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Abstract
The processing of a visual stimulus can be subdivided into a number of stages. Upon stimu-

lus presentation there is an early phase of feedforward processing where the visual informa-

tion is propagated from lower to higher visual areas for the extraction of basic and complex

stimulus features. This is followed by a later phase where horizontal connections within

areas and feedback connections from higher areas back to lower areas come into play. In

this later phase, image elements that are behaviorally relevant are grouped by Gestalt

grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based

attention in psychology). Recent neurophysiological studies revealed that reward-based

learning influences these recurrent grouping processes, but it is not well understood how

rewards train recurrent circuits for perceptual organization. This paper examines the mech-

anisms for reward-based learning of new grouping rules. We derive a learning rule that can

explain how rewards influence the information flow through feedforward, horizontal and

feedback connections. We illustrate the efficiency with two tasks that have been used to

study the neuronal correlates of perceptual organization in early visual cortex. The first task

is called contour-integration and demands the integration of collinear contour elements into

an elongated curve. We show how reward-based learning causes an enhancement of the

representation of the to-be-grouped elements at early levels of a recurrent neural network,

just as is observed in the visual cortex of monkeys. The second task is curve-tracing where

the aim is to determine the endpoint of an elongated curve composed of connected image

elements. If trained with the new learning rule, neural networks learn to propagate

enhanced activity over the curve, in accordance with neurophysiological data. We close the

paper with a number of model predictions that can be tested in future neurophysiological

and computational studies.
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Author Summary

Our experience with the visual world allows us to group image elements that belong to the
same perceptual object and to segregate them from other objects and the background. If
subjects learn to group contour elements, this experience influences neuronal activity in
early visual cortical areas, including the primary visual cortex (V1). Learning presumably
depends on alterations in the pattern of connections within and between areas of the visual
cortex. However, the processes that control changes in connectivity are not well under-
stood. Here we present the first computational model that can train a neural network to
integrate collinear contour elements into elongated curves and to trace a curve through the
visual field. The new learning algorithm trains fully recurrent neural networks, provided
the connectivity causes the networks to reach a stable state. The model reproduces the
behavioral performance of monkeys trained in these tasks and explains the patterns of
neuronal activity in the visual cortex that emerge during learning, which is remarkable
because the only feedback for the model is a reward for successful trials. We discuss a
number of the model predictions that can be tested in future neuroscientific work.

Introduction
Introspectively, visual perception appears to be remarkable effortless and automatic. Our per-
ceptual world is filled with familiar objects and we do not experience many difficulties in judg-
ing where an object ends and the next one begins. The quality of image segmentation by the
human brain surpasses segmentation in computer vision, which is known to be a hard problem
[1], yet the precise mechanisms responsible for image segmentation in humans are only par-
tially understood. In the present study we aim to explore the mechanisms that allow a neural
network to learn to segment task-relevant image elements from a background of irrelevant ele-
ments. Image processing in humans and non-human primates can be subdivided in at least
two phases. Research suggests that for many tasks the first phase is dominated by feedforward
processing [2–5] (see [6, 7] for evidence for recurrent interactions in early vision). When a new
image is presented to the visual system, information is rapidly propagated from early to higher
visual areas. In this phase, the visual system extracts many elementary features such as colors,
local orientations, contrasts, motion directions in low level areas and more complex features
such as shape properties (curvature, corners) in higher areas [8]. This early processing phase
thereby produces a pattern of activity across the various areas of the visual cortex that has been
called “base representation” [8]. This early representation even includes certain object-catego-
ries such as animals or vehicles, which are detected very soon after the image has been pre-
sented [9, 10]. However, there are also many aspects of visual processing that require a more
elaborate analysis than can be achieved during the first feedforward processing phase [4, 11].
Some tasks, such as image segmentation and contour grouping, demand the evaluation of the
relations between items (spatial as well as temporal). Perceptual grouping and segmentation
processes depend on a later serial processing phase where lateral connections between neurons
in the same area and feedback connections that propagate information from higher areas back
to lower areas come into play [2–5, 12, 13]. In this second processing phase, the activity of neu-
rons in lower areas of the visual cortex is not only determined by the visual information in the
neurons’ receptive field itself, but there is an additional influence of the context given by the
activity of other neurons in the same area as well as representations in higher visual areas that
provide feedback [11]. An example task where lateral and feedback connections play a role is
contour grouping. For example, if monkeys are trained to detect a string of collinear contour
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elements [14], the neuronal responses in the primary visual cortex elicited by these elements
are stronger than the responses elicited by line elements that are not part of such a perceptual
group (Fig 1A; c.f. [14–16]). Interestingly, this contextual effect even occurs if the information
in the V1 receptive field is held constant, which implies that it depends on the lateral influences
of V1 neurons with different receptive fields and/or on feedback from higher visual areas
where receptive fields are larger [8]. In accordance with this view, the effect of grouping on V1
activity does not occur during the initial visual response but at an additional delay (Fig 1A).

Another contour grouping task that is thought to rely on feedback and lateral connectivity
is curve-tracing (Fig 1B) [8, 17–19]. In one version of this task, monkeys had to determine the
endpoint of a target curve that started at the fixation point (“FP” in Fig 1B) as target for an eye
movement, while ignoring another, distractor curve that was not connected to the fixation
point. Also in this task, the contour elements that belong to the target curve were labeled in the
visual cortex with enhanced spiking activity, and again, only after a delay relative to the initial

Fig 1. Neuronal correlates of contour integration and curve tracing in primary visual cortex (area V1). A) Contour integration task. If monkeys have
been trained to make a saccade to a pattern with a string of collinear contour elements (1, 3, 5, 7 or 9 collinear bars, left panel), the neuronal responses in V1
elicited by these elements are stronger than the responses elicited by a single line element that is not part of such a perceptual group (right panel). This
influence of colinearity on V1 activity is not present before training. The purple circle in the upper panel illustrates the V1 receptive field. Re-drawn from [15].
B) Curve-tracing task. Monkeys were trained to mentally trace a target curve (T) that is connected to a fixation point (FP) because they had to make an eye
movement to a larger red circle at the end of this curve. They had to ignore a distractor curve (D). After training in this task, V1 activity elicited by the target
curve (red response in lower panel) became stronger than that elicited by the distractor (blue response). The green circle in the upper panel shows the V1
receptive field. Adapted from [17].

doi:10.1371/journal.pcbi.1004489.g001

Reinforcement Learning of Linking and Tracing Contours in RNNs

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004489 October 23, 2015 3 / 36



visual response. The labeling of image elements with enhanced neuronal activity for grouping
them into a coherent representation has been called incremental grouping [8]. The delayed
response modulation reflects the monkeys’ belief about the stimulus [20]. It is much weaker if
the monkey fails to perceive the perceptual group [15]. Furthermore, if the monkey groups the
wrong set of image elements in his perception, this erroneous set of contour elements is labeled
with enhanced activity [17, 21].

A number of previous modeling studies have investigated how feedforward, lateral and feed-
back connections determine the response of visual cortical neurons in these contour grouping
tasks [22–25]. A key question that remains to be addressed, however, is how these grouping
operations are learned during perceptual experience, because visual experience improves the
detection and integration of image features [26–31]. That visual experience aids in image seg-
mentation and perceptual grouping also follows from the fact that these processes are more
efficient when objects are presented in their familiar orientations than when they are shown
upside down [32, 33]. Perceptual learning in the contour integration task (Fig 1A) has been
well documented in previous work. In this task, two weeks of experience greatly improve the
accuracy of monkeys in detecting collinear image elements. Importantly, this training also
increases the strength of the neuronal response modulation in V1 [14, 16]. During learning,
the only feedback that the monkeys receive about their performance is a reward when they cor-
rectly detect the string of collinear contour elements and the omission of a reward when they
fail to make the appropriate response. However, the neuronal mechanisms that underlie these
reward-based perceptual grouping improvements are not well understood. How does the visual
brain change connections between the appropriate neurons when feedback about performance
is so limited?

In the present study we build upon previous models called AGREL (Attention-Gated Rein-
forcement Learning) and AuGMEnT (Attention-Gated MEmory Tagging) that have been pro-
posed for the learning of feedforward connections from lower to higher areas in various
cognitive tasks [34–36] and extend it to recurrent neural networks. These previous learning
models proposed a three-stage mechanism for the adaptation of synaptic weights. In a first
step, feedforward processing determines a winning unit in the output layer of the network that
encodes the chosen action. In a second step, an attentional feedback (AFB) signal originating
from the winning unit assigns credit to those connections that were responsible for the chosen
action by creating synaptic tags. In the third step, a global learning signal determines the
changes of the weights of those synapses that carry the plasticity tag. This global learning signal
presumably corresponds to a neuromodulator such as dopamine, serotonin or acetylcholine
that encodes the reward-prediction error, i.e. the difference between the amount of reward that
was expected and the amount of reward that was actually received by the network [37–39].
These previous models only used attentional feedback signals originating from the output layer
(step two) to highlight task relevant synapses, but did not use feedback or lateral connections
for the labeling of image elements that belong to the same perceptual group with an enhance-
ment of neuronal firing rates (as in Fig 1). Thus the mechanisms that permit reward-based
learning in perceptual grouping tasks that rely on activity propagation through feedback and
lateral connections have remained relatively unexplored.

To address learning in tasks with recurrent networks that utilize feedforward, lateral and
feedback connections we will here propose a new learning scheme called RELEARNN (REin-
forcement LEArning in Recurrent Neural Networks) where the activity of the network depends
in a complex manner on the visual input pattern, as recurrent connections allow the recircula-
tion of activity. We will illustrate the capabilities of the new learning algorithm with the two
contour grouping tasks of Fig 1, namely contour linking and curve tracing [14, 40]. We tested
if RELEARNN can train the same neural network layout (and with the same parameters) to
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perform either task if the only feedback is a reward for correct performance and the omission
of a reward in case of an error. We also investigated whether these networks develop coding
strategies that resemble those in the visual cortex, where image elements of the same perceptual
group are labeled with enhanced neuronal activity, and if and how these groups can be read
out by higher areas to support the selection of the appropriate behavioral response. Our results
demonstrate that (1) the behavior of the neural networks during learning and the pattern of
errors is similar to that of monkeys that are trained in these tasks [14, 40], (2) the model repro-
duces the changes in neuronal firing rates and the emergence of incremental grouping during
the learning process, (3) that the labeling with enhanced neuronal activity for grouping is an
efficient code that can be used to guide behavior, and (4) that RELEARNN is a comprehensive
and powerful learning scheme, which captures fundamental aspects of synaptic plasticity in a
recurrent neural network. The model may thereby help to understand how neuromodulatory
systems that code reward-prediction errors enable the learning of complex perceptual tasks
that require the interactions between many units through feedforward, lateral and feedback
connections. RELEARNN may represent the first recurrent neural network learning scheme
that can explain the learning of both contour linking and curve tracing with a biologically plau-
sible learning scheme.

In the following, we will first describe the proposed learning algorithm and the architecture
of the neural network model that can be trained to perform the contour linking and curve trac-
ing tasks. We will then present the simulations and compare them to the behavior and neuro-
nal activity in monkeys trained on the same tasks, and will close with a comparison between
RELEARNN and previous learning models.

Models
We devised a novel learning algorithm to train recurrent networks by trial and error. In this
section, we start by a description of the network model and its units. We will then describe the
novel learning algorithm called “REinforcement LEArning in Recurrent Neural Networks”
(RELEARNN).

Model Units and Network Structure
The aim of the model is to compute the value of actions when it is presented with a visual stim-
ulus. The model contains a number of output units (Fig 2), and it aims to approximate the
value of each of the possible actions. These action values (known as Q-values [41]) are coded
by the activity of the output units. The model usually chooses the action with the highest Q, but
it will occasionally also explore other actions to promote learning. To find an appropriate bal-
ance between biological detail and mathematical tractability we chose model units with a scalar
activation value, but to not include spiking neurons in our model. The model units represent
the average activity in a cortical column with mean membrane potential p and mean firing rate
g(p). As inputs, the model units receive excitation, inhibition as well as modulatory influences
and the units, in turn, can inhibit, excite or modulate other model units. The role of the modu-
latory connections is to amplify the influence of excitatory connections, but these modulatory
connections are unable to drive the units themselves (c.f. [42–46]). Note that modulatory con-
nections have an effect that is synapse specific. Their role differs from the more global neuro-
modulatory signals like dopamine, acetylcholine or serotonine that are globally available in the
network and gate plasticity. The model units used here have proven to be versatile building
blocks of neural networks in previous studies (e.g. [47–56]). The membrane potential p
depends on the excitatory, inhibitory and modulatory inputs Iex, Iinh and Imod as follows (Fig 2,
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right):

d
dt

p ¼ �apþ ðb� pÞ � Iex � ð1þ gImodÞ � ðzþ pÞ � Iinh : ð1Þ

The decay rate of the potential of model units is controlled by α> 0, the maximal potential by
β> 0, the minimal potential by z> 0, and the parameter γ> 0 determines the impact of mod-
ulatory input. The mean spike rate r depends on the potential and is calculated as

r ¼ gðpÞ ¼
(
aþ p ; p � 0 ;

a � exp ðp=aÞ ; p < 0 ;
ð2Þ

with a = 0.001.
Because the membrane potential is bounded by β (and −z), and because the network’s aim

is to compute the action values as the activity p of the output units, we chose the reward of cor-
rectly performed trials below β and gave no reward if the model made an erroneous response.

We will now derive the learning algorithm, considering a network of N dynamically inter-
acting model units with activities pi receiving excitatory input I

inp (see Fig 2 for the general
structure of such a network, which may or may not be fully connected). Once the input has
been given, the activity circulates through the excitatory, inhibitory and modulatory connec-
tions until the network activity stabilizes (convergence to a stable state is required for the cur-
rent version of the learning algorithm). The overall dynamics are described by the following
system of coupled differential equations (same as Eq (1), but now presented in vector notation)

d
dt

p ¼ �apþ ðb� pÞ � Iex � ð1þ gImodÞ � ðzþ pÞ � Iinh : ð3Þ

The excitatory, inhibitory and modulatory inputs Iex,Iinh and Imod depend on the presynaptic

Fig 2. Left: Illustration of the network structure in its most general form, as used in the description of the
learning algorithm. Every model unit ni can excite, inhibit or modulate the activity of any other unit nj (indicated
by non-directional black connections). Units nI

i of the input layer provide input to the network but their activity
does not depend on the activity of other units in the network.Right: Amodel unit (corresponding to a cortical
column) can be excited, inhibited or modulated by other cortical columns.

doi:10.1371/journal.pcbi.1004489.g002
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firing rates and the input into the network Iinp

Iex ¼ ðWexÞT � gðpÞ þ ðWinpÞT � Iinp ; Iinh=mod ¼ ðWinh=modÞT � gðpÞ : ð4Þ

Here, α, β, γ, z� 0 and g (applied element-wise) are defined as in Eq (1) and p,I inp 2 R
N are

column vectors of the activations and inputs of each unit. The positive elementsWð�Þ
kl � 0 of

the weight matricesW(�) 2 R
N × N determine the connection strength from unit k to unit l and

Winp
kl determines the excitatory connection strength from feature k to input unit l (here prod-

ucts of two column vectors like p � I 2 R
N are defined element-wise). When the activity in the

network has converged to a stable state (usually within a few hundred iterations), the network
chooses one action based on the activation of the output units that encode the action (Q) val-
ues. We used the softmax rule to determine the probability ja of an output unit a to win the
competition between all possible actions based on their values:

φa ¼
exp ðpa=tÞP
j2O exp ðpj=tÞ

; ð5Þ

whereO is the set of all output units and τ is called a temperature parameter [41], which was
adjusted to fit the experimental data (c.f. Suppl. A in S1 Text; adjusted by grid search). We here
did not model how the softmax action selection process is implemented in the neural network,
although this has been adressed in previous work [57]. Moreover, the choice of softmax as an
action selection rule is not critical. We expect that other action selection mechanisms used in
the reinforcement literature (e.g. ε-greedy [41] or max-Bolzman [58]) will give qualitatively
similar results.

Reinforcement Learning Algorithm for Recurrent Neural Networks
(RELEARNN)
Although research in past years has increased our knowledge about the mechanisms for the
long-term modification of synaptic strength (e.g. [59, 60]), we will here focus on rather simple
rules for synaptic modification. It is convenient to subdivide the mechanisms that lead to syn-
aptic plasticity into a number of phases (c.f. [34, 35, 61]). Here we will distinguish between
three phases. Phase one starts in response to the input and ends when the network converges
to a stable state p1 and stochastically selects action a according to Eq (5). In the second phase,
the selected output unit a causes an attentional feedback signal (AFB) that propagates through
the network through a separate set of units (one per column; small circles in Fig 3) that change
their response by Δp during this phase so that their total activity becomes p1 + Δp. We call the
network of units sensitive to the AFB the “accessory network” (see below for details), which is
important for the guidance of synaptic plasticity.

Although many neurophysiological studies on the neuronal correlates of action selection
targeted frontal and parietal cortex [62, 63], more recent studies reported that some neurons in
the visual cortex are indeed also influenced by action selection, which is in accordance with the
propagation of selection signals through an accessory network [64, 65]. More generally, there is
evidence for a ubiquitous bi-directional “counter stream” interaction between higher and lower
cortical regions [66–69] also justified by theoretical considerations (e.g. the selective tuning
model for visual attention [70–72]). Furthermore, there is anatomical data to support a dichot-
omy of cortico-cortical connections. Studies from the lab of Sherman on the connectivity
between areas of mouse cortex distinguished between class I and class II connections [73, 74].
Class I connections were called “drivers” because they are thought to activate neurons. They
project from lower to higher areas but also in the opposite direction, from higher areas back to
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lower areas. Class II connections also project both in the feedforward and feedback direction,
but they differ from class I connections because they are weaker and utilize the metabotropic
glutamate receptor, involved in synaptic plasticity. It is therefore conceivable that the accessory
network might employ class II connections, while the regular network employs class I connec-
tions, although this mapping is presently still speculative.

We will assume that the strength of the connections between units in the accessory network
is similar (or proportional) to the strength of connections between the regular units (larger cir-
cles in Fig 3). This reciprocitity of regular and accessory connections is not a strong assumption
because it can also be learned [34]. As we will demonstrate below, the boost in the membrane
potential Δpl of the accessory unit l during the second phase is proportional to the influence of
a change in pl on the activity of the current winning unit p1a during the first phase. Therefore,
the AFB can be used to assign credit to those units that had an impact on the decision to take
action a. Specifically, we will show that if an increase in the activity of unit nl would increase
the activity of the winning unit p1a during the first phase, then Δpl > 0 during the second
phase. If, on the other hand, unit ni decreases p1a , this implies that Δpl < 0. The sign and mag-
nitude of Δpl can be used to guide plasticity of synapses onto unit l if the aim is to decrease or
increase p1a , i.e. to adjust the value of this action. Finally, in the third phase (c.f. Fig 3), the net-
work receives a reward if it selects the correct action, but reward is omitted otherwise.

The output units of the network aim to represent the expected value if their action is chosen
in the current sensory state (c.f. [35, 75]). Neurons in the frontal cortex, basal ganglia and mid-
brain are known to code for action values [76, 77], i.e. their activity appears to approximate the
so-called Q-value, defined as the expected return % when choosing action a in state s (c.f. [41];
note that rewards are often delayed; see discussion for extensions that deal with delayed
rewards)

Qa ¼ Epf%js; ag : ð6Þ

Fig 3. Illustration of the learning phases. Each regular unit (large circles) is accompanied by an accessory unit (small circles), which are hypothesized to
be situated in the same cortical column. In phase 1, the sensory input leads to a stable state p1 of the regular units (note that we only illustrated the excitatory
connections in this scheme) and the model represents estimates of the value of all the actions in the output layer. In phase 2, the winning output unit injects
extra activity into the accessory network. The strength of the connections of the accessory network is reciprocal (equally strong) to that of the regular network.
Accessory units that are paired with a regular unit that has a strong impact on the activity of the winning unit exhibit a strong increase in activity Δp during this
phase. In phase 3 the changes in synaptic strength depend on Δp and a neuromodulatory signal that encodes the reward-prediction error δ (green cloud in
phase 3; right panel).

doi:10.1371/journal.pcbi.1004489.g003
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When the network performs action a, it receives a reward % and the aim of the learning rule is to
adjust the current estimate ofQa, represented by the activity of the winning output unit p1a . To
this aim, the network computes a reward prediction error δ by comparing the outcome of the
trial % to the predictedQ-value, i.e. a SARSA style prediction error for immediately rewarded
tasks [41]. In accordance with previous studies of reinforcement learning [78, 79], we assume
that this reward prediction error is coded by a neuromodulatory signal that is globally released
into the network so that it can influence the plasticity of all synapses (Fig 3, right panel).

d ¼ %� Qa ¼ %� p1a : ð7Þ

Many dopamine neurons in the ventral tegmental area and substantia nigra encode the reward
prediction error δ [37, 80, 81].

Once the network has received feedback about the chosen action a, the learning rule
changes the connections of the network in order to decrease the reward prediction error for
this action. Specifically, plasticity of the connection wkl from unit k to unit l depends on four
factors: (1) the presynaptic activity r1k , (2) the postsynaptic membrane potential p1l , (3) the
activity of the accessory unit l Dp1l , which represents the influence of unit l on the activity of a
and (4) the reward prediction error δ:

DWkl ¼ Z � d � Dp1l � flðp1l Þ � r1k ; ð8Þ

where η is the learning rate. Note that the signals that determine plasticity are all available
locally in the cortical column l and that Eq (8) implements a form of Hebbian plasticity,
because it depends on the product of presynaptic activity r1k and a function f(�) of the postsyn-
aptic activity p1l . We will derive below that the form of f(�) differs between excitatory, inhibi-
tory and modulatory connections projecting to column l:

f exl ðp1l Þ ¼ ðb� p1l Þ � ð1þ g � ðImod
1 ÞlÞ ; ð9Þ

f mod
l ðp1l Þ ¼ g � ðb� p1l Þ � ðIex1Þl ; ð10Þ

f inhl ðp1l Þ ¼ �ðzþ p1l Þ : ð11Þ

These equations follow from Eqs (1) and (3) and can be obtained by differentiating with respect
to the corresponding input type (they represent the effective impact of the connection on the
post-synaptic unit l).

Credit Assignment by the Accessory Network
The aim of the accessory network is to determine Dp1l for every unit l, which estimates the
influence of l on the value of the selected action a. In the sequel we will capitalize on results of
Almeida and Pineda [82, 83] who proposed a method to compute the error gradient in weight
space for fully recurrent networks. It is based on the error-backpropagation rule, which com-
putes the required changes in synaptic weights but it is thought to be biologically implausible
[84, 85]. However, previous work on the AGREL [34] and AuGMEnT [35] learning rules dem-
onstrated that in case of a reinforcement learning problem it is possible to replace the backpro-
pagation of errors by two factors that are biologically plausible (reviewed by [86]): (1) an
attentional feedback signal, which propagates activity rather than error signals from the output
units to earlier processing levels, and (2) a globally released neuromodulatory signal that codes
for the reward prediction error. We will here provide an equivalent result for the learning rule
proposed by [82, 83] for fully recurrent networks.
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Almeida [83, 87, 88] showed that once a fully recurrent network has settled in a stable state
p1, the error gradient of all synapses can be computed by an accessory network if it is the
transpose of the linearized original network. Thus, in the accessory network of [83] connec-
tionsWkl are replaced by connectionsW 0

lk of equal strength but running in the opposite direc-
tion. His method injects the error signal in every output unit, i.e. a positive signal for output
units that are not active enough and a negative signal for output units that are too active. The
accessory network of Almeida then propagates the activity to units connected to the output
units, and from there, successively to all other units in the network. In RELEARNN only the
winning output unit a injects activity into the accessory network and this activity circulates
until the accessory units reach a stable state.

Derivative of weight impact. We will now describe the application of the Almeida-Pineda
algorithm [82, 87] to our network model. Our aim is to demonstrate that the activity of an
accessory unit is proportional to the influence of the respective regular unit on the action value.
We will first compute the influence of any synaptic weightWkl on the unit coding the Q-value
of the selected action a. To simplify the derivation, we will examine the propagation of signals
in the accessory network under the assumption that the network contains only excitatory con-
nections (for a full derivation using matrix calculus [89] including inhibitory and modulatory
connections required to reproduce experimental findings see Suppl. C in S1 Text). In the epi-
sode when the regular network reaches its steady state, the change in the membrane potential
of the units is governed by (recalling Eq (3), above):

d
dt

p ¼ �apþ ðb� pÞ � Iex � ð1þ gImodÞ � ðzþ pÞ � Iinh : ð3Þ

Under the assumption that there are no inhibitory and modulatory connections, this can be
rewritten as

d
dt

pm ¼ �apm þ ðb� pmÞ �
X
n

Wnm � gðpnÞ þ Iinpm

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼Im

¼! 0 ; m ¼ 1 . . .N ;ð12Þ

which is zero at equilibrium. We can use this equation that governs the steady state to compute
the influence of the synaptic weightWkl on the activity of all units of the regular network,
including the unit coding for the selected action. For simplicity, we omit the1 and just write
p, I instead of p1; Iex1. Computing the derivative (denoted by “0”) with respect toWkl in Eq (12)
results in

0 ¼ �a
@

@Wkl

pm � Im
@

@Wkl

pm

zfflfflfflfflfflffl}|fflfflfflfflfflffl{¼½b�pm�0 �Im

þ ðb� pmÞ dlm � gðpkÞ þ
X
n

Wnmg
0ðpnÞ

@

@Wkl

pn

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼I0m
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{product rule ½b�pm�0 �Imþðb�pmÞ�I0m

ð13Þ

¼
X
n

½�dnm � ðaþ ImÞ þ ðb� pmÞ �Wnm � g 0ðpnÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:LT

mn

@

@Wkl

pn þ ðb� pmÞ � dlm � gðpkÞ ð14Þ

¼ LT � @

@Wkl

pþ el � ðb� pmÞ � gðpkÞ
� �

m

; ð15Þ
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where (�)T denotes the transpose of a matrix or vector, δlm = 1 if and only if l = =m (Kronecker
delta), and the vector el 2 R

N is zero except for the l–th entry which is one, i.e.

�ðaþ I1Þ þ ðb� p1ÞW11g
0ðp1Þ ðb� p1ÞW21g

0ðp2Þ . . . ðb� p1ÞWN1g
0ðpNÞ

ðb� p2ÞW12g
0ðp1Þ �ðaþ I2Þ þ ðb� p2ÞW22g

0ðp2Þ ðb� p2ÞWN2g
0ðp2Þ

..

. ..
. . .

. ..
.

ðb� pNÞW1Ng
0ðp1Þ ðb� pNÞW2Ng

0ðp2Þ . . . �ðaþ INÞ þ ðb� pNÞWNNg
0ðpNÞ

0
BBBBBBBBB@

1
CCCCCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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ð16Þ

By multiplying this linear system with the matrix inverse LT�1 ¼ L�1T , we obtain

@

@Wkl

p1

@

@Wkl

p2

..

.

@

@Wkl

pN

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼ L�1T �

0

..

.

�ðb� plÞ � gðpkÞ

..

.

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼

�ðL�1ÞT1l � ðb� plÞ � gðpkÞ

�ðL�1ÞT2l � ðb� plÞ � gðpkÞ

..

.

�ðL�1ÞTNl � ðb� plÞ � gðpkÞ

0
BBBBBBBB@

1
CCCCCCCCA

: ð17Þ

This equation describes the influence ofWkl on the activity of all network units. We are partic-
ularly interested in the influence @

@Wkl
pa ofWkl on pa, i.e. the membrane potential of the unit

that codes the value of the selected action a, which is given by

@

@Wkl

pa ¼ �ðL�1ÞTal � ðb� plÞ � gðpkÞ : ð18Þ

Note that the only non-local impact of the synaptic weight from unit k to l on pa is determined

by ðL�1ÞTal, which describes the impact of the postsynaptic unit l on the winning output unit a.

We will now demonstrate that�ðL�1ÞTal corresponds to the activation level Dp1l in the acces-
sory network.

Accessory network. The learning rule ensures that the connections of the accessory net-
work are reciprocal to those of the (linearized) regular network. The accessory network is linear
because accessory units do not influence the gains determined by the (non-linear) regular net-
work. These gains are taken into account by the accessory network during the activity propaga-
tion but will be treated as constants.

Before we describe the activity propagation within the accessory network itself, we will first
describe a version of the regular network that we will linearize around its fixed point. Our aim
is to determine the influence of a change of the synaptic weightWkl on the position of this
fixed point. At equilibrium, the activity of the regular network, defined in Eq (12), can be refor-
mulated from

d
dt

pm ¼ �apm þ ðb� pmÞ �
X
n

Wnm � gðpnÞ þ Iinpm

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼Im

¼: f ðpmÞ ð12Þ
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to the following linear form (using Taylor’s formula)

d
dt

pm � f ðp1m Þ|fflffl{zfflffl}
¼0

þ
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f ðp11 Þ

@
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f ðp11 Þ . . .
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. ..
.
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@
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f ðp1N Þ
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�
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~p2

..
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~pN
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2
666666666666664

3
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m

ð19Þ

where ~pi is the deviation of unit i from its original value at equilibrium (see Suppl. B in S1 Text
for the Taylor expansion of the full interaction). The terms in the matrix of Eq (19) are defined
as follows

@

@pn
f ðpmÞ ¼ �dnmaþ

@

@pn
½b� pm� � Im þ ðb� pmÞ �

@

@pn

X
i

Wim � gðpiÞ þ Iinpm

 !
ð20Þ

¼ �dnm � a� dnm � Im þ ðb� pmÞ �Wnm � g 0ðpnÞ ; ð21Þ

Thus, Eq (19) describes the linearized interaction of the regular network at equilibrium and can
be used to determine how a small perturbation influences the equilibrium state. The perturba-
tions influence the equilibrium state as follows

f ðpmÞ �
X
n

½�dnm � ðaþ ImÞ þ ðb� pmÞ �Wnm � g 0ðpnÞ� � ~pn ð22Þ

¼ �ðaþ ImÞ � ~pm þ
X
n

½ðb� pmÞ �Wnm � g 0ðpnÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ ~Wnm

� ~pn ð23Þ

¼ �ðaþ ImÞ � ~pm þ
X
n

~Wnm � ~pn : ð24Þ

This last equation provides a convenient way to describe the linearized interaction of the regu-
lar network. Following [82, 83], the accessory network with activities Δp is reciprocal to the (lin-

earized) regular network at equilibrium Eq (24), and it also takes the gain factors g0(pn) and (β
− pm) in every column into account plus an injection of a unit activation at the winning unit

δam (note the indices of ~W in Eqs (24) and (25) that indicate the reciprocity of activation flow).
The accessory network converges to its own stable state as follows:

d
dt

Dpm ¼ �ðaþ ImÞ � Dpm þ
X
n

~Wmn � Dpn þ dam ð25Þ

¼ �ðaþ ImÞ � Dpm þ
X
n

½ðb� pnÞ �Wmn � g 0ðpmÞ� � Dpn þ dam ð26Þ

¼
X
n

½�dmn � ðaþ InÞ þ ðb� pnÞ �Wmn � g 0ðpmÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Lmn

� Dpn þ dam ; ð27Þ
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a time derivative that becomes zero once the accessory network has settled in a stable state.
Thus, the signal that propagates in the accessory network from unit n to unitm equals
Wmn � [(β − pn) � Δpn] and the influence of this signal depends on g 0 (pm), the gain of unitm.

To summarize Eq (27), the associate network at equilibrium interacts as following:

d
dt

Dp ¼ L � Dpþ J ¼ 0 ; ð28Þ

with J = 0 except for Ja = 1. At steady state (i.e. d
dt
Dp ¼ 0), for the accessory network it holds

(by multiplying Eq (28) with L�1)

Dp1l ¼ �ðL�1JÞl ¼ �
XN
n¼1

ðL�1ÞlnJn ¼ �ðL�1Þla ; ð29Þ

i.e. Dp1l can be plugged into Eq (18). This result demonstrates that by circulating the activity
initiated by the winning action a, the activity Δpk of units of the accessory network becomes
equal to the impact that the corresponding regular units have on the action-value of the win-
ning unit a.

The activity of an accessory unit is proportional to the influence of the regular unit on
the action value. With the use of Eqs (29), (18) can be written as

@

@Wkl

pa ¼ Dpl
1 � ðb� plÞ|fflfflfflffl{zfflfflfflffl}

¼flðplÞ

� gðpkÞ|ffl{zffl}
¼rk

: ð30Þ

Which proves that for an error term E ¼ 1
2
ð%� p1a Þ2 ¼ d2 (describing the quadratic distance

between the estimate p1a and the experienced reward %; c.f. Eq (7)) our learning rule Eq (8) per-
forms gradient descent:

dWð�Þ
kl

dt
¼ �Z

@E
@Wkl

¼ Z � d � @p
1
a

@Wkl

¼ Z � d � Dpl1 � flðplÞ � rk : ð31Þ

Thus, with the help of the accessory network the information necessary to shift the equilibrium
state of the regular network in a direction that improves the estimate of the value of the chosen
action becomes available locally, in the cortical column. To simplify the presentation in this
section we focused on networks with only excitatory connections, but we also included inhibi-
tory and modulatory connections in our full network. The generalization to networks that
include modulatory and inhibitory connections is provided in Suppl. C in S1 Text.

Results
The analysis described above establishes that RELEARNN can train a fully recurrent network
to adjust its fixed point and to thereby improve its estimate of the value of a selected action. To
test the performance of the learning algorithm, we investigated if RELEARNN would train a
neural network to group contour elements and to trace curves, two tasks thought to require
feedback and horizontal connections in the brain. Will the network solve either task if the only
feedback from the environment is a reward for correct responses? Although RELEARNN can
train recurrent neural networks with many different structures, we focused on networks with a
single achitecture that has been illustrated in Fig 4. Input units of the network represent the
state of the environment and it is the task of the network to select a saccadic eye movement by
activating one of the units in the motor layer, where units code for a range of possible eye
movements. The learning algorithm tries to adapt the connection weights so that the activity of
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units in the motor layer code the expected reward for making a saccade to that location. The
softmax rule for action selection ensures that saccades with a higher action value (higher activ-
ity of the motor unit) have a higher probability to be selected. We provide the detailed parame-
ters for the simulations in Suppl. A in S1 Text. The model structure includes horizontal and
feedback connections. Units in the input layer can activate excitatory units in the linking layer
or provide disynaptic inhibition. Excitatory units in the linking layer can modulate the activity
of their four neighbors that are selective for the same feature and they can also provide modula-
tory input to units at the same spatial location that are tuned to a different feature. Further-
more, units of the linking layer excite units in the association layer and they are the target of
modulatory feedback connections from the association layer. Units in the association layer, in
turn, excite units in the motor layer. Thus, the lateral connections and feedback connections
from the association layer back to the linking layer enable the recirculation of activity through
the network, i.e. recurrent processing. The structure of the input and motor layers differed
between the contour-linking and curve-tracing tasks, because the inputs and the eye movement
responses were different (described below). To keep the complexity of the models at a mini-
mum, we did not include all connection types. For example, we omitted feedback connections

Fig 4. Neural network structure. The input layer contains 2D-maps of feature selective units (corresponding to representations in cortical area V1), which
provide input to a “linking layer” that can establish perceptual groups. Input units activate excitatory and inhibitory units in the linking layer, and inhibitory units
provide disynaptic inhibition to the excitatory units in this layer. Modulatory connections (green), which increase the excitatory impact, interconnect excitatory
units with adjacent receptive fields in the same feature maps and units with overlapping receptive fields in different feature maps. Excitatory units in the
linking layer can activate any unit in the association layer (e.g. in extrastriate or parietal cortex), and receive modulatory feedback connections. Units in the
association layer, in turn, activate units in the motor layer (corresponding to neurons in the frontal eye field) that represent action-values and select one of a
number of actions. Black connections have a fixed strength and excitatory (red), inhibitory (blue) and modulatory (green) connections undergo synaptic
plasticity.

doi:10.1371/journal.pcbi.1004489.g004
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from the motor units to the association layer as well as lateral and inhibitory connections
within the motor layer. We found that the set of connections included in the model was rich
enough to solve the two tasks. It is likely, however, that other tasks that we did not model
might benefit from additional connection types.

Learning to Link Visual Contours
Li, Piëch and Gilbert trained monkeys to group colinearly aligned contour elements using the
task illustrated in Fig 1A [14]. In every trial, the monkey saw two sets of short line elements
within circular apertures. One of the apertures contained a contour pattern composed of a
number of colinear line elements and the other pattern contained line elements with a random
orientation. The overall orientation of the colinear contour was fixed during a training session,
but it could vary across sessions. At the start of a trial, the monkey had to direct gaze to the cen-
ter of the display. The animals’ task was to make an eye movement to the aperture with the
contour pattern (Fig 1) and the animals performed approximately 1500 trials per day. The
authors started with a pretraining phase of several days where the target contour was shown at
a high luminance but the distractor elements were less visible because they had a lower lumi-
nance. This was followed by the main training sessions where the distractor elements had the
same luminance as the target elements so that only colinearity remained as a cue to solve the
task. We investigated whether RELEARNN could train the network of Fig 4 by rewarding sac-
cades to the contour pattern. Will the network learn to detect the colinearly aligned contour
elements and will it reproduce the monkeys’ behavior during learning? Moreover, how does
the activity of network units compare to the neuronal activity in the visual cortex of the mon-
keys [14]?

Li et al. trained their monkeys to maintain fixation for several hundreds of milliseconds
upon presentation of the patterns and to make the saccade after this delay [14]. We trained the
neural network on a version of the task that was simpler because we did not model the different
phases of every trial. The model could immediately select the eye-movement upon presentation
of the pattern and convergence to a stable activity state (learning of multiple task epochs by a
feedforward network has been addressed by [35, 36]). The input to the network consisted of
two patterns of bars with four possible orientations presented on a grid with 9 × 9 spatial posi-
tions on either side of the fixation point. There were a total of 648 input units (81 locations per
pattern × 4 orientations × 2 patterns) that provided direct excitation and disynaptic inhibition
via inhibitory units to the excitatory units of the linking layer, with 2 × 4 × 9 × 9 units, one for
every orientation at each retinotopic location. Excitatory units in the linking layer projected to
units with adjacent receptive fields tuned to the same orientation (four nearest neighbors) and
also to the three units with the same receptive field tuned to other orientations with modula-
tory connections. Units of the linking layer propagated activity to a total of four units in the
association layer, which, in turn, projected to the two units of the motor layer that had to learn
the expected reward associated with a saccade to the left or right pattern. To facilitate learning,
we started with a short (500 stimulus presentations) preliminary procedural training phase
(just like [14]; this was not necessary, however, to successfully learn the task). During the pre-
training phase, we made the background surrounding the contour elements less salient than
the target pattern by reducing their contrast (activity of input units representing background
elements was set to 50%). We then increased the contrast of the background contrast in incre-
ments of 10% (100 trials per contrast step) until all elements had 100% contrast.

The pre-training phase was followed by training in the full task (Fig 5). Training caused a
gradual increase in the model’s accuracy and the effect of training was particularly pronounced
for patterns with a larger number of colinear line elements. The effect of training on the
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accuracy of the model resembled the improvement in the accuracy of the monkeys (c.f. Fig 5
left vs. right). The model was able to learn the contour linking task within* 15,000 trials (*
3,000 trials per contour length), which is comparable to the time-course of the monkeys’
behavioral improvement (10 days with* 1,500 trials per day). The results of these simulations
were not critically dependent on the exact parameter values, i.e. slight parameter changes did
not qualitatively alter the outcome, although less optimal values of the parameters decreased
learning speed.

We next investigated how learning of the contour integration task changed the activity of
network units (Fig 6). After the pre-training, but before the training in the full task, the activity
of the excitatory units in the linking layer did not depend strongly on the number of colinearly
aligned contours in the target pattern (Fig 6A). After training, however, the activity of these
units clearly depended on the number of colinearly aligned contour elements (Fig 6B). Patterns
with more colinearly aligned contour elements elicited stronger responses, thereby reproducing
the effect of training in area V1 of monkeys (Fig 6D and 6E). It is also of interest to compare
the time course of activity in the model’s linking layer to the time-course of activity in monkey
V1. In the trained model, tuning to the number of colinear line elements was relatively weak
during the initial response, but it became stronger when the network units started to converge
to their stable activity level. The feedforward activation from the input layer only conveys
information about the orientation of the contour element in the receptive field and not about
the context provided by image elements in the surround. Thus, tuning to colinearity must be
due to alterations in horizontal and feedback influences on the units, and this explains the
delay in the emergence of this tuning. The temporal profile of the response of model units is
quite comparable to that of V1 neurons, for which tuning to the colinearity of image elements
also emerges during the later phase of the response.

Fig 5. Accuracy of the model and comparison to the accuracy of monkeys. Left, performance of monkeys re-drawn from [14]. The five panels show the
accuracy across training days with patterns of increasing contour length; 1 line (blue), 3 (purple), 5 (green), 7 (orange) or 9 colinear lines (light blue). Note that
the monkeys performed at chance level for patterns with line length 1, which are indistinguishable from distractor patterns. Solid lines are cubic spline fits.
Right, Accuracy of the model for the same stimuli, smoothed with a Gaussian (σ = 100 trials). The number of iterations refers to repetitions of the same
contour length, i.e. the total number of iterations is five times as large because the model was exposed to five different contour lengths.

doi:10.1371/journal.pcbi.1004489.g005
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In their experiment, Li et al. [14] also anesthetized the monkeys after the training procedure
with the aim to block the top-down and horizontal influences. During anesthesia, the tuning to
colinearity was indeed abolished in area V1, whereas visually driven activity was maintained,
albeit weaker (Fig 6F). We could replicate the effect of anesthesia in our model by removing
the feedback and lateral connections (Fig 6C), which confirmed that these contextual influ-
ences in the model are mediated by recurrent, i.e. lateral and feedback connections. In addition,
we tested the respective contribution of lateral and feedback interactions by deleting one set of
connections or the other (Fig 6G and 6H). The results indicate that lateral interactions have a

Fig 6. Comparison between the activity of model units and neurons in area V1 of monkeys. A,B Simulation results (ordinate in arbitrary units). Mean
activity p (membrane potential) of excitatory units in the linking layer (red in Fig 4) representing the center bar of the target stimulus and the 95% confidence
interval (across 10,000 stimulus presentations) before (A) and after training in the contour detection task (B). C, Activity in a trained model when the strength
of the modulatory horizontal and feedback connections is set to zero.D,E, Mean activity of V1 neurons elicited by the target stimulus before (D) and after
training (E). Training caused V1 neurons to be tuned to number of colinearly aligned bars. F, Under anesthesia, the sensitivity to contour length was
abolished and the visual responses were reduced in strength but not abolished.D,E,F redrawn from [14]. (G) Activity in a model where the lateral connections
in the linking layer were removed. (H) Activity in a network where feedback connections from the association layer to the linking layer were removed.

doi:10.1371/journal.pcbi.1004489.g006
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more pronounced effect than feedback interactions in this task, a prediction that can be tested
in future experiments.

We next investigated how training in the contour linking task influenced the pattern of con-
nectivity. We first examined the horizontal connections in the linking layer of an example net-
work that had been trained to criterion (Fig 7). It can be seen that the lateral connections were
strengthened along the direction corresponding to the axis of the unit’s orientation tuning. We
next examined the pattern of excitatory feedforward connections from the linking layer to
units in the association layer. In this analysis we focused on association units with a strong con-
nection to motor units, which have an impact on the computation of the action values. We
found that the association units integrated the activity of units along the target contours, with a
specific set of connections from each of the four orientation maps (Fig 8A). When we examined
the pattern of modulatory feedback connections from the association layer back to the linking
layer we found that connections of the regular network had become largely reciprocal (in addi-
tion to the accessory network connections, which are enforced to be reciprocal). Association
units tended to have strong feedback connections to units that provided them with feedforward
excitation (Fig 8B). This reciprocity of feedforward and feedback connections is in accordance
with anatomical findings [90, 91]. To summarize, the new RELEARNN algorithm reproduced
the time-course of neuronal activity underlying contour linking as observed by Li et al. [14]
and illustrates how it can be explained by a modification of the pattern of feedforward, lateral
and feedback connections.

In our main simulations, units in the linking layer were only connected if they represented
nearby contour elements. To examine if this restriction was necessary for successful learning

Fig 7. Stimulus and lateral connectivity in the “linking layer”. A Example stimulus (the patterns presented to the two hemispheres are plotted above
each other). Re-drawn from [15] B Lateral connectivity in the “linking layer” for one orientation and hemisphere for units selective for diagonal line elements
before training.C Lateral connectivity after training (we observed similar patterns for the other orientations). Line thickness corresponds to connection
strength (thickest line corresponds to a connection strength of 0.36). Note that due to the small amount of simulated units (one unit per spatial input location)
we did not introduce jitter into the stimulus which would have resulted in multiple parallel “thick lines”.

doi:10.1371/journal.pcbi.1004489.g007
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we also carried out simulations with full connectivity in the linking layer. We found that net-
works with full connectivity also learned the task and, interestingly, strongest connections
formed between units with adjacent receptive fields as the result of the training process.

We next examined whether recurrent connections were necessary for detection of the colin-
ear contour configurations. We therefore trained networks without lateral connections in the
linking layer and without feedback connections from the association layer to the linking layer
(we kept the feedback connections of the accessory network that guide plasticity). Activity in
these feedforward networks is immediately stable and it is therefore not necessary to wait until
the network converges, so that RELEARNN becomes equivalent to the AuGMEnT learning
rule for feedforward networks [36]. RELEARNN could train these purely feedforward networks
to detect the colinear contours. This is an important result, which implies that the detection of
these colinear contour patterns does not require recurrent connectivity. Nevertheless, networks
with recurrent connections do utilize these connections if trained with RELEARNN, in accor-
dance with the neurophysiological findings.

Learning to Trace a Curve
Not all conceivable feature groupings can be coded by dedicated neurons [8]. If confronted
with a new configuration of image elements, grouping can proceed based on low level grouping
criteria, such as connectedness or colinearity, even in the absence of neurons that are selective
for the overall shape. In these situations, the visual brain appears to code perceptual groups by
labeling the to-be-grouped image elements with enhanced neuronal activity, a process that has
been called incremental grouping [8]. One example task that requires the formation of incre-
mental perceptual groups is curve-tracing [18, 92] where subjects have to group contour ele-
ments that belong to a single elongated curve. Fig 9 shows one example stimulus of the curve
tracing task that we used to test RELEARNN. Every stimulus contained two curves that con-
sisted of connected pixels, two potential green eye movement targets and a red cue. The mod-
el’s task was to select an eye movement to a green marker on one of the two curves, which will
be referred to as “target curve”. The target curve was cued with the red marker and the model
was only rewarded if it made an eye movement to the green marker on the cued target object.

Fig 8. Connection strengths between linking units with different orientation preferences (O1–O4 denote the different orientations of contour
elements) in one hemifield and an example association layer unit A2 with a strong connection to the motor unit in this hemisphere, after training to
criterion (feedforward strength A and feedback strength B). Similar association units were established in the other hemisphere.

doi:10.1371/journal.pcbi.1004489.g008
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Thus, the model had to learn to apply connectedness grouping to determine which of the two
green markers fell on the same curve as the red cue. Human observers solve such a curve-trac-
ing task by mentally tracing along the target curve. This mental tracing process corresponds to
the gradual spread of object-based attention over the target curve [8, 93]. Previous neurophysi-
ological studies revealed a neuronal correlate of the spread of object-based attention over a
curve in the primary visual cortex because neuronal activity elicited by a target curve was stron-
ger than that elicited by a distractor (Fig 1B). The response enhancement does not occur during
the transient response that is triggered by the onset of the visual stimulus and the appearance
of contour elements in the neurons’ receptive fields but after a delay of* 150ms. The
enhanced neuronal activity first occurs at the cued location (i.e. the red cue in Fig 9) before it
gradually spreads over the other image elements of the same object [94, 95]. These results sug-
gest that the enhanced neuronal activity spreads through horizontal connections in visual cor-
tex, which link neurons that represent adjacent image elements, although it is likely that
feedback connections from higher visual areas to the primary visual cortex also contribute.
Similar effects have been observed in frontal cortex where the target curve also evoked stronger
responses than the distractors during a delayed phase of the neuronal response [17, 40]. A pre-
vious modeling study investigated the propagation of enhanced activity along a relevant curve
in a handcrafted network [25]. However, to our knowledge it has not yet been studied whether
the necessary connectivity can emerge during reward-based learning with a biologically plausi-
ble learning rule. Can the network architecture illustrated in Fig 4, which learns to link colinear
line elements, also learn to trace a curve? If yes, will learning induce a propagation of enhanced
neuronal activity along the relevant curve, just as is observed in the visual cortex of monkeys?
We had to make adjustments to the input layer of the network because of the different format
of the input. The input layer and the linking layer now consisted of a 5 × 5 grid with 3 cells at
every grid location to encode the possible colors; we used a unit coding for red, green and for
luminance at each location. The association layer contained 25 neurons and the motor layer
also consisted of a 5 × 5 grid, because each position could be a target for a specific stimulus (the
model could select one of 25 eye movements for every stimulus). To ensure that the model
would learn the grouping rule and that it could not solve the task by memorizing the specific
eye-movements associated with a limited set of stimuli, we randomly generated a new stimulus
on every trial. In the final version of the task, the stimulus always consisted of two equally long

Fig 9. Curve tracing task.We trained the model to make an eye movement to a green circular marker that
was on the target curve, which was cued with a red circle. The other curve was a distractor and had to be be
ignored. This task requires the grouping of the connected image elements of the target curve.

doi:10.1371/journal.pcbi.1004489.g009
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lines of two to five pixels each. We considered two pixels to be connected when they shared an
edge. According to this rule the two curves in Fig 10 are not connected although they do touch
each other. We randomly selected two of the end-points as potential eye movement targets and
one other endpoint as the location of the cue. It was the model’s task to select an eye movement
to the green target that was on the same curve as the red cue (Fig 9).

Researchers usually train monkeys to perform such a complex task in a number of phases in
which the difficulty of the task increases gradually, a strategy that is sometimes called shaping.
We used a similar strategy to shape the model, because it otherwise got stuck in a local mini-
mum without finding a solution. We started the training procedure by presenting displays with
a single square with a green eye movement target on an otherwise black background and
rewarded the model for making an eye movement to this square. In the subsequent phase, we
introduced the lines and the red cue, gradually increasing line length until the lines were up to
five pixels long (see Suppl. A in S1 Text for details). Training was considered successful when a
greedy policy (i.e. selection of the most active output unit) would lead to correct performance
for 400 consecutive stimulus presentations.

We found that all 12 networks that we tested reached criterion performance with an average
of 164,000 iterations (range: 136,000–189,000). This extensive training procedure would corre-
spond to* 100 training days with a monkey, with 1500 trials per day. Note, however, that we
used the same learning parameters as in the contour linking task, and that we have not opti-
mized these parameters for learning speed. Furthermore, the model learned a relatively com-
plex version of the curve-tracing task where one of the curves was cued by a red circle and
where the shapes of the two curves were much more variable than those that have been used to
train monkeys. In addition, it is safe to assume that the monkeys had substantial prior experi-
ence with perceptual grouping prior to their first exposure to the curve-tracing task.

We next examined how the networks solve the task by investigating the activity that the
units had acquired during the learning process. We first examined the pattern of activity in the
linking layer and found that units coding for pixels of the target curve exhibited stronger activ-
ity than units coding pixels of the distractor (Fig 10). Initially, the units signaled the appearance
of a pixel in their receptive field. The response enhancement occurred after a delay, because it
required the spread of activity from the unit coding for the red cue in the linking layer to the
unit coding for the luminance of that pixel. The enhanced activity then gradually propagated
across the curve until it reached the eye movement target at the other end. The gradual spread
of enhanced activity across the relevant curve is qualitatively similar to the activity in area V1
of macaque monkeys during this task, although a detailed comparison of the timing of the
model (in time units) and V1 activity (in ms) is not feasible because we did not model the con-
duction and synaptic integration delays that determine the propagation of neuronal activity in
the brain. In monkey V1, the response enhancement also did not occur during the initial visual
response that was elicited by the appearance of a contour element in the neurons’ receptive
fields, but after a delay of* 150ms [8]. The enhanced activity then gradually spread over this
curve with a speed of* 50ms per receptive field until all its contour elements were labeled
with enhanced neuronal activity [95]. To detect connectedness, it is important that the
enhanced activity is selectively propagated along the representation of the curve and that it can-
not spread to blank image locations in between curves [8]. A closer look at the connection pat-
tern of the linking layer revealed why the network indeed only spread activity among adjacent
units with a pixel in their receptive field (Fig 11). Trained networks developed balanced feed-
forward excitation and di-synaptic inhibition from the input layer to the linking layer (similar
to neurophysiological and anatomical findings [97, 98]). Units in the linking layer were there-
fore not directly (or only weakly) activated by a pixel in their receptive field without concurrent
modulatory input. The unit in the linking layer representing the red cue was active, however,
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Fig 10. Activity in an example network trained in the curve-tracing task. A, An example stimulus with two green saccade targets and a red cue that
indicates which curve is target. T1 and T2 are two pixels of the target curve and D1 and D2 are pixels of the distractor (we evaluated activity for different
stimuli at the equivalent locations).B, Activity p (membrane potential) of example units of the linking layer, averaged across multiple stimulus presentations.
The curve tracing task induced an increase of activity of units representing the target curve (T1 and T2) and a decrease in the activity of units representing the
distractor (D1 and D2; 95% point-wise confidence bands are within line width). C, We normalized the difference in activity elicited by corresponding positions
of the target and distractor curve in the linking layer to investigate the time-course of the response enhancement. We found that the latency of the response
enhancement increased for pixels of the target curve that are farther from the red cue, in accordance with previous neurophysiological results [95]. D, Activity
in the motor layer was strongest for pixels with a green cue. Note that the activity elicited by the saccade cue on the target curve (ST) was stronger than that
elicited by the saccade cue on the distractor curve (SD). E, Time course of normalized response differences in the motor layer. Also here the response
enhancement occurred later for pixels that were farther from the red cue. The activities in the motor layer (E) and the linking layer (C) have similar time-
courses as have been reported in the frontal and visual cortex of monkeys [17]. Note that the propagation is quite fast due to the small network size but that it
critically depends on the recurrent interaction as theoretically predicted by [96].

doi:10.1371/journal.pcbi.1004489.g010
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and it had a modulatory effect that increased the impact of the excitatory input to the unit cod-
ing for luminance at the same location (see Eq (1)), causing the unit to become active. This
activity then spread through the modulatory connections to the other units representing con-
nected pixels. It did not spread to blank space, however, because the units in the linking layer
did not receive excitatory input and the modulatory connections had no effect. As a result, the
enhanced activity spread selectively over the target curve until it reached the other end with the
green marker, thereby highlighting the correct target for an eye movement.

Although we trained the models with contour lengths up to five pixels, additional tests
revealed that they generalized their ability to trace a curve to longer line lengths (Fig 12). Thus,
they learned a general solution to the curve-tracing task, which they could apply to new con-
tour configurations that had not been presented previously. A trained model with a greedy pol-
icy solved about 97% of 10,000 random stimuli with contours of length 5 and about 81% with
length 6. To our knowledge, RELEARNN is the first biologically realistic model that can train a
neural network to solve the curve-tracing task. Interestingly, the model discovered the strategy
to propagate enhanced neuronal activity from the cue over the rest of the curve, which is also
used by monkeys trained on this task. The analysis of the established connectivity patterns
presents a prediction for future neuroscientific studies, which can now examine the influence

Fig 11. Connectivity structure established during training in the curve tracing task. A, Feedforward input into the linking layer causes balanced
excitation and inhibition (through the inhibitory units) preventing linking layer units to become active. The unit in the linking layer tuned to red (not shown here)
provides modulatory input, thereby increasing the impact of feedforward excitation to the left unit and this extra activity can spread through horizontal
connections in the linking layer.B, If a unit in the linking layer does not receive feedforward input, horizontal modulatory influences cannot occur, thereby
preventing the spread of activity across gaps in the linking layer, which is important for the detection of connectedness.

doi:10.1371/journal.pcbi.1004489.g011
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of learning curve-tracing and contour-linking tasks on the patterns of connections between
neurons in early areas of the visual cortex.

In our standard networks, units of the linking layer were only connected to units with
nearby receptive fields. We also investigated if networks with full connectivity in the linking
layer learn the curve-tracing task. We found that they did and that connections between units
in the linking layer with nearby receptive fields became strongest.

Finally, we tested if it is possible to train networks without horizontal connections in the
linking layer to trace a curve. We found that learning did not occur once line length increased
beyond three pixels. Previous studies demonstrated that the minimal number of association
units that are required to detect connectedness in feedforward networks with a similar architec-
ture increases very rapidly with line length [96, 99, 100], implying that biologically realistic
implementations of algorithms for the detection of connectedness strongly benefit from recur-
rent connections.

Discussion
We have presented a new biologically inspired learning rule that explains how a recurrent neu-
ral network can learn to perform contour-linking and curve-tracing tasks by adjusting the
strengths of excitatory, inhibitory and modulatory connections. RELEARNN extends previous
biologically realistic learning rules relying on two factors to gate Hebbian plasticity, a reward-
prediction error and feedback from the response selection stage [34, 35], to recurrent neural
networks. Our main result is that RELEARNN can change the attractor states of recurrent net-
works to improve the representation of action values. RELEARNN updates action values by a
gradient descent with an accessory network for the propagation of credit assignment signals, in
combination with a system that computes reward prediction errors. Jointly, these two factors
ensure that the information for changing synaptic strength is available locally, within the corti-
cal column.

We tested RELEARNN in two tasks that have been used to investigate perceptual organiza-
tion in monkeys. We chose these tasks because previous work suggested that they are not
solved in a feedforward manner in the brain but rely on recurrent processing, i.e. the recircula-
tion of activity through feedforward, horizontal and feedback connections. Such processing has
previously been formalized in counter stream architectures that can combine hypotheses at
lower and higher hierarchical network levels through feedforward and feedback streams [66–
69]. The first task was a contour linking task (Fig 1A). We found that RELEARNN was able to
train a recurrent network to detect colinear patterns. Interestingly, learning enhanced the
representation of line elements of the target contour in the linking layer of the network,

Fig 12. Generalization to longer line lengths. Although the model had been trained with lines with up to five
pixels, it also generalized to longer line lengths. In this example stimulus, the model propagated enhanced
activity over a target line of seven pixels (darker colors denote higher levels of activity).

doi:10.1371/journal.pcbi.1004489.g012
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propagating extra activity through horizontal and feedback connections. The response
enhancement therefore did not occur during the initial response, but after a delay, just as has
been observed for neurons in the visual cortex of monkeys trained in this task [14, 16, 101].
The model predicts that learning in this task should strengthen the lateral connections between
neurons coding colinear line elements. Interestingly, RELEARNN could also train feedforward
networks to detect colinear patterns, although feedforward networks do not explain the delayed
influence of colinearly aligned image elements on neuronal activity in early visual cortex.

The second task was a curve-tracing task where the model had to determine the connections
between adjacent pixels in order to determine the location of a target of a saccadic eye move-
ment. The development of a learning rule that permits the detection of connectedness by a neu-
ral network is of some theoretical interest, because connectedness detection was one of the
examples that Minsky and Papert [96] gave to demonstrate that the perceptual capabilities of
perceptrons (feedforward networks with two layers) are limited and that some of these limita-
tions can be alleviated by serial processing, e.g. by Turing machines. One task that relies on
connectedness detection is curve-tracing (Fig 1B) [102]. Observers determine which contour
elements belong to a single, connected image component, and processing in this task is indeed
serial as reaction times increase linearly with the length of curve that needs to be traced [18].
Without horizontal connections, our networks did not learn the task for contours longer than
three pixels, as predicted by previous studies [96, 99, 100]. Psychological research established
that human observers gradually spread object-based attention across the relevant curve when
they trace it [93]. At a neuronal level, the tracing of a curve is associated with the gradual
spread of enhanced neuronal activity along the curve [8, 95]. It is remarkable that a neural net-
work trained with RELEARNN developed the same strategy, gradually labeling the relevant
curve with enhanced activity in the linking layer, until the enhanced response reached the sac-
cade target so that it could be selected for an eye movement response.

The excellent correspondence between our modeling results and neurophysiological data in
two different tasks suggests that RELEARNN captures properties of cortical learning. Our
approach differs from previous studies addressing the connectedness problem like, for exam-
ple, [100], because we proposed a biologically plausible learning rule, which permits a detailed
analysis of the established connectivity structures and activity patterns that can be compared to
neurophysiological findings. RELEARNN uses two factors to gate Hebbian plasticity, in accor-
dance with previous modeling work, but it generalized the proposed learning rules to recurrent
networks. The first factor is a reward-prediction error that has been central to many recent
advances in biologically inspired learning [41, 81]. It is likely that the reward-prediction error
is made available to neurons in cortical and subcortical structures by the release of neuromodu-
lators, such as dopamine. Schultz and his co-workers demonstrated that the firing rate of dopa-
mine neurons in the substantia nigra and ventral tegmental area code reward-prediction
errors, i.e. the difference between the amount of reward that was anticipated by a monkey and
the amount of reward that was actually received [37]. Furthermore, dopamine is known to
influence synaptic plasticity so that it could fulfill a role in gating plasticity [103]. However, it is
conceivable that other neuromodulators such as acetylcholine or seretonin may play equivalent
roles.

The second factor used by RELEARNN is a feedback signal initiated by the selected action,
which propagates through the accessory network. RELEARNN ensures that connections of the
accessory network are reciprocal to those of the regular network, so that the accessory units in
the columns with a large influence on the estimated value of the selected action are very active
(this reciprocitity can emerge during the learning process itself [34]). The top-down influence
of action selection on activity at earlier processing levels is known as an effect of selective atten-
tion in psychology and it has also been studied in neurophysiological work. Specifically, if a
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subject selects a stimulus for an eye or hand movement, selective attention is directed to that
stimulus [104, 105], and selective attention gates learning [106, 107]. Moreover, research with
the curve-tracing task revealed that action selection indeed also influences neuronal activity in
the visual cortex of monkeys. In the visual cortex, a curve that is selected for a behavioral
response elicits stronger neuronal activity than a curve that is not selected [108], even if the
selected response is wrong (i.e. if the monkey makes an error [17, 21]). RELEARNN combines
the accessory feedback effect caused by action selection with information about the reward-
prediction error that is globally available through the release of neuromodulators to improve
the value estimate of the selected action.

In what follows, we will first discuss the relation between RELEARNN and the Almeida-
Pineda algorithm for the learning of attractor states in recurrent neural networks [82, 87]. We
will then compare RELEARNN to other models for learning in recurrent neural networks and
discuss its relation to previous models of perceptual grouping. RELEARNNmay open a new
path towards unifying theoretical and experimental research in a number of different fields: the
neurophysiology and psychology of perceptual organization and the role of object-based atten-
tion therein, reinforcement learning theory and the role of feedforward and feedback connec-
tions in cortical computation.

ComparisonWith the Almeida-Pineda Algorithm
RELEARNN is best understood as a biologically inspired implementation of the supervised
Almeida-Pineda learning algorithm for recurrent neural networks [82, 87]. The synaptic
changes of RELEARNN are proportional to those that the Almeida-Pineda learning algorithm
would take to adjust the value of the selected action (Suppl. C in S1 Text). There are two poten-
tial issues that are inherited from the Almeida-Pineda algorithm. The first is related to the con-
vergence of the regular network to a stable attractor. It is difficult to derive general conditions
that can guarantee that non-symmetric networks converge to a stable attractor [87, 109]. We
therefore had to rely on our simulations where we found that without strong mutual inhibition
(that we omitted in the network design to reproduce the experimental findings) the network
always was attracted to a stable state. In contrast, the associate network is linear and it will con-
verge provided that the regular network is at a fixed point as was shown by [87]. The second
stability issue is related to the solution that is found for the task. Although RELEARNNmakes
adjustments to the synaptic weights that improve the estimated value of the selected action by
gradient descent, there are no guarantees that such a network will find an appropriate solution.
Indeed, any gradient descent may get stuck in a local minimum in weight space where further
improvements will not occur. In the curve-tracing task, for example, the learning only suc-
ceeded when we gradually increased the contour length. Without such a shaping strategy the
network did not find a successful strategy to solve the task but got stuck in a local minimum.

ComparisonWith Other Methods for Learning in Recurrent Neural
Networks
Learning is one of the most important topics in neural networks research. Learning in recur-
rent neural networks (RNNs) is more complex than in feedforward networks, because a recur-
rent network typically has to evolve to a stationary state. This increase in complexity is offset
by the advantage that RNNs can learn to compute and store intermediate computational results
through their internal feedback structure. This property of RNNs is essential if the network has
to remember previous inputs in a time series (time lagged recurrent networks; TLRNs, [110,
111]) but it can also be helpful in the analysis of stationary patterns, as was the case in our sim-
ulations (simultaneous recurrent networks; SRNs, [100]). In the curve-tracing task, the RNN
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learned to inject activity at the cue and to gradually spread this activity over the curve. It found
a serial solution for a task that is difficult to solve for a feedforward network [96, 99], because
connectedness is a transitive property. If pixel A is connected to pixel B and B to C, then the
network should infer that A is also connected to C. The network learned to compute connect-
edness by serially evaluating the connectedness of adjacent pixels, first spreading the enhanced
activity from pixel A to B and then onwards from B to C. This process appears to correspond
well to the primitive form of serial reasoning that humans and monkeys employ to solve this
task. Similar processing has been employed in other (non-biological) computational models as
well [100]. Thus, in the curve-tracing example, the intermediate computational results corre-
spond to the set of pixels that have so far been labeled with enhanced activity.

The learning of stable states of the network as implemented by RELEARNN differs from
other recurrent neural network learning schemes, such as backpropagation through time
(BPTT; [112]), recirculation algorithms [113–115] and reservoir computing [116, 117]. BPTT
[112] was the first method for learning by recurrent neural networks. The successive network
states are unfolded over time, and the learning rule is equivalent to standard backpropagation
algorithm for the unfolded network. A disadvantage of BPTT is that the unfolded network
requires a lot of memory (the memory footprint of a single iteration times the number of itera-
tions) and it does not seem to be biologically plausible. Another disadvantage is that the error
gradients become very small after a number of time steps, a limitation that has been alleviated
by the long short term memory model (LSTM) designed for processing time-series [110, 118,
119]. RELEARNN also differs from recirculation algorithms (such as GeneRec [113]), which
require symmetric connections between network units. They compare the activity of network
units in two phases. The first is called “minus phase” in which the input is provided to the net-
work until it settles in a stable state. This is followed by a “plus phase” where the activity of
some of the units is clamped to a target pattern. Learning is based on the comparison between
the unit activity between phases, which provides a measure for the influence of the units on the
target pattern. An important difference is that RELEARNN computes action values and uses a
separate accessory network in combination with a reward prediction error to determine the
change in synaptic weights. Unlike the recirculation algorithms, it can therefore also train net-
works with non-symmetric weights.

RELEARNN also differs from reservoir computing methods, such as echo state networks
[116, 117], liquid state networks [120] and backpropagation-decorrelation learning [121].
These learning schemes apply an input sequence to a randomly connected recurrent neural
network, the “reservoir”, and learning takes place by changing connections between the reser-
voir neurons and the network’s output [122]. In RELEARNN learning also takes place within
the RNN itself, so that the network can construct useful new representations of intermediate
computational results.

Comparsion With Other Reinforcement Learning Methods
Motivated by findings that midbrain dopamine neurons encode a quantitative reward predic-
tion error [37, 123, 124], we employed temporal difference learning [41] with a SARSA style
prediction error for immediate rewards. Each action is associated with an expected return
value when performing this particular action in a given state. The learning algorithm tries to
minimize the difference between the current estimate and the observed one. Another route of
optimization has been described by policy gradient methods (such as REINFORCE) [125, 126]
which directly optimize the expected reward instead of the value function. The learning rule in
this case reads ΔWkl = η(% − b) � @ log(ϕl)/@Wkl, where b denotes an arbitrary reinforcement
baseline and ϕl denotes the probability of selecting action l (e.g. Eq (5)). Note that this equation
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looks similar to Eq (8) at first sight but results in an entirely different update rule. For the soft-
max rule Eq (5), for example, the derivative is given by
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The derivatives @/@Wkl[pl − pj] are given by Eq (18) but it is unclear how to derive an equation
like Eq (29) to avoid the calculation of the matrix inverse and the non-local sum over all units.
Additionally, policy gradient has been shown not to work in all cases. A previous study [127],
for example, had to add Hebbian terms in order to solve a particular task which are already
part of RELEARNN (c.f. Eq (8)).

Previous Models of Perceptual Grouping
We used RELEARNN to train networks to perform tasks that require perceptual grouping of
image elements. It is therefore of interest to compare our results to previous models addressing
the grouping of image elements into surfaces and boundaries (see e.g. [128], for a review). Pre-
vious models examined the contributions of horizontal connections (e.g. within area V1) to
perceptual grouping by enhancing the responses elicited by colinear contour elements [129–
131]. Other models aimed to explain how multiple cortical modules interact to enable the cor-
rect interpretation of a visual scene [132] or how the modification of long range horizontal
connections by top-down interaction can account for such findings [22]. These previous mod-
els proposed various network structures, whereas the present study investigated how these
grouping operations can be learned. We started from networks with random connectivity, and
investigated learning if the only feedback from the environment is a reward upon correct task
performance, and we thereby complemented previous studies addressing the role of visual
experience in the tuning of cortico-cortical connections [114, 133, 134].

The present results are also relevant for a current debate about the locus of perceptual learn-
ing. A few days of experience with the contour grouping task improves the performance of
monkey and human subjects [14, 135]. On the one hand, it has been suggested that these
improvements are the result of a more efficient read out of sensory representations so that the
sensory representations themselves can remain relatively stable [136]. On the other hand,
other studies provided compelling evidence that the early sensory representations themselves
can also be subject to plasticity in the adult [27, 137, 138]. RELEARNN permits the modifica-
tion of connections at multiple stages. The connections from the association layer to the motor
selection stage exhibit plasticity. However, synaptic changes can also occur at earlier processing
levels when the synaptic modifications in higher areas do not suffice to solve the task, in accor-
dance with previous theoretical proposals of a reversed hierarchy in perceptual learning
[29, 139].
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Possible Improvements and Extensions
One limitation of the model is that learning cannot occur in networks that fail to reach a steady
state. Although we did not encounter unstable states in our simulations, strong excitatory-
inhibitory (E-I) interactions can lead to limit-cycles [140, 141]. Possible extensions of the
model might permit learning while the system is oscillating, although this has not yet been
explored by us. Another limitation is that we only considered tasks with immediate reward and
did not simulate delayed reward tasks where the model has to go through several states in the
environment before it can obtain the reward. It is possible to use biologically plausible learning
rules with the same two factors, i.e. feedback from the response selection stage in combination
with a reward-prediction error, to solve delayed reward tasks [35, 36]. These approaches
increase the learning rate by incorporating information about previous activations as synaptic
eligibility traces and may thereby expand the capabilities of RELEARNN. More precisely, after
selecting an action the model would need to store the correlation between the activity of the
regular and the accessory units in some form of synaptic tag. Upon reward delivery the neuro-
modulator that provides the global learning signal could interact with this tag to shape the net-
work (c.f. [36]). In the simulations we chose a minimal model architecture that was motivated
by findings of modulatory feedback interactions [43, 44, 142]. It will be of interest to systemati-
cally investigate further model variants with, for example, additional layers so that the net-
works can also learn to optimize the sensory features. Future studies can also address networks
where feedback connections drive excitatory and/or inhibitory units at lower network levels
instead of only modulating them multiplicatively [143]. In addition, future studies could incor-
porate more realistic measures for propagation and synaptic integration delays in the networks
to enable a more precise comparison between activity propagation in the networks and the
spread of neuronal activity in the visual cortex as well as the pattern of reaction times of
human observers who carry out the curve-tracing task.

Conclusion
We have presented a new learning rule that explains how recurrent neural networks can learn
to group image elements during contour linking and curve-tracing. The correspondence
between the simulation results and the neurophysiological data obtained in monkeys trained
on these tasks suggests that the proposed learning algorithm captures the influence of learning
on interactions between neurons in the visual cortex. RELEARNN explains how a neural net-
work can learn incremental, transitive grouping operations by the spread of enhanced neuronal
activity by trial and error and how it can exploit these grouping results to guide behavior. We
anticipate that future studies may build on these results in the search for even more powerful
methods to impose structure on incoming sensory data.
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