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Abstract
Purpose  The role of obesity in glioblastoma remains unclear, as previous analyses have reported contradicting results. Here, 
we evaluate the prognostic impact of obesity in two trial populations; CeTeG/NOA-09 (n = 129) for MGMT methylated glio-
blastoma patients comparing temozolomide (TMZ) to lomustine/TMZ, and GLARIUS (n = 170) for MGMT unmethylated 
glioblastoma patients comparing TMZ to bevacizumab/irinotecan, both in addition to surgery and radiotherapy.
Methods  The impact of obesity (BMI ≥ 30 kg/m2) on overall survival (OS) and progression-free survival (PFS) was inves-
tigated with Kaplan–Meier analysis and log-rank tests. A multivariable Cox regression analysis was performed including 
known prognostic factors as covariables.
Results  Overall, 22.6% of patients (67 of 297) were obese. Obesity was associated with shorter survival in patients with 
MGMT methylated glioblastoma (median OS 22.9 (95% CI 17.7–30.8) vs. 43.2 (32.5–54.4) months for obese and non-
obese patients respectively, p = 0.001), but not in MGMT unmethylated glioblastoma (median OS 17.1 (15.8–18.9) vs 17.6 
(14.7–20.8) months, p = 0.26). The prognostic impact of obesity in MGMT methylated glioblastoma was confirmed in a 
multivariable Cox regression (adjusted odds ratio: 2.57 (95% CI 1.53–4.31), p < 0.001) adjusted for age, sex, extent of resec-
tion, baseline steroids, Karnofsky performance score, and treatment arm.
Conclusion  Obesity was associated with shorter survival in MGMT methylated, but not in MGMT unmethylated glioblas-
toma patients.
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Introduction

Despite recent therapeutic progress, glioblastoma remains 
a devastating disease with short survival [1]. Prognostic 
factors including age, Karnofsky performance scale (KPS), 
extent of resection, and MGMT promoter methylation sta-
tus, aid to estimate the course of disease and enable shared 
decision-making regarding therapeutic options [2]. The 
impact of obesity on survival in high grade glioma has been 
retrospectively analyzed with contradicting results, as it 
was associated with better [3–6], indifferent [7], or worse 
survival [8, 9]. Notably, these studies exhibit limitations, 
including recruitment before current standard therapies 
[7], inclusion of different tumor grades [8, 9], the single- 
or bicentric retrospective nature of analyses [3–8], and not 
accounting for MGMT promoter methylation status.

Here, we aim to analyze the prognostic impact of obesity 
in glioblastoma with or without MGMT methylation using 
two well-characterized study cohorts.

Methods

This study is a retrospective analysis of the prognostic 
impact of obesity in two prospective clinical trials of glio-
blastoma, which recruited at overlapping time periods at 
largely the same German university medical centers.

CeTeG/NOA‑09

This randomized phase III trial (ClinicalTrials.gov 
NCT01149109, [10]) included 129 patients aged 
18–70 years with newly diagnosed glioblastoma, harboring 
a methylated MGMT promoter as determined by real-time 
methylation-specific PCR (msPCR [11]) and with a KPS of 
70% or higher. Patients were recruited between June 2011 
and April 2014 and randomized to standard temozolomide 
(TMZ) concomitant to radiotherapy followed by six courses 
of temozolomide or six courses of lomustine (CCNU) and 
TMZ starting during standard radiotherapy. As the study 
recruited before the 2016 WHO classification of tumours of 
the central nervous system, 23 patients with unknown IDH 
mutation status or confirmed IDH mutation were included 
[1].

GLARIUS

This randomized phase II trial (ClinicalTrials.gov 
NCT00967330 [12]) included 170 patients aged 18 or older 
with newly diagnosed glioblastoma harboring an unmeth-
ylated MGMT promoter (same msPCR test as in CeTeG) 

and with a KPS of 70% or higher. Patients were recruited 
between June 2010 and August 2012 and randomized to 
standard TMZ concomitant to radiotherapy followed by six 
courses of TMZ, or standard radiotherapy with concomitant 
bevacizumab every 2 weeks followed by bevacizumab and 
irinotecan every 2 weeks.

Statistical analysis

Descriptive statistics are provided as mean and standard 
deviation or median and interquartile range (IQR) where 
appropriate. Obesity was defined as a BMI of 30 kg/m2 or 
higher according to the WHO definition. Groupwise com-
parisons were performed using unpaired Student’s t-test, 
Wilcoxon rank-sum test or Fisher’s exact test, depending 
on scale and distribution. OS and PFS were analyzed with 
Kaplan–Meier analysis and log-rank test. Multivariable Cox 
regression analysis including age, sex, extent of resection, 
KPS, baseline steroid medication and treatment arm was 
performed to validate the findings. Significance level was 
set to alpha ≤ 0.05 and all analyses were two-sided. Statisti-
cal analyses were carried out with R (version 4.0.3, The R 
Foundation for Statistical Computing, https://​www.r-​proje​
ct.​org, package survminer).

Results

BMI was unknown in two cases, resulting in 297 patients 
included in this analysis. 22.5% (67/297) of patients were 
obese (BMI ≥ 30 kg/m2). The median age of the cohort was 
56 years (IQR 49–63); 58 years (IQR 50–63) for MGMT 
methylated and 56 years (IQR 48–63) for MGMT unmeth-
ylated patients. Further characteristics and outcome of the 
included studies have been published previously [10, 12]. 
Baseline characteristics were similar between obese and 
non-obese patients (Table 1).

Entire study cohort

For the entire study cohort, both median OS (obese vs. non-
obese: 19.2 (95% CI 16.2–21.9) vs. 23.0 (20.1–26.7) months, 
p = 0.0014) and PFS (obese vs. non-obese: 8.8 (6.0–11.4) vs. 
10.0 (9.2–11.7) months, p = 0.008) were shorter in obese 
patients. The known prognostic and predictive impact of 
MGMT methylation is emphasized by a greatly differing 
median OS (GLARIUS: 17.1 (95% CI 15.8–18.1) months, 
CeTeG/NOA-09: 33.6 (29.3–47.2) months, p < 0.001) and 
median PFS (8.6 (95% CI 7.9–9.7) vs. 15.7 (11.5–20.4) 
months, p < 0.001), thus patients with MGMT methylated 

https://www.r-project.org
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(CeTeG/NOA-09) and unmethylated tumors (GLARIUS) 
were subsequently analyzed separately.

Patients with MGMT unmethylated glioblastoma

In patients with MGMT unmethylated glioblastoma, PFS 
(obese vs. non-obese: 8.1 (95% CI 6.0–11.3) vs. 9.0 (7.9–9.8) 
months, p = 0.23; Fig. 1a) and OS (obese vs. non-obese: 17.6 
(14.7–20.8) vs. 17.1 (15.8–18.9) months, p = 0.26; Fig. 1b) 
did not differ between obese and non-obese patients (Fig. 1).

Patients with MGMT methylated glioblastoma

Among MGMT methylated patients, obesity was associated 
with shorter PFS (obese vs. non-obese: 11.3 (5.5–20.9) vs. 
16.6 (12.1–22.1) months, p = 0.007; Fig. 1a) and OS (obese 
vs. non-obese: 22.9 (17.7–30.8) vs. 43.2 (32.5–54.4) months, 
p = 0.001, Fig. 1b). Restricting the analysis to patients with 
known IDH wildtype status (n = 103) confirmed the findings 
(p = 0.0208 for PFS and p = 0.0011 for OS). Furthermore, 
hematotoxicity CTCAE grade 3 or higher occurred with 
similar frequency in obese and non-obese patients (44.8 vs. 
57.0%, p = 0.29).

Multivariate analysis

Multivariable Cox regression analysis including age, sex, 
extent of resection, KPS, baseline steroid medication, 
and treatment arm as covariates confirmed obesity as an 
independent negative predictor of PFS and OS in MGMT 
methylated glioblastoma (adjusted odds ratio (aOR) for 
PFS: 1.95 (95% CI 1.21–3.14), p = 0.007; aOR for OS: 
2.57 (1.53–4.31), p < 0.001; Table 2), but not in MGMT 
unmethylated glioblastoma (aOR for PFS: 1.28 (0.78–1.87), 
p = 0.20; aOR for OS: 1.17 (0.78–1.75), p = 0.44). Sensitiv-
ity analyses restricted to IDH wildtype tumors confirmed 
these findings for both MGMT methylated glioblastoma 
(aOR for PFS: 1.78 (1.06–3.00), p = 0.029; aOR for OS: 2.43 
(1.39–4.24), p = 0.002) and MGMT unmethylated glioblas-
toma (aOR for PFS: 0.91 (0.58–1.41), p = 0.66; aOR for OS: 
1.46 (0.91–2.35), p = 0.11) [13].

Discussion

This analysis of two study cohorts provides evidence for a 
negative prognostic impact of obesity in MGMT-methylated 
glioblastoma, but not in MGMT-unmethylated glioblastoma.

We have previously reported that in elderly and frail 
patients with glioblastoma (median age 72, range 65–86); 

Table 1   Baseline characteristics

Values represent number of patients unless indicated otherwise
BMI body mass index; CR complete resection; IQR interquartile range; n number of patients; KPS Karnofsky performance score; PR partial 
resection; SD standard deviation
*Focal radiotherapy, concomitant daily temozolomide, up to six courses of adjuvant temozolomide

All patients MGMT unmethylated MGMT methylated

Non-obese
n = 230

Obese
n = 67

p Non-obese
n = 130

Obese
n = 38

p Non-obese
n = 100

Obese
n = 29

p

BMI, median 
(IQR)

24.6 (22.7–
26.8)

32.3 (31.0–
34.2)

 < 0.001 24.5 (22.6–
27.0)

32.1 (31.0–
33.9)

 < 0.001 25.0 (22.8, 
26.8)

33.3 (31.2–
35.2)

 < 0.001

Standard treat-
ment arm*(%)

88 (38.3) 29 (43.3) 0.48 44 (33.8) 10 (26.3) 0.43 44 (44.0) 19 (65.5) 0.06

Age, mean (SD) 55.6 (10.3) 56.9 (8.7) 0.37 55.6 (10.8) 55.9 (8.4) 0.86 55.7 (9.5) 58.1 (9.1) 0.22
Male sex (%) 148 (64.3) 42 (62.7) 0.89 87 (66.9) 26 (68.4) 1.0 61 (61.0) 16 (55.2) 0.67
KPS, median 

(IQR)
90 (90–100) 90 (90–100) 0.15 90 (90–100) 90 (82.5–100) 0.22 95 (90–100) 90 (90–100) 0.42

Baseline steroid 
(%)

37 (16.1) 14 (20.9) 0.36 24 (18.5) 8 (21.1) 0.82 13 (13.0) 6 (20.7) 0.37

Extent of resec-
tion (%)

0.55 0.75 0.73

 Biopsy 6 (2.6) 0 (0) 2 (1.6) 0 (0) 4 (4.0) 0 (0)
 PR 99 (43.2) 31 (46.3) 63 (48.8) 21 (55.3) 36 (36.0) 10 (34.5)
 CR 124 (54.1) 36 (53.7) 64 (49.6) 17 (44.7) 60 (60.0) 19 (65.5)

Study = GLAR-
IUS (%)

130 (56.5) 38 (56.7) 1.00 130 (100) 38 (100) NA 0 (0) 0 (0) NA
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median KPS 80%, range 50–100), obesity was associated 
with improved survival [4]. Although these results may 
seem contradicting, they are in line with the known sur-
vival benefit of obesity in elderly [14] and frail patients 
[15] suffering from different diseases such as diabetes [16], 
heart failure [17], and metastatic cancer diseases [18] among 
others. In comparison to this cohort, the study populations 
of CeTeG/NOA-09 and GLARIUS had favorable baseline 
characteristics with younger age (median 56 years), a high 

rate of complete resections (53.8%) and high KPS (median 
90%), suggesting sufficient fitness to endure the burden of 
surgery and radiochemotherapy [10, 12]. These beneficial 
features might also contribute to the observed median OS 
of 43 months for the subgroup of non-obese patients with 
MGMT methylated glioblastoma, comparing favorably to a 
recent study on the use of immune checkpoint inhibitors in 
MGMT methylated glioblastoma [19].

Fig. 1   Overall survival and progression-free survival of obese and 
non-obese patients with MGMT methylated and unmethylated glio-
blastoma. a Progression-free survival of MGMT methylated (left 
panel) and unmethylated (right panel) glioblastoma patients. b Over-

all survival of MGMT methylated (left) and unmethylated (right) 
glioblastoma patients. The number of patients at risk is given below 
each diagram. MGMT O6-methylguanine-DNA methyltranferase; OS 
overall survival; PFS progression-free survival
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The finding of a negative effect of obesity on OS, at least 
in MGMT-methylated patients, is in line with a previous 
publication showing an association of obesity with reduced 
OS in a large retrospective case–control study [9], but incon-
sistent with results from a recent meta-analysis [20]. How-
ever, studies that reported no or even a favorable associa-
tion of obesity with OS had aspects that make it difficult 
to compare their results to the findings of the GLARIUS 
and CeTeG/NOA-09 trial cohort reported here: Jones et al. 
included patients from 1991 to 2008 who mostly did not 
receive first-line chemotherapy [7], and three other studies 
mostly included patients with inferior prognostic factors 
such as low KPS and/or low complete resection rates [3, 
5, 8]. One study that found a positive correlation of obesity 
and OS is difficult to interpret since obese and non-obese 
patients were imbalanced regarding percentage of complete 
resections (68.8% vs. 55.2%) and female patients (66% vs. 
35%) [6]. Female sex may be a favorable prognostic factor 
that was not included in univariate and multivariate analy-
ses [21]. Considering all available data, the best hypothesis 
regarding the association of obesity and OS would be that 
in patients with inferior prognostic factors such as compa-
rably low performance status and even more in elderly and 
frail patients, obesity may have a positive impact, while in 
patients with favorable prognostic factors (e.g. populations 
in clinical trials) obesity may be a negative prognostic factor, 
especially in the context of effective, survival-prolonging 
chemotherapy. The survival benefit of obesity in oncology, 

termed obesity paradox, might be explained by the inad-
equacy of BMI to measure body fat in cancer patients under-
going weight changes, as it does not distinguish adipose 
and muscle tissue [22]. Indeed, skeletal muscle status is an 
independent prognostic parameter in glioblastoma [20, 23], 
and obese patients have on average higher levels of muscle. 
Therefore, the obesity paradox might be most significant in 
elderly, frail or dependent patients, where sarcopenia is fre-
quent. On the other hand, it is absent in our trial cohort (with 
comparably favorable prognostic factors), resulting from the 
assumed relative absence of sarcopenia, and potentially det-
rimental effects of adipose tissue on glioblastoma treatment 
might be demasked. Future studies considering body compo-
sition might contribute to solving this interesting dichotomy.

The mechanistic link between survival and obesity 
remains elusive, as no death was related to obesity itself 
in the CeTeG/NOA-09 trial (unknown: 2 cases). Obesity is 
linked to reduced glucose sensitivity and increased blood 
glucose levels, a known risk factor in glioblastoma [24, 25]. 
HbA1c and glucose levels were not available in our cohorts, 
but previous data suggests an independent prognostic effect 
of diabetes mellitus and obesity [8, 9]. Recently, an obesity-
inducing high-fat diet was described to promote aggressive 
disease with shortened survival via intracerebral fat accumu-
lation and impaired hydrogen sulfide production leading to 
increased proliferation and chemotherapy resistance in glio-
blastoma [26]. Furthermore, obesity is inversely correlated 

Table 2   Multivariate analysis identifies obesity as a negative predictor for overall and progression-free survival in MGMT methylated newly-
diagnosed glioblastoma

CI confidence interval; CCNU lomustine; IDH isocitrate dehydrogenase; KPS Karnofsky performance score, OS overall survival; PFS progres-
sion-free survival; TMZ temozolomide

OS Adjusted odds ratio 95% CI p

Obese (vs. non-obese) 2.57 1.53–4.31  < 0.001
Partial resection (vs. biopsy) 0.96 0.25–3.62 0.10
Complete resection (vs. biopsy) 0.76 0.22–2.70 0.67
KPS (per 10% increment) 0.76 0.56–1.01 0.06
Age (per year increment) 1.03 1.00–1.06 0.03
Baseline steroid medication 1.15 0.62–2.14 0.64
Male sex (vs. female) 1.17 0.71–1.92 0.53
TMZ arm (vs. CCNU/TMZ) 0.84 0.51–1.38 0.49

PFS Adjusted odds ratio 95% CI p

Obese (vs. non-obese) 1.95 1.21–3.14 0.007
Partial resection (vs. biopsy) 0.54 0.16–1.85 0.33
Complete resection (vs. biopsy) 0.41 0.13–1.33 0.14
KPS (per 10% increment) 9.83 0.65–1.04 0.11
Age (per year increment) 1.02 0.99–1.04 0.10
Baseline steroid medication 0.87 0.47–1.57 0.64
Male sex (vs. female) 0.98 0.64–1.49 0.91
TMZ arm (vs. CCNU/TMZ) 0.83 0.54–1.28 0.40
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with socioeconomic status, a known prognostic factor for 
survival in glioblastoma [27, 28].

Of note, obesity was associated with shorter survival 
in MGMT methylated, but not in MGMT unmethylated 
tumors. While it is possible that the shorter overall survival 
in MGMT unmethylated tumors impeded detection of a 
survival difference between obese and non-obese patients, 
an alternative mechanistic hypothesis seems promising: 
MGMT promoter methylation reduces MGMT expression, 
an enzyme removing alkyl groups from the O6 position of 
guanine [29]. These lesions trigger cytotoxicity and apop-
tosis in a process requiring a functioning mismatch repair 
pathway and DNA damage signaling by ATR and ATM 
[29]. Elevated fatty acid levels were reported to compro-
mise the induction of p21 downstream of ATM [30], which 
is required for temozolomide sensitivity [31]. Similarly, 
increased levels of free fatty acids lead to mitochondrial 
DNA damage culminating in cellular apoptosis induction 
[32, 33]. A recent study revealed that the combinatory treat-
ment with the glycolytic inhibitor dichloracetate and the par-
tial fatty acid oxidation inhibitor ranolazine yielded reduced 
colony forming activity and apoptosis of glioblastoma cells 
in vitro [31]. Murine in vivo experiments under this combi-
nation treatment resulted in increased median survival [34], 
supporting the proposed mechanistic link to reflect an intra-
tumoral cellular effect. Thus, elevated fatty acid levels in 
obese patients might compromise the therapeutic response 
to alkylating chemotherapy in MGMT methylated glioblas-
toma. In MGMT unmethylated glioblastoma, on the other 
hand, the benefit of temozolomide is at best limited, render-
ing this effect negligible [35].

Conclusions

We conclude that obesity might be a prognostic marker 
in newly diagnosed MGMT-methylated but not MGMT-
unmethylated glioblastoma. If confirmed by further anal-
yses, it might inform patient stratification in future tri-
als and enable individual prognostication and informed 
decision-making.
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