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Graphical Abstract

Proposed mechanisms by which SGLT2-induced non-hypoxia-related cellular signaling might trigger erythropoietin synthesis by the kidney or liver. 
SGLT2 inhibitors activate nutrient deprivation cellular signaling, thus muting cellular stress and proinflammatory pathways. Up-regulation of sirtuin-1 
(SIRT1) and heme oxygenase-1 may underlie these effects. The resulting reduction in inflammation-sensitive expression of hepcidin and ferritin in
creases the availability of bioreactive ferrous iron, which can stimulate expression of hypoxia-inducible factor-2α (HIF-2α) in the liver and kidney. 
Hypoxia-inducible factor-2α expression can be directly enhanced by up-regulation of SIRT1 and potentially by changes in hepcidin and heme oxy
genase-1. In parallel with these events, SIRT1 activation may promote the hepatic formation of a PGC-1α–HNF4 complex, which can bind to the 
promoter region of the erythropoietin gene in a manner similar to HIF-2α, thus enhancing the transcription of erythropoietin in the liver. Dotted 
lines show effects demonstrated in tissues other than the liver or kidney, and not fully evaluated in hepatic or renal cells. HNF4, hepatocyte nuclear  
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factor 4; PGC-1α, peroxisome proliferator-activated receptor-γ coactivator-1α; SGLT2, sodium–glucose cotransporter 2; HIF-2α, hypoxia-inducible 
factor-2α; SIRT1, sirtuin-1.

Abstract

Sodium–glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of major heart failure events, an action that is statistically linked to enhanced 
erythropoiesis, suggesting that stimulation of erythropoietin and cardioprotection are related to a shared mechanism. Four hypotheses have been 
proposed to explain how these drugs increase erythropoietin production: (i) renal cortical reoxygenation with rejuvenation of erythropoietin-pro
ducing cells; (ii) counterregulatory distal sodium reabsorption leading to increased tubular workload and oxygen consumption, and thus, to localized 
hypoxia; (iii) increased iron mobilization as a stimulus of hypoxia-inducible factor-2α (HIF-2α)-mediated erythropoietin synthesis; and (iv) direct HIF- 
2α activation and enhanced erythropoietin gene transcription due to increased sirtuin-1 (SIRT1) signaling. The first two hypotheses assume that the 
source of increased erythropoietin is the interstitial fibroblast-like cells in the deep renal cortex. However, SGLT2 inhibitors do not alter regional 
tissue oxygen tension in the non-diabetic kidney, and renal erythropoietin synthesis is markedly impaired in patients with anemia due to chronic 
kidney disease, and yet, SGLT2 inhibitors produce an unattenuated erythrocytic response in these patients. This observation raises the possibility 
that the liver contributes to the production of erythropoietin during SGLT2 inhibition. Hypoxia-inducible factor-2α and erythropoietin are coex
pressed not only in the kidney but also in hepatocytes; the liver is a major site of production when erythropoietin stimulation is maintained for 
prolonged periods. The ability of SGLT2 inhibitors to improve iron mobilization by derepressing hepcidin and ferritin would be expected to increase 
cytosolic ferrous iron, which might stimulate HIF-2α expression in both the kidney and liver through the action of iron regulatory protein 
1. Alternatively, the established ability of SGLT2 inhibitors to enhance SIRT1 might be the mechanism of enhanced erythropoietin production 
with these drugs. In hepatic cell lines, SIRT1 can directly activate HIF-2α by deacetylation, and additionally, through an effect of SIRT in the liver, 
peroxisome proliferator-activated receptor-γ coactivator-1α binds to hepatic nuclear factor 4 to promote transcription of the erythropoietin 
gene and synthesis of erythropoietin. Since SIRT1 up-regulation exerts direct cytoprotective effects on the heart and stimulates erythropoietin, 
it is well-positioned to represent the shared mechanism that links erythropoiesis to cardioprotection during SGLT2 inhibition.

Keywords SGLT2 inhibitors • Erythropoietin • Erythropoiesis

Sodium–glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of 
cardiovascular death and hospitalizations for heart failure in patients 
with type 2 diabetes, chronic kidney, or chronic heart failure with a re
duced or preserved ejection fraction.1,2 This benefit appears to be re
lated to a direct action of these drugs on cardiomyocytes to enhance 
nutrient deprivation signaling and promote autophagic flux, thus redu
cing oxidative (and other cellular) stress and improving cellular survival 
in diverse injuries, including those induced by hyperglycemia, ischemia, 
pressure overload and cardiotoxic agents.3,4 Sodium–glucose cotran
sporter 2 inhibitors exert cardioprotective effects in isolated cardio
myocytes (which do not express SGLT2) and ex vivo hearts 
independent of changes in environmental glucose, ketone bodies, or 
oxygen or neurohormonal influences as well as in animals in which 
SGLT2 has been knocked out.5 Abrogation of the effects of SGLT2 in
hibitors on autophagic pathways and interference with their signaling 
through sirtuins and adenosine monophosphate-activated protein ki
nase (AMPK) abolishes the actions of these drugs to reduce cellular 
stress and improve cellular viability.3 Proteomic analyses have shown 
that SGLT2 inhibition leads to up-regulation of proteins that have an 
established role in promoting autophagy and reducing oxidative stress 
and cell death.6

Sodium–glucose cotransporter 2 
inhibitor-mediated stimulation of 
erythropoiesis
In light of these observations, it is noteworthy that SGLT2 inhibitors 
exert a consistent effect to increase hemoglobin and hematocrit in 
randomized controlled trials. Although originally ascribed to an effect 
to produce hemoconcentration as a result of natriuresis and plasma 

volume contraction, the effect of SGLT2 inhibitors to increase urinary 
sodium excretion and reduce plasma volume is transient,7,8 and 
changes in body weight produced by these drugs are generally related 
to the urinary loss of calories.9 Instead, increases in hemoglobin seen 
during SGLT2 inhibition are related to an enhanced production of 
erythropoietin and reticulocytosis and an expansion of red blood 
cell mass.10–12 A marked increase in erythropoietin occurs rapidly fol
lowing initiation of treatment, and then partially subsides during long- 
term therapy,11–13 as a new set point for the equilibrium between 
erythropoietin and a higher hemoglobin is established.14 If this feed
back mechanism were not to occur, SGLT2 inhibitors would produce 
severe polycythemia.

Does the erythrocytosis produced by SGLT2 inhibitors contribute to 
their ability to reduce major heart failure events? Some have proposed 
that the erythrocytosis produced by these drugs might increase the deliv
ery of oxygen to the heart, but there is no experimental or clinical evidence 
to support this hypothesis, either in patients with or without anemia. 
Other therapeutic approaches that increase hemoglobin in anemic pa
tients (e.g. erythropoiesis-stimulating agents or prolyl hydroxylase inhibi
tors) do not reduce (and may increase) the risk of cardiovascular events, 
when given to patients with underlying heart or kidney disease.15,16

Although statistical mediation analyses have identified short-term increases 
in hemoglobin as a correlate of the benefit of SGLT2 inhibitors to reduce 
heart failure events,17–19 mediation analyses do not demonstrate that ery
throcytosis causes cardioprotection. Instead, they indicate that erythrocy
tosis and the heart failure benefits produced by these drugs are related to a 
shared mechanism. Therefore, exploration of the mechanisms that are re
sponsible for the increased erythropoietin may provide important insights 
as to the identity of a common pathway for the increases in hemoglobin 
and the decreased risk of heart failure events.
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Regulation of erythropoietin production in 
the kidney and liver
During fetal development, the major site of erythropoietin production 
is the liver,19,20 whereas in adults, erythropoietin is largely synthesized 
by peritubular fibroblast-like type-1 interstitial cells, located primarily in 
the deep renal cortex;21–23 at both sites, erythropoietin production is 
exquisitely sensitive to tissue oxygen tension. A major difference be
tween erythropoietin production in the kidney and liver is that hepato
cytes can increase synthesis at a cellular level, whereas in the kidney, 
increased erythropoietin synthesis is achieved by proliferation of the 
peritubular fibroblast-like type-1 interstitial cells, each producing a fixed 
quantity of erythropoietin messenger RNA.20

In both the kidney and the liver, the major stimulus to the production 
of erythropoietin is hypoxia-inducible factor-2α (HIF-2α), which is expressed 
in the same cells that manufacture erythropoietin.24,25 Coexpression of 
HIF-2α links erythropoietin synthesis to oxygen levels, since HIF-2α is de
graded by prolyl hydroxylases that are stabilized by ambient levels of oxy
gen.26 In addition, hepatocyte nuclear factor 4 (HNF4), which is also 
oxygen-sensitive, promotes transcription of the erythropoietin gene and 
may maintain tissue specificity of erythropoietin expression.27,28

With the onset of anemia and in the absence of kidney disease, the 
proliferation of interstitial cells extends the production of erythro
poietin throughout the entire renal cortex.22 However, during the 
evolution and progression of chronic kidney disease, the interstitial 
cells are transformed into myofibroblasts that can no longer synthe
size erythropoietin, but they can drive the development of renal 
fibrosis.29–31 Hepatic production of erythropoietin contributes im
portantly to systemic levels, if renal sources are impaired or if its syn
thesis is markedly stimulated, genetically or pharmacologically, for 
long periods.19,32,33 During prolonged stimulated erythropoiesis in 
animals with normal renal function32 or during prolyl hydroxylase in
hibition for the treatment of anemia in patients with chronic kidney 
disease, the liver emerges as the primary site of erythropoietin 
production.33–36 It is not known if the heightened synthesis of 
erythropoietin during SGLT2 inhibition is primarily renal or hepatic, 
especially during long-term therapy. However, it is noteworthy that 
the magnitude of erythrocytosis during SGLT2 inhibition is not atte
nuated in patients with estimated glomerular filtration rates <45 mL/ 
min/1.73 m2 or in patients who have anemia of chronic kidney dis
ease.37,38 Since the renal synthesis of erythropoietin in these patients 
is severely compromised,29–31 it seems likely that the liver contri
butes importantly to the synthesis of erythropoietin seen during 
SGLT2 inhibition.

Why do sodium–glucose cotransporter 2 
inhibitors stimulate the production of 
erythropoietin?
Four hypotheses have been proposed to explain how these drugs 
might increase erythropoietin production: (i) renal cortical reoxy
genation with rejuvenation of interstitial cells; (ii) counterregulatory 
distal sodium reabsorption leading to increased tubular workload 
and renal deep cortical and medullary hypoxia; (iii) increased iron 
mobilization as an inducer of HIF-2α-mediated erythropoietin syn
thesis; and (iv) HIF-2α activation and increased erythropoietin 
gene transcription due to increased nutrient deprivation signaling. 
This article reviews the merits and limitations of these four hypoth
eses (Table 1).

Sodium–glucose cotransporter 2 inhibitor-induced 
renal cortical reoxygenation with rejuvenation of 
hypoxic interstitial fibroblast-like cells is the stimulus 
to erythropoietin
Sano and Goto39 proposed that increased glucose reabsorption places 
a metabolic burden on the proximal renal tubules, causing tubulointer
stitial hypoxia. This hypoxic injury was hypothesized to cause the spe
cialized interstitial fibroblast-like cells in the renal cortex to undergo 
transformation into dysfunctional myofibroblasts, which would be in
capable of erythropoietin production, but promote renal fibrosis.29,30

Hypothetically, inhibition of glucose reabsorption by SGLT2 inhibitors 
would alleviate the metabolic demands on the proximal tubules and re
duce oxygen consumption, thus improving oxygenation in the renal 
cortex and potentially allowing dysfunctional fibroblasts to revert to 
a phenotype that which would be capable of erythropoietin synthesis 
(Figure 1).40

Yet, the available evidence does not support the ‘renal cortical reox
ygenation’ hypothesis. Inhibition of glucose reabsorption by SGLT2 in
hibitors has been reported to improve oxygenation in the renal 
cortex,41 but this study used qualitative staining methods, and its find
ings have not been confirmed by quantitative methods (i.e. microelec
trodes or magnetic resonance imaging).42,43 Furthermore, the 
reversibility of interstitial fibroblast-like cell dysfunction is uncertain; 
stimulation of erythropoietin production in experimental renal fibrosis 
is localized to non-injured nephron segments, without evidence of re
version of differentiated myofibroblasts.31 Importantly, acetazolamide 
improves oxygenation of the superficial renal cortex due to inhibition 
of proximal tubular sodium reabsorption,44 but the drug does not pro
mote erythropoiesis. Finally, any increase in oxygen tension in the deep 
renal cortex following SGLT2 inhibition would be expected to suppress 
(not activate) HIF-2α signaling and the synthesis of erythropoietin.24

Sodium–glucose cotransporter 2 inhibitor-mediated 
induction of renal hypoxia at the corticomedullary 
junction is the stimulus to the interstitial 
fibroblast-like cells that produce erythropoietin
The action of SGLT2 inhibitors to block sodium reabsorption in the 
proximal renal tubule leads to increased delivery of sodium to more dis
tal portions of the nephron, where it is absorbed by counterregulatory 
mechanisms that are activated to limit the magnitude of natriuresis. 
These mechanisms include the reabsorption of sodium and solutes in 
the S3 segment of the proximal tubule, activation of Na,K,2Cl− cotran
sporter in the loop of Henle, and enhanced activity of the apical Na–Cl 
cotransporter in the distal convoluted tubule.5,45,46 Increased sodium 
reabsorption in the S3 segment and loop of Henle would be expected 
to increase oxygen consumption in the deep cortex and outer medulla, 
respectively. Modeling studies have predicted that acute and chronic 
SGLT2 inhibition might be particularly likely to increase oxygen con
sumption and predispose to tissue hypoxia in the S3 segment,47 poten
tially in close proximity to the specialized interstitial fibroblast-like cells 
in the deep cortex, especially if oxygen diffuses poorly through the renal 
parenchyma.48 Experimental studies have noted that SGLT2 inhib
ition reduced oxygen tension in the deep cortex and outer medulla 
in diabetic rats,41 changes that were accompanied by increased renal 
erythropoietin mRNA levels and reticulocytosis. Interestingly, 
inhibition of both SGLT1 and SGLT2 delivered additional solutes 
to segments beyond S3, possibly leading to hypoxia in the inner 
medulla (Figure 1).49
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Despite these observations, the available evidence does not provide 
substantial support to the ‘renal corticomedullary hypoxia’ hypothesis 
as a mechanism of increased erythropoietin production. In experimen
tal and clinical studies of renal oxygenation, SGLT2 inhibition produced 
hypoxia in the deep cortex and outer medulla in diabetic subjects, but 
intriguingly, not in those without diabetes;42 yet, patients without dia
betes still manifest a robust erythrocytosis following SGLT2 inhib
ition.50,51 Furthermore, acetazolamide blocks sodium reabsorption in 
the S2 segment52,53 and increases sodium delivery to the S3 segment 
(with the potential for tubular hypoxia), and yet, the drug does not in
duce an increase in hematocrit. Increased sodium delivery and tubular 
workload at the loop of Henle leading to outer medullary hypoxia can
not explain the increase in erythropoiesis, since the increased tubular 
workload and oxygen consumption would be blocked by loop diure
tics;44 yet, patients with heart failure prescribed loop diuretics still mani
fest a strong erythropoietic response.54 Moreover, although blockade 
of SGLT1 should alleviate the hypoxia in the S3 segment,55 dual 
SGLT1 and SGLT2 inhibition does not produce a potentiated 

erythrocytosis, as compared with selective SGLT2 inhibitors.56 Most 
importantly, SGLT2 inhibitors produce a robust increase in hematocrit 
in patients with stage 3b/4 chronic kidney disease and in patients with 
renal anemia,37,38 even though these patients manifest a diminished dis
tal tubular sodium delivery due to glomerular hypofiltration,57 and they 
manifest a severe impairment of renal synthesis of erythropoietin,29–31

rebutting the possibility that SGLT2 inhibitors enhance renal erythro
poietin production as a result of increased corticomedullary tubular 
workload.

Sodium–glucose cotransporter 2 inhibitor-mediated 
iron mobilization promotes hypoxia-inducible 
factor-2α signaling in the kidney and liver
Many of the disease states that are treated with SGLT2 inhibitors are 
characterized by anemia of chronic disease, a chronic inflammatory 
state that is characterized by increased levels of two major iron regula
tory proteins—hepcidin and ferritin.58,59 Increases in the synthesis of 
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Table 1 Potential mechanisms mediating enhanced erythropoietin production during SGLT2 inhibition

Hypothesis Proposed mechanism Supporting observations Limitations and concerns

Renal cortical reoxygenation with 
rejuvenation of 
erythropoietin-producing cells

SGLT2 inhibitors reduce sodium and 
glucose transport and oxygen 

consumption in the proximal tube, 
potentially alleviating hypoxia in the 

superficial cortex

Improved renal cortical oxygenation 
using qualitative staining methods

SGLT2 inhibitors do not influence 
cortical oxygen tension using 

quantitative methods. 
Acetazolamide inhibits proximal 
tubular function (akin to SGLT2 
inhibitors), but does not induce 
erythrocytosis. Up-regulation of 

sodium reabsorption in distal 
convoluted tubule would be 
expected to aggravate (not 
alleviate) cortical hypoxia

Increased distal tubular workload, 
leading to hypoxia at the 
corticomedullary junction

Counterregulatory increased distal 
sodium reabsorption and workload at 

S3 segment, and loop of Henle 
increases oxygen consumption and 

causes hypoxia in the deep cortex and 
outer medulla, which stimulates 
interstitial fibroblast-like 1 cells

SGLT2 inhibition has been reported to 
reduce oxygen tension in deep cortex 

and outer medulla in diabetic mice

No evidence for renal hypoxia 
following SGLT2 inhibition in 

non-diabetic animals or humans. 
Drug-induced interference with 
distal sodium reabsorption does 

not influence erythrocytosis. 
SGLT2 inhibitors induce 

erythrocytic response in patients 
with marked impairment of renal 

interstitial fibroblast-like cell 
function

Increased iron mobilization, 
triggering enhanced HIF-2α 
signaling

SGLT2 inhibition acts to derepress 
hepcidin and ferritin (and increase 

heme oxygenase-1), thus promoting 
increased iron availability in the cytosol

IRP1 acts a sensor of cytosolic ferrous 
iron and can modulate expression of 

HIF-2α mRNA in the liver and kidney in 
an oxygen-independent manner

No study has evaluated the effect 
of SGLT2 inhibitors on IRP1 

expression

SIRT1 up-regulation, triggering 
enhanced HIF-2α signaling or 
erythropoietin gene 
transcription

Up-regulation of SIRT1 by SGLT2 
inhibition acts to stimulate the activity 
of both HIF-2α and erythropoietin in an 

oxygen-independent manner

Sirtuin-1 has been shown to mediate 
the cellular benefits of SGLT2 

inhibition. SIRT1 can activate HIF-2α 
directly (or through heme 

oxygenase-1) or can promote 
transcription of erythropoietin gene 
through formation of a complex with 

PGC-1α and HNF4

No studies have evaluated 
whether SGLT2 inhibitors 

increase activity of HIF-2α and 
HNF4 in the liver or kidney

HNF4, hepatocyte nuclear factor 4; HIF-2α, hypoxia-inducible factor-2α; IRP1, iron regulatory protein 1; SGLT2, sodium glucose cotransporter 2; SIRT1, sirtuin-1.
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hepcidin by the liver block the absorption of iron from the duodenum 
and the release of iron from the reticuloendothelial system.60 Increases 
in ferritin in heme-producing cells result in the sequestration of ferrous 
iron in an intracellular nanocage, preventing its release into the cyto
sol.61 Increases in hepcidin and ferritin are responsible for the develop
ment of a state of functional iron deficiency in patients with type 2 
diabetes, chronic kidney disease, and chronic heart failure, in the face 
of adequate total body iron stores.62–64

Sodium–glucose cotransporter 2 inhibitors reduce serum hepcidin 
and ferritin in both type 2 diabetes and chronic heart failure, thus acting 
to potentially alleviate the functional iron deficiency.65–67 In part, the 
changes in hepcidin might be related to stimulation of erythropoiesis, 
which can suppress hepcidin through an effect of erythroferrone that 
is released from proliferating erythroid precursors;68,69 however, ob
servations concerning an effect of SGLT2 inhibitors on erythroferrone 
are inconsistent,10,65 and suppression of erythroferrone would not be 
expected to lower ferritin levels.70 Therefore, it seems more likely that 
decreases in hepcidin and ferritin with SGLT2 inhibitors are related to 
their actions to mute inflammation (Graphical Abstract).64 The anti- 
inflammatory effects of these drugs may be related to enhanced nutri
ent deprivation signaling, to activation of heme oxygenase-1, or by a 
direct effect on intracellular proinflammatory signaling pathways.3,71,72

Regardless of the mechanism, decreases in hepcidin and ferritin 
would lead to heightened release of iron from macrophage and intra
cellular storage sites, respectively, Furthermore, activation of heme 
oxygenase-1 by SGLT2 inhibitors promotes the degradation of heme, 
further increasing the release of iron into the cytosol.71 The combined 
effect of these cellular events would improve iron mobilization into 
erythroid precursors (thereby facilitating hemoglobin production) 
and into cardiomyocytes (thereby facilitating ATP production).4 This 
conceptual framework may explain why SGLT2 inhibitors promote 
myocardial iron repletion by cardiac magnetic resonance, although 

the method quantifies tissue iron content rather than cytosolic iron le
vels.73 Alleviation of a cytosolic iron deficiency state by SGLT2 inhibi
tors may explain why patients with the most significant iron 
deficiency prior to treatment appear to experience the greatest benefit 
from these drugs with respect to the reduction in heart failure events.67

Interestingly, by enhancing the levels of cytosolic iron, SGLT2 inhibi
tors are poised to influence the expression of proteins that are respon
sive to iron availability and are linked directly to HIF-2α-mediated 
erythropoietin production. Drug-induced decreases in hepatic hepcidin 
promote up-regulation of HIF-2α in enterocytes and potentially the li
ver;74,75 the mechanism involves enhancement of ferroportin and sub
sequent inhibition of the prolyl hydroxylases that degrade HIF-2α.74–76

Up-regulation of heme oxygenase-1 may also contribute to enhance 
hypoxia-inducible factor signaling.77,78 Perhaps most importantly, the 
primary mechanisms of intracellular iron sensing are the iron-regulatory 
proteins, IRP1 and IRP2, and SGLT2 inhibitor-mediated increases in 
cytosolic ion would be expected to suppress the expression of IRP1, 
thereby increasing the expression of HIF-2α mRNA in both the kidney 
and liver (Graphical Abstract).79–81 Iron chelation suppresses cytosolic 
iron, and thus, HIF-2α transcriptional activity and protein expression.82

Studies of the effect of SGLT2 inhibitors on IRP1 are needed to confirm 
this hypothesis.

Sodium–glucose cotransporter 2 inhibitor 
up-regulation of sirtuin-1 directly activates 
hypoxia-inducible factor-2α signaling and promotes 
erythropoietin gene transcription
Sodium–glucose cotransporter 2 inhibitors promote a state of starva
tion mimicry, which is characterized by glycosuria, gluconeogenesis, ke
togenesis and shrinkage of adipose depots at a physiological level, and 
by up-regulation of nutrient deprivation signaling at a cellular level.83

Figure 1 Proposed mechanisms by which changes in regional renal oxygenation by SGLT2 inhibitors might trigger erythropoietin synthesis by the 
kidney. The energy required for sodium transport in the renal tubules is the principal determinant of oxygen consumption, and enhanced sodium re
uptake may predispose to localized hypoxia. Changes in oxygen tension to the interstitial fibroblast-like cells at the corticomedullary junction may in
fluence viability of these cells or may decrease the activation of prolyl hydroxylases, thus enhancing the synthesis of hypoxia-inducible factor-2α 
(HIF-2α), the main driver of erythropoietin synthesis. SGLT2, sodium–glucose cotransporter 2.
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When cells perceive that they are deprived of nutrients, they activate 
numerous master switches that prioritize cellular health and survival 
over cellular growth and replication.84 These cellular switches act to 
promote cellular housekeeping through enhanced autophagic flux; to 
reduce oxidative and endoplasmic reticulum stress; to mute proinflam
matory and profibrotic pathways; and to improve cellular homeostasis 
and viability.85 The nutrient deprivation signals that are most relevant to 
the action of SGLT2 inhibitors are sirtuin-1 (SIRT1), sirtuin-3 (SIRT3), 
AMPK and peroxisome proliferator-activated receptor-γ coactivator- 
1α (PGC-1α).3 The induction of glycosuria (and urinary caloric loss) 
stimulates the production of SIRT1 in the liver.86

Numerous experimental studies have demonstrated that SGLT2 
inhibitors exert direct cardioprotective effects on the heart, which 
are accompanied by increased phosphorylation of AMPK and increased 
expression of SIRT1, SIRT3, and PGC-1α.3,4 Inhibition or genetic silen
cing of AMPK, SIRT1, and SIRT3 abolishes the favorable effects of 
SGLT2 inhibitors to inhibit cellular stress and inflammation.3 Sodium– 
glucose cotransporter 2 inhibitors act directly to up-regulate nutrient 
deprivation signaling even though SGLT2 is not expressed in the healthy 
or failing heart. Possible mechanisms include direct docking of these 
drugs with target proteins, an effect on other glucose transporters or 
an effect mediated through ketone bodies acting as signaling 
molecules.3

To exert their effects to maintain cellular homeostasis, SIRT1 and 
AMPK act as cellular energy sensors. The activity of SIRT1 is dependent 
on the levels of NAD+ (the oxidized form of nicotinamide adenine di
nucleotide), and thus, is activated during low-energy states that are 
characterized by high cellular levels of NAD+.87 AMPK senses the ratio 
of AMP to ATP, and when supplies of ATP are limited, AMPK is phos
phorylated, leading to activation of SIRT1.88 Additionally, SIRT1 is up- 
regulated during states of glucose deprivation, and it acts to maintain 
blood glucose, primarily by interacting with PGC-1α in the liver to pro
mote hepatic gluconeogenesis.87,89,90 In furtherance of its function as an 
energy sensor, SIRT1 is also activated by hypoxia,91 thereby providing a 
mechanistic link by which SIRT1 might function to promote the synthe
sis of erythropoietin.92

In fact, in an immortalized hepatic cell line, SIRT1 has been shown to 
directly activate HIF-2α by virtue of its action to deacetylate specific ly
sine residues.93,94 Additionally, SIRT1 can promote the expression of 
heme oxygenase-195 and its downstream effects on hypoxia-inducible 
factor signaling,77,78 and the anti-inflammatory actions of SIRT1 signaling 
can suppress hepcidin.96 Most importantly, when SGLT2 inhibitors acti
vate SIRT1 in the liver,86 SIRT1 deacetylates PGC-1α to promote hepatic 
gluconeogenesis, a metabolic event that requires the formation of a com
plex between PGC-1α and HNF4.97,98 Hepatocyte nuclear factor 4 func
tions as an oxygen sensor and binds to the promoter and 3′ enhancer 
region of the erythropoietin gene to stimulate erythropoietin transcrip
tion in hepatocytes27,28,98,99 and may be the primary driver of hepatic 
erythropoietin synthesis during fetal development.100 Therefore, as a re
sult of up-regulation of hepatic SIRT1, SGLT2 inhibitors are well- 
positioned to promote the production of erythropoietin by the liver.

These observations, taken collectively, indicate that SGLT2 
inhibitors—acting through several mechanisms mediated through 
SIRT1—might be able to directly activate HIF-2α and HNF4 and pro
mote erythropoietin gene transcription, independent of hypoxia or 
the action of prolyl hydroxylases (Graphical Abstract). Additional studies 
are needed to confirm or refute this hypothesis. Although SGLT2 inhi
bitors have been reported to up-regulate HIF-2α in the heart;72 their 
effect on the activity of HIF-2α and HNF4 in the liver and kidney has 
not yet been studied.

Summary and conclusions
Understanding the mechanisms of enhanced erythropoietin production 
may provide important insights into the pathways that mediate the car
dioprotective effects of SGLT2 inhibitors. The available evidence does 
not support the hypothesis that drug-mediated changes in renal tubular 
workload and oxygen consumption are likely to trigger hypoxia- 
mediated increases in erythropoietin production by interstitial 
fibroblast-like 1 cells in the deep cortex and outer medulla of the kid
ney. Instead, it seems likely that the action of SGLT2 inhibitors to up- 
regulate signaling through SIRT1 may directly or indirectly up-regulate 
HIF-2α and/or HNF4 to promote transcription of the erythropoietin 
gene, particularly in the liver. Hepatic synthesis may be particularly im
portant during long-term therapy and in patients with chronic kidney 
disease and anemia in whom interstitial fibroblast-like 1 cells are severe
ly compromised, but who nevertheless show an unattenuated erythro
cytic response to SGLT2 inhibitors. Since SIRT1 up-regulation exerts 
direct cardioprotective effects and stimulates erythropoietin, it may re
present the shared mechanism that links erythropoiesis to the heart 
failure benefits of SGLT2 inhibition.
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