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Abstract

Early-onset Alzheimer’s disease (AD) is highly heritable, yet only 10% of cases are

associated with known pathogenic mutations. For early-onset AD patients without

an identified autosomal dominant cause, we hypothesized that their early-onset dis-

ease reflects further enrichment of the common risk-conferring single nucleotide

polymorphisms associated with late-onset AD.

We applied a previously validated polygenic hazard score for late-onset AD to 193

consecutive patients diagnosed at our tertiary dementia referral center with symp-

tomatic early-onset AD. For comparison, we included 179 participants with late-onset

AD and 70 healthy controls. Polygenic hazard scores were similar in early- versus

late-onset AD. The polygenic hazard scorewas not associatedwith age-of-onset or dis-

ease biomarkerswithin early-onset AD. Early-onset ADdoes not represent an extreme

enrichment of the common single nucleotide polymorphisms associated with late-

onset AD. Further exploration of novel genetic risk factors of this highly heritable

disease is warranted.
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Highlights

∙ There is auniquegenetic architectureof early- versus late-onsetAlzheimer’s disease

(AD).

∙ Late-onset AD polygenic risk is not an explanation for early-onset AD.

∙ Polygenic risk of late-onset AD does not predict early-onset AD biology.

∙ Unique genetic architecture of early- versus late-onsetADparallels ADheterogene-

ity.

1 INTRODUCTION

While Alzheimer’s disease (AD) is highly heritable, only 31% is

accounted for by known AD genetic variants.1 The first discovered

genetic links to AD, namely pathogenic mutations in amyloid pre-

cursor protein (APP)2 or presenilin 1 or 2 (PSEN1/2), explain < 1%

of total cases of AD.2–4 Apolipoprotein E (APOE) ε4, a more com-

mon risk-conferring variant with a large effect size, only accounts

for 27% of AD heritability.5 Partially in an attempt to explain

this “missing heritability,” polygenic risk scores were developed

that aggregate small effect sizes of common risk- or protection-

conferring single nucleotide polymorphisms (SNPs). These polygenic

risk scores offer predictive power of case–control status, demen-

tia age of onset, levels of AD biomarkers, and AD neuropathological

burden.6–8

While polygenic risk scores have provided new insights into late-

onset AD, the genetic basis of early-onset AD is less well known.

Early-onset AD, which is generally defined as symptoms attributable

to AD starting prior to age 65, is thought to be 90% to 100% genetic

and is evenmore heritable than late-onset AD.9 But 90%of early-onset

AD remains genetically unexplained.9 One theory is that early-onset

AD represents an extreme form of the polygenic risk of late-onset

AD. Supporting this idea is a previous report by Cruchaga et al.,10

in which patients with sporadic early-onset AD surpassed sporadic

late-onset AD participants in the degree of enrichment of late-onset

AD polygenic risk. In the current study, we sought to extend this

line of evidence by using another polygenic risk score that predicts

age of onset of late-onset AD. In particular, we explore the “poly-

genic hazard score” (PHS), a weighted average of 33 risk-conferring

or protective SNPs that in late-onset AD predicts disease status, age

of onset, and AD biomarkers/neuropathology.7,11 We chose this par-

ticular polygenic risk score as it is able to predict earlier-onset cases

of late-onset AD; among APOE ε3/ε3 homozygotes there is a 10-

year spread between the upper and lower tenth percentiles in age

of onset.7 We hypothesized that participants with early-onset AD,

defined here as mild cognitive impairment or dementia due to AD

diagnosed before age 65, would have higher enrichment of late-onset

AD polygenic risk (as reflected by the PHS) than the late-onset AD

group.

2 METHODS

2.1 Standard protocol approvals, registrations,
and patient consents

Early-onset AD and control participants or their legal authorized rep-

resentative provided written informed consent at the University of

California, San Francisco (UCSF) Alzheimer’s Disease Research Cen-

ter (ADRC). The de-identified clinical and genetic data for late-onset

AD participants were obtained via the National Alzheimer’s Coordi-

natingCenter (NACC) and theAlzheimer’s Disease Sequencing Project

(ADSP), respectively. Written consent for the NACC and ADSP was

obtained by the participating institutions. This study was approved by

the UCSF, the Lawrence Berkeley National Laboratory, and University

ofMinnesota Institutional Review Boards.

2.2 Participants

One hundred ninety-three consecutive patients at the UCSF ADRC

were clinically diagnosed with symptomatic early-onset AD (age of

diagnosis ≤ 65 years of age) in accordance with National Institute

on Aging–Alzheimer’s Association (NIA-AA) criteria12 after a compre-

hensive clinical evaluation followed by consensus review. A subset of

82 patients had biomarker confirmation of AD pathophysiology via

cerebrospinal fluid (CSF) biomarkers or Pittsburgh compound B (PiB)

amyloid positron emission tomography (PET). Patients presenting with

logopenic variant of primary progressive aphasia and posterior cortical

atrophy were included with diagnoses established according to pub-

lished criteria.13,14 Participants with APP, PSEN1, or PSEN2 pathogenic

variants were excluded. Clinical diagnosis wasmade blinded to genetic

results.

Seventy healthy control participantswere studied as part of theHill-

blom Healthy Aging Network at UCSF and were free of any objective

cognitive impairment, structural brain lesion, history of neurologi-

cal disease, and were psychiatric medication-free. The full set of

179 late-onset AD participants without any co-primary or secondary
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contributing pathologies who had clinical data from the NACC and

accompanying genetic data from ADSP were obtained. The age of

symptom onset for the early- and late-onset AD participants was

established according to the clinician’s best judgement using par-

ticipant and informant report. For all diagnostic groups (controls,

early- and late-onset AD) participants with non-European ancestry on

genetic testing were also excluded.

2.3 Lumbar puncture and CSF testing

Cerebrospinal fluid collection was performed in a subset of the early-

onset AD participants (N = 29) according to previously delineated

methods.15 In brief, CSF was collected in a polypropylene tube and

stored at −80◦C within 1 hour of lumbar puncture collection and sent

toUniversity ofPennsylvania.Amyloidbeta (Aβ)42, total tau (t-tau), and
tau phosphorylated at threonine 181 (p-tau) were measured using the

INNO-BIA AlzBio3 platform (Innogenetics).16

2.4 Amyloid PET imaging

A subset of participants (N = 68) underwent 11C-PiB amyloid PET

imaging at the Lawrence Berkeley National Laboratory according to

previously published protocols.17 In brief, PET imaging was performed

on a Siemens/Biograph PET/computed tomography (CT) in 3D acqui-

sition mode. Attenuation correction using a low-dose CT/transmission

scan occurred prior to each PET scan. 11C-PiB data were collected 50

to70minutes after tracer injection. Cerebellar graymatterwas used as

the reference region. Magnetization-prepared rapid acquisition gradi-

ent echo sequencewas processedusing Statistical ParametricMapping

version 8 (SPM8, https://www.fil.ion.ucl.ac.uk/spm/) software for ref-

erence region definition and spatial warping. Amyloid positivity at
11C-PiB was assessed both visually by an expert reader (GDR, RLJ)

and via quantification using a neocortical composite score 11C-PiB

standardized uptake value ratio (SUVR) score> 1.21.17

2.5 Polygenic hazard score

The PHS, composed of a weighted score of 33 risk- or protection-

conferring SNPs, was calculated for each participant as previously

described byDesikan et al.7 In brief, the creation of the PHS is based on

data from multiple large AD genetic consortium studies. First, 17,008

clinically diagnosed AD cases and 37,154 European or European-

ancestry controls who were part of the International Genomics of

Alzheimer’s Project (IGAP) Stage 1 had genotyped or imputed data at

7,055,881 SNPs. One thousand eight hundred fifty-four SNPs were

identified that were associated with increased risk for AD that met

the significance threshold of P < 10−5. Next, a “final” list of AD-

associated SNPs was created using the Alzheimer’s Disease Genetics

Consortium (ADGC) Phase 1 case–control dataset of 6409AD demen-

tia and 9386 healthy controls (excluding Alzheimer’s Disease Center

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using Google Scholar and PubMed. Early-onset

Alzheimer’s disease (AD) is a highly heritable condition,

but only 10% of cases are explained by known muta-

tions. Exploring this “missing heritability,” one prior study

by Cruchaga et al. suggested that early-onset AD is

explained by extreme enrichment of the polygenic risk of

late-onset AD. However, numerous other studies suggest

the contrary: rather than polygenic, early-onset AD may

be better explained by undiscovered autosomal recessive

or oligogenic mechanisms.

2. Interpretation: Our findings suggest that early-onset AD

is not explained by further enrichment of late-onset AD

polygenic risk. This finding points toward recessive or

oligogenic modes of inheritance for early-onset AD

3. Future directions: Uncovering the genetic basis of early-

onset AD will likely benefit from searching for unique

novel genetic/epigenetic variants compared to late-onset

AD.

and Alzheimer’s Disease Neuroimaging Initiative [ADNI] samples).

Participantswith an autosomal dominant (APP, PSEN1, orPSEN2)muta-

tion, who had AD symptom onset prior to age 60, or who were of

non-European ancestry were excluded. Diagnosis of clinical AD was

established using criteria for definite, probable, and possible AD.18 A

stepwise regression framework, which used a Cox proportional hazard

model, identified the top AD-associated SNPs while controlling for the

effects of sex, APOE variants, and the top five genetic principal com-

ponents (to control for the effects of population stratification). Age

of AD onset and age of last clinical visit were incorporated to select

SNPs with effects on age of onset. In each step of the stepwise pro-

cedure, the algorithm selected the one SNP from the pool that most

improved model prediction (e.g., minimizing the Martingale residuals);

additional SNP inclusion that did not further minimize the residuals

resulted in halting of the SNP selection process. This process produced

the final 31 SNPs in addition to the two SNPs that define the APOE

alleles that compose the PHS. Weights of each SNP composing the

PHS are enumerated by Desikan et al.7 In an attempt to reproduce

the findings of the previous report by Cruchaga et al., which stems

from the IGAP stage 1 and 2 (Lambert et al.5), we used their same

methodology for computation of the Cruchaga et al. polygenic risk

and compared it across controls, early-, and late-onset AD using logis-

tic regression controlling for sex.10 Both the Desikan et al. PHS and

the Cruchaga et al. polygenic risk score are based on the IGAP,5,7,10

in which selected variants pass Hardy–Weinberg equilibrium. SNPs

included in the Desikan et al. PHS and Cruchaga et al. polygenic risk

score are enumerated in Tables S5 and S6 in supporting information.

https://www.fil.ion.ucl.ac.uk/spm/
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2.6 Sequencing, data alignment, and quality
control

We used the same sequencing, data alignment, and quality control

methodology as the one used in a previous study.19 For early-onset

AD participants and healthy controls whole-genome sequencing was

performed at HudsonAlpha Institute for Biotechnology (Huntsville,

AL) on a HiSeq X platform. Mean depth was 34x with an average of

92% of bases covered at 20x. Sequencing libraries at HudsonAlpha

were prepared by Covaris shearing, end repair, adaptor ligation, and

polymerization chain reaction (PCR) using standard protocols. Library

concentrations were normalized using KAPA quantitative PCR prior to

sequencing.

All sequencing reads from both sequencing centers were aligned to

the hg19 reference genome with Burrows–Wheeler aligner.20 Binary

alignment maps were sorted, and duplicates were marked using Sam-

bamba 0.5.4.21 Variants were called across all samples in a single batch

through the use of GATK 3.8 using the -newQual flag to minimize false

negative singleton calls. The variant cell format (VCF) was quality fil-

tered with a genotype-level requirement for 95% of sites to have a

minimum genotype quality (GQ) of 20 and read depth of 10 (applied

using VCFtools 0.1.1521), and a variant level filter of variant quality

score log-odds (VQSLOD) > −3. Only samples from the largest cluster

(European ancestry) were retained to minimize potential confounding

population effects. While no participants were excluded under the fol-

lowing criteria, we verified that no participants carried a pathogenic

variant in APP, PSEN1/2, C9ORF72, GRN, orMAPT. Additionally, Goleft

indexcov 0.1.17 was used for sex checks and samples failing sex checks

were excluded. Finally, individuals were not related within at least

four degrees, which is the outer detection limit for relatedness for the

software used to assess relatedness (KING version 2.2).

Genotyping for the late-onset AD cohort was performed at ADSP

as previously described.22 ADSP samples underwent whole exome

sequencing at one of three National Human Genome Research

Institute–funded large-scale sequencing centers at Baylor University,

the Broad Institute, or Washington University. Whole exome capture

was performed using either the Illumina Rapid Capture Exome kit or

VCRome v2.1 kit (NimbleGen), and paired-end reads were generated

using an Illumina HiSeq 2000. Sequence reads were aligned to the

GRCh37 reference genome using the Burrows–Wheeler aligner,20 and

variantswere jointly called across theentire cohort usingAtlasV2 soft-

ware (Baylor) or GATK (Broad). Variants underwent pipeline-specific

quality control prior to merging the variants that were concordant

between the two sets of variants. TheADSPalsoperformed initial qual-

ity control checks on sample information, phenotypes, and genotype

data to ensure that these data were of high quality and suitable for

downstream analysis. Joint called variants with GQ scores > 30 and

read depth scores> 20.

2.7 Statistical analyses

Wemeasured the relationship between PHS and disease status (early-

onsetAD, late-onsetAD, andhealthy controls) using two-sidedStudent

t tests and logistic regression controlling for sex. Age was not incorpo-

rated as a covariate as our goal was to compare PHS scores between

diagnostic groups that are already divided according to age. Compari-

son of categorical variables between diagnostic groups was performed

via chi-square analysis. The relationship betweenPHSandageof onset,

disease biomarkers (CSFAβ42, p-tau, and t-tau) and amyloid PET SUVR

was quantified using multiple linear regression controlling for sex.

Regression co-efficients are reported via unstandardized (e.g., raw)

beta (B).

2.8 Data availability

Anonymized data not published within this article will be made avail-

able by request from any qualified investigator. Genomic data for

UCSF participants is available under controlled access via the Synapse

AD Knowledge portal accession number syn25686500. ADSP data

are available at National Institute on Aging Genetics of Alzheimer’s

Disease Data Storage Site under project NG00067.

3 RESULTS

3.1 All participants

Table 1 includes demographic and clinical features of the 193 partici-

pants clinically diagnosedwith early-onset AD, 70 control participants,

and 179 participants with late-onset AD. A higher (more risk confer-

ring) PHSwas associated with a diagnosis of early-onset AD compared

to healthy controls (odds ratio [OR]: 2.2; 95% confidence interval [CI]:

1.6–3.1). As expected, this relationship is similarly present in late-onset

ADversus healthy controls (OR: 2.6; 95%CI: 1.8–3.7). However, higher

PHS was not associated with a diagnosis of early-onset AD compared

to late-onset AD (OR: 0.87; 95% CI: 0.71–1.1). Examining only the

biomarker-confirmed cases of early-onset AD, we again found no dif-

ference in PHS predicting early- versus late-onset AD (OR: 0.80; 95%

CI: 0.62–1.0; Table S1 in supporting information).

There was no correlation between PHS and age of onset within the

early-onset AD participants (B:−0.013; 95% CI:−0.77–0.74). We also

stratified the analysis by age of onset (participants 60–65, 55–60, and

≤ 55 years old) and found no associations between PHS and age of

onset or disease biomarkers in these age brackets of early-onset AD

(data not shown). As a positive control, in late-onset AD the PHS was

associated with age of onset (B: −1.1; 95% CI: −2.1 to −0.23), with

higher PHS predicting younger age of onset. Figure 1 visually depicts

the regression of age of onset by PHS divided by cohort. In attempt

to control for recall bias in participant- or informant-reported age of

onset, we also examined the correlation between PHS and age at first

visit for the early-onset AD group. We again found no relationship (B:

0.011; 95%CI:− 0.71–0.92).

We stratified the analysis by early-onset AD variant (e.g. multi-

domain [N = 110], logopenic variant of primary progressive aphasia

[N = 48], or posterior cortical atrophy [N = 35]); however, we did not

find any significant PHS difference between early-onset AD variants
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TABLE 1 Demographics, age of onset, APOE, and polygenic hazard score across diagnostic groups.

Diagnostic group

Age of

symptom

onset (years)

Age at first

visit (years) Sex, % female

APOE ε4 allele
frequency PHS

PHS odds

ratio (95%CI)

predicting

diagnostic

group versus

controls

PHS odds ratio (95%

CI) predicting

diagnostic group

versus late-onset AD

Early-onset AD

-Entire group

N= 193

55 (5.3) 59 (5.6) 54% 0.35 0.60 (1.0) 2.2 (1.6–3.1) 0.87 (0.71–1.1)

-Multi-domain

N= 111

55 (5.2) 59 (5.6) 50% 0.40 0.69 (1.0) 2.4 (1.6–3.4) 0.96 (0.75–1.2)

-Logopenic variant

PPA

N= 47

55 (5.3) 60 (6.1) 62% 0.28 0.53 (0.91) 2.3 (1.4–3.6) 0.80 (0.56–1.1)

-Posterior cortical

atrophy

N= 35

55 (5.3) 59 (5.0) 54% 0.27 0.43 (0.95) 1.9 (1.2–3.2) 0.72 (0.49–1.1)

Late-onset AD

N= 179

76 (6.1) 80 (7.0) 57% 0.44 0.73 (1.0) 2.6 (1.8–3.7) N/A

Controls

N= 70

N/A 70 (6.4) 63% 0.13 −0.08 (0.82) N/A 0.38 (0.27–0.54)

Note. Unless otherwise noted, all values aremean± (standard deviation). Logistic regression co-varies for sex.

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CI, confidence interval; PHS, polygenic hazard score; PPA, primary progressive aphasia.

F IGURE 1 Regression of age of onset versus polygenic hazard
score in early-onset versus late-onset Alzheimer’s disease. EOAD,
early-onset Alzheimer’s disease; LOAD, late-onset Alzheimer’s
disease; PHS, polygenic hazard score (Desikan et al.7)

and late-onset AD (Table 1) nor did we find any correlation between

PHS and age of onset or disease biomarkers, with the exception of

higher PHS predicting higher p-tau 181 in the posterior cortical atro-

phy subgroup. However, this latter finding did not survive Bonferroni

correction (Table S2 in supporting information).

Finally, we assessed the association of APOE ε4 on age of onset

within the early-onset AD group and found no correlation even when

controlling for sex and APOE ε2 allele (APOE ε4 heterozygous B: 0.46;

95%CI−1.0–2.3; APOE ε4/ε4 homozygous B: 0.53; 95%CI:−3.2–1.6).

3.2 Analysis of PHS independent of APOE ε2 and
APOE ε4

To examine the effects of PHS independent of APOE ε4 or APOE ε2,
we performed the same analyses in APOE ε3/ε3 homozygotes. Table 2

includes demographic and clinical features of the 77 participants clin-

ically diagnosed with early-onset AD, 43 control participants, and 54

participants with late-onset AD who are all APOE ε3/ε3 homozygotes.

While the OR predicting early- versus late-onset ADwas above 1 (OR:

1.1; 95% CI: 0.61–1.9), this was not statistically significant. We per-

formed the same analyses in biomarker-confirmed early-onset AD and

found similar results (OR: 1.1; 95% CI: 0.56–2.2; Table S3 in support-

ing information).Wealso comparedamodifiedPHS that excludesAPOE

betweenall early- versus late-onsetADparticipants, regardlessof their

APOE genotype. We similarly found a > 1 OR that was not statistically

significantly associated with early- versus late-onset AD (OR: 1.4; 95%

CI: 0.76–1.7).

Examining the relation between PHS and AD biomarkers in the

APOE ε3/ε3 homozygotes similarly did not demonstrate any significant

relationships, except for PHS and amyloid PET (paradoxically lower

amyloid PET with higher/more “risk-conferring” PHS) and CSF Aβ42
(in the predicted direction of lower CSF Aβ42 with higher PHS) in the

logopenic primary progressive aphasia group, which did not survive

Bonferroni correction (Table S4).

When assessing the PHS’s ability to predict age of onset, paradoxi-

cally a higher PHS within the early-onset AD APOE ε3/ε3 homozygotes

trended toward an older age of onset, although this did not meet

statistical significance (B: 1.7; 95%CI−0.32–3.7).
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TABLE 2 Participants homozygous for APOE ε3; demographics, age of onset, and polygenic hazard score across diagnostic groups.

Diagnostic

group(allAPOE
ε3/ε3
homozygotes)

Age of

symptom

onset (years)

Age at first

visit (years) Sex, % female PHS

PHS odds

ratio (95%CI)

predicting

diagnostic

group versus

controls

PHS odds ratio (95%

CI) predicting

diagnostic group

versus late-onset AD

Early-onset AD

-Entire group

N= 77

55 (5.4) 59 (5.5) 49% −0.12 (0.60) 2.0 (1.0–3.9) 1.1 (0.61–1.9)

-Multidomain

N= 37

54 (5.0) 58 (4.8) 46% −0.18 (0.60) 1.6 (0.72–3.6) 0.92 (0.46–1.8)

-Logopenic

variant PPA

N= 23

56 (6.2) 61 (6.4) 48% −0.045 (0.54) 2.8 (1.0–7.7) 1.4 (0.61–3.1)

-Posterior

cortical atrophy

N= 17

55 (5.2) 59 (5.1) 59% −0.097 (0.70) 1.9 (0.74–5.0) 1.1 (0.50–2.7)

Late-onset

ADN= 54

77 (6.6) 80 (6.6) 57% −0.15 (0.64) 1.7 (0.84–3.3) N/A

Controls

N= 43

N/A 69 (6.6) 70% −0.33 (0.58) N/A 0.60 (0.30–1.2)

Note. Unless otherwise noted, all values aremean± (standard deviation). Logistic regression co-varies for sex.

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CI, confidence interval; PHS, polygenic hazard score; PPA, primary progressive aphasia.

3.3 Replicating Cruchaga et al.’s polygenic risk
score

Table 3 demonstrates the association of the Cruchaga et al. polygenic

risk scores between controls, early-, and late-onset AD. While the OR

was> 1 in comparing early- versus-late onset ADparticipants, this was

not statistically significant (OR: 1.2; 95%CI: 0.78–1.8). Comparing PRS

inAPOE ε3/ε3homozygotes (Table 4) therewas again a non-statistically

significant association of higher enrichment in early- versus late-onset

AD (OR: 1.5; 95% CI: 0.71–2.9). Comparing the full group of early-

versus late-onset AD participants with amodified Cruchaga et al. poly-

genic risk score that excludesAPOE, therewasanothernon-statistically

significant association of higher enrichment in early- versus late-onset

AD (OR: 1.2; 95% CI: 0.76–1.8). To mirror the lack of known family

history in the sporadic early- and sporadic late-onset AD participants

in the Cruchaga et al. study, we excluded 32 early- and 106 late-

onset participants with a known first-degree relative with cognitive

impairment or dementia and then compared the remaining early- ver-

sus late-onset AD participants. Our N being significantly reduced, and

with CIs stretching from zero to the hundreds of trillions, no trends

could be discerned (full Cruchaga et al. polygenic risk OR: 2.8; 95% CI:

0.00015–53000/APOE-independent Cruchaga et al. polygenic riskOR:

180000; 95% CI: 0.000043 – 7.5 × 10ˆ14). Note that due to missing

or unavailable data elements, we were not able to ascertain the pat-

tern of family history or sibling status in most participants without a

known family history. Finally, we examined the relationship between

the Cruchaga et al. polygenic risk and age of onset within the early-

onset AD participants, and found no association with either the full or

APOE independent polygenic risk score (B: −7.0; 95% CI: −32–18/B:

−30; 95%CI:−89–28).

4 DISCUSSION

Early-onset AD does not appear to be associated with an extreme

burden of the polygenic risk associated with late-onset AD. Partici-

pants with early-onset AD had a similarly risk-conferring polygenic

risk, as reflected by the PHS and the Cruchaga et al. polygenic risk

score, as late-onset AD. Furthermore, unlike late-onset AD, the PHS

in early-onset AD did not predict age of onset or AD biomarkers. In a

similar fashion, while APOE ε4 allele burden reduces the age of onset

of AD, it does not further reduce the age of onset for patients who

are already in the early-onset AD category. While excluding APOE

from polygenic risk calculations appeared to tilt the balance of poly-

genic enrichment toward early-onset AD, these were non-statistically

significant.

The findings presented here contrast with those from a previ-

ous study by Cruchaga et al.,10 which suggested extreme enrichment

of late-onset AD polygenic risk in sporadic early-onset AD. Several

methodological differences could account for thediscrepancybetween

the current study and Cruchaga et al. First, the Cruchaga et al. study

compared sporadic early- versus sporadic late-onset AD. Sporadic in

the Cruchaga et al. study was defined as the lack of any documented

family history (for sporadic early-onset AD) or without two affected

siblings with another affective relative (for sporadic late-onset AD).

In the present study, known Mendelian variants were excluded from
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TABLE 3 Cruchaga et al.,10 polygenic risk score: Demographics, age of onset, APOE, and polygenic risk score across diagnostic groups.

Diagnostic group

Age of

symptom

onset (years)

Age at first

visit (years) Sex, % female

APOE ε4 allele
frequency

Cruchaga

et al.,10 PRS

PRS odds

ratio (95%CI)

predicting

diagnostic

group versus

controls

PRS odds ratio (95%

CI) predicting

diagnostic group

versus late-onset AD

Early-onset AD

-Entire group

N= 193

55 (5.3) 59 (5.6) 54% 0.35 0.030 (0.030) 1.5 (0.80–2.7) 1.2 (0.78–1.8)

-Multi-domain

N= 111

55 (5.2) 59 (5.6) 50% 0.40 0.033 (0.031) 1.7 (0.85–3.3) 1.3 (0.82–2.1)

-Logopenic

variant PPA

N= 47

55 (5.3) 60 (6.1) 62% 0.28 0.028 (0.027) 1.1 (0.48–2.6) 0.9 (0.44–1.6)

-Posterior

cortical atrophy

N= 35

55 (5.3) 59 (5.0) 54% 0.27 0.021 (0.027) 1.2 (0.49–2.8) 1.3 (0.60–2.6)

Late-onset AD

N= 178a
76.7 (6.1) 80 (6.8) 57% 0.45 0.036 (0.031) 1.1 (0.60–2.2) N/A

Controls

N= 70

N/A 70 (6.4) 63% 0.13 0.0064

(0.022)

N/A 0.88 (0.46–1.7)

Note. Unless otherwise noted, all values aremean± (standard deviation). Logistic regression co-varies for sex.

Abbreviations: AD, Alzheimer’s disease;APOE, apolipoprotein E; CI, confidence interval; PHS, polygenic hazard score; PPA, primary progressive aphasia; PRS,

Cruchaga et al. polygenic risk score.
aOne late-onset AD participant from the prior PHS groupwas not available at the time of data analysis (e.g.,N= 178 instead of 179).

TABLE 4 Cruchaga et al., 10 polygenic risk score in participants homozygous for APOE ε3; demographics, age of onset, APOE, and polygenic risk
score across diagnostic groups.

Diagnostic

group(allAPOE
ε3/ε3
homozygotes)

Age of

symptom

onset (years)

Age at first

visit (years) Sex, % female

Cruchaga

et al.,10 PRS

PRS odds

ratio (95%CI)

predicting

diagnostic

group versus

controls

PRS odds ratio

(95%CI)

predicting

diagnostic group

versus late-onset

AD

Early-onset AD

-Entire

groupN= 77

55 (5.4) 59 (5.5) 49% 0.0032 (0.0098) 2.6 (1.2–6.0) 1.5 (0.71–2.9)

-Multidomain

N= 37

54 (5.0) 58 (4.8) 46% 0.0019 (0.0091) 2.9 (1.2–7.5) 1.7 (0.71–3.9)

-Logopenic

variant PPA

N= 23

56 (6.2) 61 (6.4) 48% 0.0075 (0.010) 3.7 (1.1–13) 1.6 (0.58–4.4)

-Posterior

cortical atrophy

N= 17

55 (5.2) 59 (5.1) 59% 0.00068 (0.0098) 1.7 (0.52–5.4) 1.0 (0.34–3.2)

Late-onset AD

N= 53a
77 (6.6) 80 (7.3) 58% 0.0027 (0.086) 1.7 (0.70–4.0) N/A

Controls

N= 43

N/A 69 (6.6) 70% −0.0013 (0.0097) N/A 0.59 (0.25–1.4)

Note. Unless otherwise noted, all values aremean± (standard deviation). Logistic regression co-varies for sex.

Abbreviations: AD, Alzheimer’s disease;APOE, apolipoprotein E; CI, confidence interval; PHS, polygenic hazard score; PPA, primary progressive aphasia; PRS,

Cruchaga et al. polygenic risk score.
aOne late-onset AD participant from the prior PHS groupwas not available at the time of data analysis (e.g.,N= 53 instead of 54).
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the analysis, but 1:6 early-onset participants had a known first-degree

relative (parent, sibling, or child) with cognitive impairment or demen-

tia and were included in the analysis. In attempt to compare only

sporadic participants, we ran a subanalysis on participants without a

known first-degree relative, but our N was too small to make any con-

clusions. One possibility for the discordance between the Cruchaga

et al. study and this study is that polygenic modes of inheritance may

underlie sporadic early-onset AD, whereas highly penetrant oligogenic

or recessive inheritance may underlie early-onset AD with positive

family histories. A recent report supports this hypothesis; participants

with a strong family history of dementia had a higher likelihood of

harboring rare pathogenic variants with large effect sizes.23 A second

methodological difference is that the age of onset of the two studies’

early-onset AD groups are different; the present study’s mean age of

AD symptom onset was 5 years younger than the prior report. Fur-

thermore, for inclusion as an early-onset AD participant, we used an

age of diagnosis< 65 whereas the Cruchaga et al. study used an age of

reported symptom onset < 65. Finally, our study has a high proportion

of atypical cases: 46% of our participants had a non-medial temporal

lobe predominant subtype of AD, whereas it is unclear if these atypi-

cal cases were included in the Cruchaga et al. report. Our study thus

focuses on an early-onset AD group that is youngerwith a high propor-

tion of atypical cases, whichmay impact the genetic similarity between

our current report and the Cruchaga et al. study.

The current report’s conclusions are in line with another genome-

wide association study of posterior cortical atrophy, a visuospatial

variant of AD that occurs more commonly in early-onset AD. In the

report by Schott et al.,24 participants with posterior cortical atrophy

variant of AD had a mean age of onset of 58 years and had a partial

but not full overlap in polygenic risk compared to late-onset AD. Fur-

thermore, participants with the posterior cortical atrophy variant of

AD had novel risk variants not previously associated with late-onset

AD. Together with the results of the present study and prior work

suggesting an oligogenic or recessive inheritance pattern for early-

onset AD,9,25 it is likely there are unique common and rare genetic

contributions to early-onset AD risk.

Our study’s results also mirror increasing evidence that APOE ε4
does not lower the age of onset within early-onset AD. While APOE

ε4 reduces the age of onset of AD in a dose-dependent fashion, it

does so only up to a point; APOE ε4/ε4 homozygotes show an average

age of symptom onset between 60 and 69 years.26,27 Below age 60,

however, early-onset AD patients are equally likely to be APOE ε3/ε3
homozygotes.26,28 Elsewhere, a recent study observed no effect of

APOE ε4onageof onset inmenwith early-onsetAD, but adecreased age

of onset for females with early-onset AD lacking an APOE ε4 allele.29

That APOE ε4 plays less of a role in the earliest onset cases of AD

further argues against the hypothesis that early-onset AD is merely

explained by an enrichment of late-onset AD common genetic risk

variants.

The differences in predictive power of thePHSandAPOE ε4 in early-
versus late-onset AD is mirrored by differences in disease risk fac-

tors and clinicopathological features between the two forms of AD.

Compared to late-onset AD, patients with early-onset AD show faster

clinical decline30 and greater neuropsychiatric symptoms.31 While

late-onset AD and APOE ε4 are associated with medial temporal lobe

disease, early-onset AD patients exhibit greater impairment in brain

regions outside of the medial temporal lobe, especially for patients

without an APOE ε4 allele.27 Disease risk factors may also be differ-

ent between the two disease subtypes; patients with the logopenic

variant of primary progressive aphasia or the posterior cortical atro-

phy variant of AD, which occur more commonly in early-onset cases of

AD,32 have a higher prevalence of left-handedness,33,34 and childhood

learning disabilities.33,35 Neuropathologically, early-onset AD patients

have more severe neurofibrillary tangle burden and synaptic loss than

late-onset AD.36,37 This age-related heterogeneity of AD may reflect

differences in underlying genetic risk.

While the current study argues against early-onset AD represent-

ing an extreme enrichment of common late-onset AD genetic risk

variants, rare pathogenic variants in the same genes implicated in late-

onset AD (e.g. SORL1, ABCA7) have been found in early-onset AD.38–45

Conversely, mutations in genes previously associated with early-onset

AD (e.g., APP, PSEN2) also rarely cause late-onset AD.46,47 Thus, even

though the location and functional effect of variants may differ across

early- versus late-onset AD, the affected genes may still substantially

overlap.

This study has several important limitations. First, our relatively

small and heterogeneous patient group of 193 may be underpow-

ered to detect further enrichment of late-onset AD polygenic risk

in early-onset AD. However, despite the relatively small sample size,

clear differences were observed in early- and late-onset AD versus

controls. The lack of observable difference in PHS between early- ver-

sus late-onset AD means that if such a difference truly exists, the

difference is small. A second limitation is that only 82 of the 193 early-

onset AD participants had biomarker confirmation, meaning that an

unknown number of the non-biomarker confirmed casesmay have had

a non-AD alternative diagnosis.We note, however, that examining only

biomarker-confirmed cases of early-onset ADdid not demonstrate any

differences in polygenic risk compared to the entire early-onset AD

group. A third limitation is that our ability to compare polygenic risk

to age of onset is reliant on participant or informant reporting, which

is subject to variations in recall bias. We note again, however, that

the late-onset AD-positive control group similarly relied on informant

report and we found a statistically significant relationship between

PHS and age of onset. Fourth, the early-onset AD group was recruited

mainly from the San Francisco Bay Area through referrals from local

clinics to theUCSFADRC, a source of ascertainment bias thatmay give

rise to a non-representative sample. Finally, we restricted our analysis

to participants of European ancestry, which parallels the methodology

of the PHS. Given important differences in the risk of APOE depending

on genetic ancestry, along with important differences in linkage dise-

quilibrium and non-APOE AD risk factors in diverse cohorts,48–51 this

study may not generalize across racial groups and underlines a press-

ing need to improve recruitment of diverse cohorts to national AD

research efforts.
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5 CONCLUSION

In summary, our results are not consistent with the model that

early-onset AD risk is mainly conferred by extreme enrichment of

common late-onset AD associated risk variants. Further exploration is

warranted to uncover the genetic basis of early-onset AD.
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