically applied
dsRNAs prior to entry into the plant. Since foliar uptake of dsRNAs is not an immediate
process, a longer retention time of dsRNA molecules on the leaf surface can provide a stable
supply of dsRNA. The integrity of dsRNAs prior to entry into the cell is also required for
binding to Dicer proteins to produce siRNAs [59]. The persistence and stability of sprayed
dsRNAs can be significantly affected by environmental factors such as UV, heat and pH,
which can lead to variation in RNAi responses due to the degradation of dsRNAs on the
plant surfaces (Figure 2C). Additionally, biotic factors such as microorganisms could also
reduce the half-life of dsRNAs via nuclease activities [60,61].

Although RNA is often viewed as inherently unstable in the environment, reports
have demonstrated higher UV-resistance for RNA compared to DNA [62]. However, a loss
of biological activity has been observed for dsRNA after exposure to UV light for as little as
an hour, likely due to degradation [19]. Nonetheless, there has yet to be further evidence
for how UV light affects dsRNA in terms of stability and RNAi efficacy in field conditions.

Another factor that may impact dsRNA degradation is pH. In many cases, the leaf
surface is slightly acidic, but there is an interspecific variation in leaf surface pH [63]. This
variation, which is affected by leaf physiology and ion availability in the environment,
may play a role in RNAi efficiency among crop species. RNA is more stable in acidic
conditions than alkaline due to its chemical composition [64]. Although dsRNA may be
resistant to some degree from alkaline hydrolysis, the precise mechanisms and broad range
applicability of this remains to be investigated [65]. Given the above points, preventing
dsRNA degradation from alkaline hydrolysis via chemical modification or association with
stabilizing nanoparticles would significantly benefit downstream RNAi applications.

Sufficient supply of dsRNA for robust RNAi is partially dependent upon retention
on plant surfaces under irrigation or rainfall. Sprayed dsRNA on potato leaves has been
shown to be persistent and, once dry, was not significantly washed off [19]. In contrast,
a later study using fluorescent dye and confocal microscopy revealed that naked dsRNA
but not dsRNA incorporated into BioClay-LDH (layered double hydroxide) complex was
readily washed off tobacco leaves [53]. Whether this contradictory set of results is due
to different washing methods or different leaf morphologies, utilization of surfactants
or nanoparticles such as LDH in dsRNA foliar sprays may reduce or prevent wash-off
by irrigation or rainfall. Another increasingly used method for field spray is the use of
drone (unmanned aerial vehicle (UAV)) systems, which take advantage of the airflows to
deliver a large amount of the treatment agent on the abaxial surface of the leaves [66]. The
implementation of UAVs has gained popularity in smart crop monitoring and pesticides
management as it can provide precise monitoring, large area coverage, timely operation,
and optimized operation parameters, which in turn can further improve the effectiveness



Int. J. Mol. Sci. 2022, 23, 6639 5 of 15

of pesticide application [67,68]. However, this has not yet been tested for foliar spray of
RNAi under field conditions.
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Figure 2. Overview of barriers to efficient foliar and cellular uptake of dsRNAs. (A). Leaf wettability
determined by trichomes, stomata, hydrophobic cuticle, and wax crystals acts as a barrier to foliar
uptake of sprayed dsRNA. (B). Cell walls and cell membranes may hinder cellular uptake of dsRNA
after sprayed dsRNA gets inside the leaf from the surface. (C). Environmental factors can contribute
to degradation of dsRNA on the plant surfaces, thus acting as limiting factors to plant uptake of
sufficient dsRNA. (D). Preferable procedures used to overcome these barriers and enhance uptake
include the use of surfactants, high-pressure spray, and nanocarriers such as carbon dots, clay
nanosheets, and single-walled carbon nanotubes. Figure created with BioRender.com.

Candidate dsRNA foliar uptake pathways and the physical barriers to uptake of
dsRNA molecules sprayed on the leaf must pass several hurdles to enter the plant system.
These include morphological leaf features and their properties, as well as the way leaf parts
interact with the environment, and natural secretion (Figure 2).

2.1. Leaf Wettability

Plant surfaces are crucial for defense against various biotic and abiotic stress fac-
tors [69]. Plant leaf surface morphology also contributes to leaf wettability, which is the
ability to retain moisture from dew, rainfall, fog, or irrigation. Low leaf wettability is
advantageous and helps prevent disease occurrence. The frequent presence of water on
leaf surfaces provides favorable conditions for insects and fungal growth, making plants
more susceptible to diseases. Furthermore, high water repellence facilitates cleansing of
foreign particles like dust or pollutants on the leaf surface, preventing them from increasing
leaf surface temperature and inhibiting stomatal closure [70]. Characteristics including
the cuticle, cuticular wax, and trichomes play a key role in determining the leaf surface
wettability (Figure 2A) [71–74]. The presence of trichomes increases the roughness of the
leaf surface, which lowers leaf wettability (increased hydrophobicity), and thus lowers
foliar water uptake [75,76]. As dsRNA molecules are applied as an aqueous foliar spray,
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leaf wettability plays a critical role in the deposition of dsRNAs within the spray droplets
on the leaf surface, and likewise, for the foliar penetration of sprayed dsRNAs into the
plant. As leaf wettability decreases, dsRNA as a topical spray will be more likely to bead
and roll off the leaf surface, with a lower likelihood of penetrating the surface to enter the
leaf interior. Hence, leaf wettability is the first barrier to foliar dsRNA uptake that needs to
be considered for successful SIGS.

2.2. Cuticle and Wax

Besides the cuticle’s role in downregulating cuticular transpiration, it also limits foliar
uptake of pesticides, herbicides, nutrients, and growth factors [77,78]. The structure and
composition of the cuticle may vary widely among plant species, but the thickness of the
cuticle typically stays between 1 and 10 µm [79,80]. Generally, the cuticle consists of an
insoluble polymer cutin matrix embedded with wax. Wax, which is composed of nonpolar
soluble lipids, deposits on the cuticular surface (epicuticular wax) or within the cutin matrix
(intracuticular wax) [77]. In addition to regulating water loss by increasing resistance to
vapor flow, epicuticular wax is also responsible for creating a hydrophobic layer repelling
water from leaf surfaces [81]. Another notable characteristic of epicuticular wax is the
varying shapes of wax crystals among plant species under different environmental con-
ditions. Examples include the plate forms observed in citrus species, rodlets in Picea and
Gingko, and granular forms in Eucalyptus [82]. The shape diversity, as well as the thickness
of epicuticular wax on crops such as wheat, can act as an enhanced physical barrier to
foliar uptake of water and solutes, with the likelihood of also restricting foliar uptake of
sprayed dsRNAs.

The permeability of cuticles varies among plant species and developmental stages [78].
Generally, water and solute permeabilities of cuticular wax increase as temperature in-
creases and as the size of organic solutes decrease [78]. Despite the assumption that
plasmodesmata are limited to the interior of plant tissues, plasmodesmata have also been
identified in the outer walls of epidermal cells [83]. These structures, called ectodesmata,
establish a passage for the transport of external substances to the interior of tissues. Foliar
water uptake (FWU) has been suggested to be a direct diffusion of water through the cuticle
via cuticular aqueous pores and ectodesmata due to the presence of hydrophilic pheno-
lic compounds, polysaccharides, mucilage cells in the mesophyll, and a water potential
gradient [73,77,83–85]. However, in the leaf, ectodesmata remain covered by the cuticle,
suggesting uptake by this pathway will still be impeded by many physical barriers. Alter-
natively, foliar water uptake could also occur through leaf structures such as the stomata
aperture, guard cells, trichomes, hydathodes, or epistomatal mucilage plugs [72,86–89].
Currently, no conclusive data indicates whether dsRNA molecules could be taken up into
the plant via aqueous pores due to size restriction (~1 nm) [90]. Hence, it is reasonable to
presume that sprayed dsRNAs with a minimum of 3.2 nm in diameter and 100 nm in length
(~300 bp) would primarily enter the plant through larger openings such as the stomata, the
ectodesmata, or the hydathodes [59].

2.3. Stomatal Aperture

Stomatal aperture regulates transpiration and gas exchange in terrestrial plants. Due
to their importance to plant survival and growth, stomata have been studied extensively.
Initially, it was hypothesized that infiltration of foliar-applied solutions occurred by mass
flow through stomata openings [86,87,91,92]. However, stomata flooding could restrict gas
exchange and hinder photosynthesis, making spontaneous infiltration of aqueous solutions
unlikely. Instead, solute transport through the stomata was shown to be independent of
aqueous solvent penetration [86,93]. It was demonstrated that the stomata allowed entry
of solutes along the surface of guard cells, which are also subjected to cuticular surface
wettability constrains via trichomes and wax, which can keep solutes away from the guard
cells [86,93–95]. This uptake process, though not applicable in all stomata, was suggested
to be facilitated by “reverse transpiration”, in which water vapor diffuses through the
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stomata, bringing solutes into the leaf; hence the occurrence followed by the evaporation
of water films on the leaf surface and at the stomatal pore is necessary for foliar uptake of
dsRNA, should it follow this pathway to enter the leaf via water vapor [96–99]. It should
also be noted that stomata distribution is species-dependent and environment-dependent.
In many plant species, specialized structures derived from stomata, known as hydathodes,
are unregulated openings usually found in the epidermis or leaf margin. Besides their
primary function in guttation, they were reported to be involved in the absorption of leaf
surface water [72]. Nonetheless, the lack of evidence whether this finding applies to other
plant species suggests that stomata opening is likely the main path through which dsRNA
can enter the leaf interior. In an agricultural setting where spray application in the field is
done from above, the absence of stomata on the adaxial surface can also act as a barrier to
foliar uptake of sprayed dsRNAs.

3. Possible Methods to Overcome Barriers to Foliar Uptake of dsRNA

Due to stomatal anatomical and physiochemical features, uptake of foliar-applied
dsRNAs into the leaf interior is restricted. Potential methods have been developed to
achieve robust RNAi responses by increasing leaf wettability, enhancing cuticle penetration,
and boosting solute transport. These methods include disrupting the cuticle structure
by abrasion, utilizing high pressure or surface-active agents (surfactants), or chemically
modifying stomatal aperture (Figure 2D) [87,93,99–101].

Surfactants in combination with chemical pesticides have been widely used in plant
disease management [102–105]. Surfactants are usually added as adjuvants to lower the
interfacial tension between leaf surfaces and liquids and enhance spreading, thus allowing
pesticides to make contact with pest targets not easily accessible with overhead sprays
[106,107]. Additionally, surfactants also lengthen the retention time of chemical sprays on
plant surfaces and increase penetration for absorption into the plants or pests [103,106].
However, risks should be carefully evaluated to avoid damage to the plants, the environ-
ment, or off-target organisms [108–110].

High-pressure spraying of siRNAs was reported to have induced both local and
systemic silencing of the GFP transgene in Nicotiana benthamiana where mere spraying,
syringe injection, and infiltration of siRNAs failed to induce RNA silencing [111]. In contrast
to this result, a more recent study claimed that no silencing of GFP genes in N. benthamiana
was observed upon the high-pressure spray of dsRNAs [112]. This study suggested that
the inadequate uptake of dsRNA into the plant cells led to insufficient siRNA production
by the plant’s RNAi machinery, resulting in an unsatisfactory RNAi effect on endogenous
genes. This implies that while dsRNAs may be internalized into the leaf, dsRNAs do not
necessarily enter plant cells. Thus, barriers to cellular uptake of sprayed dsRNA following
foliar uptake should also be considered.

4. In Planta Transport of Sprayed dsRNA Molecules following Foliar Uptake

Systemic spreading of RNA silencing via the phloem has been reported in studies
using plant transformation [113,114]. When sprayed dsRNAs are internalized into the
leaf and diffuse through the epidermis and then the mesophyll, there are two possible
scenarios: (i) dsRNA molecules permeate the cell wall then the plasma membrane and may
or may not be processed into small RNAs in the cytoplasm, or (ii) dsRNAs are not taken up
into the cytoplasm and are translocated short distances or long distances throughout the
plant as unprocessed molecules by other means. It was suggested that upon traversing the
plasma membrane, dsRNA would be partially processed by the plant’s RNAi machinery
into small RNAs [115]. These small RNAs would most likely be transported through
the plasmodesmata to adjacent cells, then to the phloem and ultimately long-distance
to other parts of the plants [56,116]. Alternatively, dsRNAs not entering the cytoplasm
would diffuse through the apoplast to the vasculature for long-distance transport [18,117].
The possibility that small RNAs are incorporated into extracellular vesicles has also been
proposed for cell-to-cell communication and plant–fungi interactions [43].



Int. J. Mol. Sci. 2022, 23, 6639 8 of 15

A study with petiole absorption or trunk injection of dsRNA showed fluorescence
signals accumulating exclusively in the xylem of the apple plant (Malus domestica) [18,58].
This study speculated that RNA molecules (most likely dsRNA) may have been too large
to be transported into phloem cells. However, it should also be noted that petiole absorp-
tion of dsRNA in this study could have resulted in the accumulation of dsRNA signal in
the xylem [118]. In contrast to this statement, other studies have successfully sequenced
siRNAs from phloem sap while xylem was found to be RNA-free [119–121]. Long-distance
translocation of exogenously applied dsRNAs has been reported where strong resistance
against Fusarium was observed in non-sprayed distal parts of detached barley leaves [20].
This study presented data suggesting that movement of dsRNAs in the vascular system
occurs in the source-to-sink direction, thus making an argument that phloem is a partic-
ipating pathway for translocation of dsRNAs. The authors postulated that exogenous
dsRNAs first entered the apoplast, and then translocated to the xylem, then to the phloem
through an as yet unknown mechanism. This postulation could not be ruled out as xylem-
to-phloem exchange exists together with the exo/endocytosis mechanism of materials from
the apoplast to the xylem vessels [118,122–124]. Another study showed gene knockdown in
phloem-feeding aphids, which indicated delivery of unprocessed dsRNA from the vascular
tissues to the insect target [117]. Whether long dsRNA could be transported in the phloem
is important considering many plant pests are phloem-feeding insects, and many of them
have been reported to be more sensitive to RNAi from feeding on long dsRNAs compared
to feeding on small RNAs [27,38]. That bidirectional flow of dsRNA, which is primarily
considered to associate with phloem transport, is also crucial for translocation of dsRNAs to
target pathogens at the plant stems and roots. Systemic transport of spray-applied dsRNA
in plants is still actively being investigated as the underlying mechanisms of transport and
activity are still largely not understood.

5. Barriers to Cellular Uptake of dsRNA

Under a scenario where sprayed dsRNAs bypass the numerous physical barriers and
are internalized into the leaf interior, dsRNA molecules still face more barriers to entering
the plant cells (Figure 2). All plant cells are enveloped in a cellulose wall formed of several
intertwining biopolymers for support and resistance to the turgor pressure of the plant
protoplast. The porous cell wall acts as a non-specific barrier allowing passage of molecular
and ionic components from adjacent cells or the extracellular environment to the plasma
membrane [125]. Due to its selectivity principle, the plasma membrane is a major barrier
for cellular uptake of sprayed dsRNAs.

It has been suggested that cell wall porosity may be subjected to changes depending on
development stage and cellular responses to the environment [126]. Though wall porosity
restricts the size of molecules that can permeate the cell wall, generally, macromolecules up
to 10 nm can penetrate the cell wall, whereas the transport of dsRNA requires a minimal
pore diameter of 3.2 nm [59,127]. A recent study has suggested that the limiting size for
double stranded DNA (dsDNA) cellular uptake is between 50 and 90 bp [128]. However, it
should be noted that this claim was based on measuring the quantity of dsDNAs present
in stimulated endosomes at the time. This could have been due to degradation of dsDNA
following endocytosis or because the mechanical properties of dsDNA, while remaining
sequence-dependent, similar to dsRNA, are strikingly different from those of dsRNA [129].
Furthermore, several studies have demonstrated exogenous dsRNA-mediated protection
against plant viruses. This means that the exogenously applied dsRNAs were success-
fully taken up into the plant cells and then processed into siRNAs to inhibit viral infec-
tions [53,130–132].

To gain access to the plant RNAi machinery for small RNA production, dsRNAs will
need to enter the cytoplasm. Due to being made up of different components to the cell wall,
the plasma membrane is a highly selective barrier restricting the entry of extracellular par-
ticles. The cell membrane is a negatively charged lipid bilayer containing trans-membrane
channels and transporters. These channels and transporters regulate active transport, os-



Int. J. Mol. Sci. 2022, 23, 6639 9 of 15

mosis, and diffusion of small molecular weight materials across membranes, but their roles
in dsRNAs uptake remain unclear. On the other hand, engulfment by endosomes could
represent a major entry point of extracellular particles. However, the mechanism triggering
the endocytosis of dsRNA remains to be unidentified, making it a challenge to further inves-
tigate whether topically applied dsRNA can be taken up by plant cells via this mechanism.
Non-stimulated endosomes were reportedly unresponsive to the internalized dsDNA; thus,
inducing endocytosis with transfecting reagents or incorporation with carbon-nanocarriers
may facilitate efficient small RNA production in sprayed plants [128,133].

6. Nanocarriers as an Effective dsRNA Delivery Method

To tackle various physical and biochemical barriers as well as provide protection,
nanoparticles, with sizes ranging from 1 to 500 nm, have been employed in topical dsRNA
delivery in plants (Figure 2D) [52,53,134–138]. Positively charged nanoparticles, including
but not limited to metals or cationic polymers, are designed to bind to dsRNA, forming
biodegradable complexes for sustained release of dsRNA over time. Studies have revealed
that formulation with nanocarriers could protect dsRNA from UV and nuclease degra-
dation [53,139]. The use of nanoparticles has also demonstrated increased persistence
of sprayed dsRNA on leaf surfaces after rinsing [52,53]. These approaches showed that
dsRNAs in complex with layered double hydroxide clay nanosheets (BioClay) largely
remained on leaves, while unprotected dsRNAs were readily washed off. Another valuable
aspect of nanoparticles is the potential to improve foliar and cellular uptake of sprayed
dsRNA [136,137,140,141]. dsRNA-nanoparticle complexes are overall positively charged,
and thus can enhance penetration through the negatively charged plasma membrane [142].
Delivery of siRNAs with carbon dots enhanced cellular uptake even with low-pressure
spray application, indicated by significant silencing of the plant’s endogenous genes [137].
In addition, single-walled carbon nanotubes (SWNTs) have been investigated for the capa-
bility to deliver DNAs and siRNAs into intact plant cells. Cellular uptake of SWNT/DNA
conjugates demonstrated the potential of utilizing SWNT as nano transporters to different
plant cell organelles [140]. More recently, promising results showed that SWNTs could
protect siRNAs from nuclease activities and efficiently deliver DNA and siRNAs to the
cytoplasm, triggering endogenous gene knockdown [135]. Though studies on the delivery
of dsRNA with nanocarriers are still limited, these results have shown that further improve-
ments of nano-delivery methods could prove important to practical field application of
topical RNAi as a spray.

7. Concluding Remarks

Physical and biochemical barriers notably limit the entry of topically applied exoge-
nous dsRNA into the plant leaf tissues. These barriers provide possible explanations for
the inconsistency of the topical RNAi effect among different plant species, targets, and
the environmental settings [128,143]. The interspecific variation in leaf morphologies also
indicates the need for host-dependent dsRNA delivery methods, requiring case-by-case
evaluation of uptake efficiency upon selection of plant host and pathogen targets for topical
RNAi. Several efforts have been made to enhance foliar dsRNA uptake including cuticle
abrasion, high-pressure spray, surfactants, and association with nanoparticles. Although
highly effective, formulation with nanoparticles must be designed case-by-case, depending
on the target species, and to avoid environmental risks [142]. Furthermore, the use of
nanoparticles could also enhance dsRNA persistence on plants and provide dsRNA sta-
bility in an uncontrolled environment. Movement of dsRNA within the plant and cellular
uptake of sprayed dsRNA can be crucial for targeting specific plant diseases and conferring
systemic protection. Thus, conducting additional studies on incorporating these methods
into the designs for dsRNA delivery as a foliar spray is essential for the feasibility of
sustainable crop protection with RNAi in the wide field.
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