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ABSTRACT

Objective: Glycemic control is an important component of critical care. We present a data-driven method for

predicting intensive care unit (ICU) patient response to glycemic control protocols while accounting for patient

heterogeneity and variations in care.

Materials and Methods: Using electronic medical records (EMRs) of 18 961 ICU admissions from the MIMIC-III

dataset, including 318 574 blood glucose measurements, we train and validate a gradient boosted tree machine

learning (ML) algorithm to forecast patient blood glucose and a 95% prediction interval at 2-hour intervals. The

model uses as inputs irregular multivariate time series data relating to recent in-patient medical history and gly-

cemic control, including previous blood glucose, nutrition, and insulin dosing.

Results: Our forecasting model using routinely collected EMRs achieves performance comparable to previous

models developed in planned research studies using continuous blood glucose monitoring. Model error,

expressed as mean absolute percentage error is 16.5%–16.8%, with Clarke error grid analysis demonstrating

that 97% of predictions would be clinically acceptable. The 95% prediction intervals achieve near intended cov-

erage at 93%–94%.

Discussion: ML algorithms built on observational data sources, such as EMRs, present a promising approach

for personalization and automation of glycemic control in critical care. Future research may benefit from apply-

ing a combination of methodologies and data sources to develop robust methodologies that account for the

variations seen in ICU patients and difficultly in detecting the extremes of observed blood glucose values.

Conclusion: We demonstrate that EMRs can be used to train ML algorithms that may be suitable for incorpora-

tion into ICU decision support systems.
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INTRODUCTION

Data science is expected to play a major role in enabling personal-

ized medicine in the critical care setting.1–3 Critically ill patients

who enter the intensive care unit (ICU) exhibit considerable hetero-

geneity, with large variation in treatment response among patients

with similar diagnoses.4 The widespread adoption of electronic med-

ical record (EMR) systems and the resulting accumulation of large

clinical datasets enables the development of data-driven, precision

medicine approaches to addressing clinical heterogeneity. By work-

ing well with the large size and complexity commonly found in

these, data machine learning (ML) has become the analytic tool of

choice.5

ML can play a role in tasks important in ICU precision medicine,

such as prediction and state estimation,6 subgroup discovery,3 and
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development of control algorithms.7 Glycemic control, an important

component of critical care, may benefit from all of these ML tasks

from the development of algorithms which provide individual pa-

tient glucose predictions to the detection early risk of hypo- or ex-

treme hyperglycemia, through individualized control algorithms. In

this article, we propose a blood glucose forecasting model, learnt di-

rectly from EMRs, with the aim that such models could be used for

decision support for management of patient blood glucose in the

ICU.

Glycemic control in the ICU is complex, with previous studies

using observational datasets demonstrating considerable variation

in ICU patient blood glucose levels. Stress-related hyperglycemia,

defined as blood glucose levels above 180 mg/dL,8 is common on

presentation to the ICU with 1 multi-ICU hospital reporting rates of

9% and 28.6% of nondiabetic and diabetic ICU patients over nearly

20 000 ICU admissions.9 Hyperglycemia evolved as an adaptive re-

sponse to acute trauma (the “fight or flight” response).10 However,

in ICU patients, hyperglycemia is a marker of increased morbidity

and mortality11 and is potentially harmful.12 As such, glycemic con-

trol is considered a core aspect of critical care,8,13 with insulin ther-

apy the primary approach to controlling blood glucose levels.8,14

However, a further complication is the risk that excessive treatment

may cause hypoglycemia, where blood glucose falls below 70 mg/

dL, with severe hypoglycemia (< 40 mg/dL) associated with in-

creased mortality.15 Hypoglycemia (< 70 mg/dL) has been reported

in 2% and 6% of diabetic and nondiabetic ICU patients on ICU en-

try9 and 21.3% of ICU patients at least once during their stay.16 As

a result, current approaches to glycemic control in the ICU empha-

size the avoidance of both hypoglycemia and the extremes of hyper-

glycemia.

Current guidelines on ICU glucose control were developed fol-

lowing a series of randomized controlled trials between 2001 and

2009 that investigated tight glucose control in the ICU.17–22 Follow-

ing evidence of an association between average blood glucose in the

range near 100 mg/dL and a reduction in ICU mortality, early trials

examining efforts to maintain glucose close to this range (within

�10 mg/dL, referred to as tight glycemic control [TGG]) found posi-

tive results.18 However, these were followed by further trials and ul-

timately the large multicentre NICE-SUGAR trial that reported

increased hypoglycemia and mortality in the TGG arm.17 The cur-

rent clinical consensus is to aim for more moderate control of < 180

mg/dL, with disagreement on the lower bound.8,14 However, while

NICE-SUGAR clearly demonstrated that TGG in general is not best

practice, there remain open research questions—in particular

around the role technology and algorithms can play in glycemic con-

trol.23,24

While a broad consensus has been reached that moderate glyce-

mic control should be the clinical standard, there is less evidence on

how to achieve and maintain control. Analysis of observational

datasets suggests evidence of variation in practice even within single

hospitals.9 A wide range of protocols and instruments used to

achieve control have been described in the literature, with clear evi-

dence of variation in effectiveness.25 There is an emphasis on using

insulin to achieve target blood glucose, with many protocols not ac-

counting for patient feeding,25 despite enteral feeding being fre-

quently interrupted in the ICU due to treatments.26 Indeed,

unplanned feeding reduction or interruption may lead to hypoglyce-

mia events.27,28 Further, there is evidence that variation in blood

glucose level (or associated metabolic states), independent of the tar-

get value, is associated with increased mortality.29,30 This suggests

that the development of data-driven approaches that can naturally

adapt to variations between and within ICU patients may augment

or outperform fixed protocols.

Previous work on developing algorithms for prediction of blood

glucose in ICU have largely focused on planned research studies

with frequent measures of blood glucose for a small number of sub-

jects rather than utilizing existing records for greater numbers of

subjects with much sparser measurements. A large body of literature

exists adapting physiology-based systems of ordinary differential

equations to the ICU settings.24,31–34 These models generally flow

between several idealized compartments such as blood glucose,

blood insulin, and interstitial insulin. While this approach may en-

able accurate predictions, it is difficult to account for additional

covariates that are outside the model, and the models generally con-

tain large numbers of parameters that are not identifiable from a

typical observational dataset, limiting their transferability between

different ICU subpopulations. The incorporation of clinical events,

for example administration of vasopressors, is important as these

may predict aspects of glucose response in the ICU.12 Data-driven

approaches to date have also been planned, such as prospective stud-

ies with a large number of measurements on small numbers of

patients.35–38 ML algorithms developed using EMRs offer an alter-

native, or combined approach, to planned studies, which can poten-

tially uncover new aspects important to glycemic control in the ICU

because they can readily account for a large number of input fea-

tures.

We present a purely data-driven method for predicting ICU pa-

tient response to glycemic control protocols using an observational

EMR dataset. Such models may enable personalization and automa-

tion of glycemic control in critical care. We use Catboost, given re-

cent evidence of its gradient boosting outperforming other ML

algorithms at forecasting in complex hierarchical time-series data-

sets and being relatively quick to train.39,40 Additionally, in order to

investigate the presence of patient heterogeneity and its impact on

predictive performance, we cluster the observed glucose trajectories

into subgroups and evaluate the ML algorithms on these groups.

MATERIALS AND METHODS

Data
Our dataset is constructed from the publicly available MIMIC-III

database (ethics approval was not required).41 There is variation in

the recording of insulin inputs between the EMR applications

(MetaVision and CareVue) used to construct MIMIC-III. In the

CareVue portion, it is difficult to determine exactly when insulin

was administered for some patients. As a result, the CareVue por-

tion of the 60 000 ICU admissions available in MIMIC-III were ex-

cluded. The resulting dataset comprises deidentified health data

associated with 18 691 ICU stays and 14 742 critical care patients at

Beth Israel Deaconess Medical Center in Boston, Massachusetts be-

tween 2008 and 2012.

The outcome of interest is the 2-hour ahead point of care blood

glucose at each 2-hour time-step from a patient’s entry to ICU (Fig-

ure 1). We predict the value and a 95% prediction interval, a range

of values in which we expect the observed value to fall 95% of the

time. The dataset includes a range of available input features, fully

listed in Supplementary Appendix A, including common point of

care physiological measures, laboratory results, mechanical ventila-

tion parameters, vasopressors, patient type, amount of dextrose in

IV infusions, enteral nutrition, parenteral nutrition and past values
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of point of care blood glucose, laboratory glucose, and insulin

inputs.

Insulin is recorded as intravenous (IV) infusion or push and bolus

injection, with short-, medium-, and long-acting variants available

for bolus injections and long and short for IV infusions and pushes.

Insulin is coded as the total amount over the 2-hour time intervals

for each of the 5 available route/type combinations. Aspects of the

dataset construction, in particular the type of insulin inputs, are

based on code made available by previous researchers.9,41 Nutri-

tional composition (total calories and percentage of carbohydrates,

sugar, fat, and protein) of enteral nutritional products come from

the manufacturers’ websites (full details listed in Supplementary Ap-

pendix B), while parenteral nutrition composition is as recorded in

the dataset or imputed based on average composition.

Missing data and irregular measurement frequencies are a com-

mon issue in analysis of EMRs.42 In order to deal with irregular

measurements, we carry forward the last value of each input feature

and calculate the elapsed time since that measurement. Both the

value of the input feature (possibly carried forward) and the elapsed

time are used as input features in model development. For blood glu-

cose, insulin, and nutritional intake features, we additionally carry

forward the previous 24 hours’ worth of values as new input fea-

tures in order to account for potential delays in action and correla-

tions over time (Figure 1).

Models
We develop 2 ML approaches using the Catboost gradient boosting

library.39 These models were chosen as they present alternative

approaches to predicting both a point estimate and uncertainty

quantification through probabilistic forecasting. The first is a Cat-

boost regression model with dual estimation of the expected out-

come and the standard deviation of the prediction distribution, the

‘uncertainty regression’ model.43 This form of estimation can be per-

formed using the class CatBoostRegressor with the argument

loss_function ¼ “RMSEWithUncertainty” in the Python ver-

sion of Catboost 2.4. The second model is a combination of quantile

regressions with models for quantiles of 0.025, 0.5, and 0.975, the

“quantile regression” model. This form of estimation can be per-

formed similar to the above, for example for the 0.975 quantile as

CatBoostRegressor (loss_function¼“Quantile: alpha¼0.95”, . . .).

For both the quantile and uncertainty model the glucose is modeled

as the (natural) logarithm transformed blood glucose, resulting in an

approximately normally distributed variable. Calculation of the

Box-Cox transformation exponent suggests an optimal transform of

�0.3, with the logarithm (corresponding to 0.0) being chosen to

simplify back-transformation.44 The point estimate (mean value) for

blood glucose is calculated as expðbl þ br=2Þ where bl and br are the

estimates of the mean and standard deviation on the logarithmic

scale. The 95% prediction interval is calculated as

Figure 1. Illustration of the model forecasting process. At each 2-hour time-step from a patient’s entry into ICU we forecast ahead 2 hours. The input features are

updated to account for up to 24-hour window of previous values for blood glucose, insulin, and nutritional intake features. For lab and bedside physiological fea-

tures, the most recently available measure is used. Abbreviations: Hx, history. Given that during the period of analysis blood glucose was typically measured by

clinicians at Beth Israel Deaconess on a 2- to 4-hourly schedule, we discretize the dataset to have a time-step every 2 hours.9 Time zero is a patient’s entry to ICU,

with any applicable laboratory results carried forward to time zero (see below).
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fexp bl � 2brð Þ; exp bl þ 2brð Þg. For the quantile model, the point esti-

mate is given by exp bq0:5 þ br=2ð Þ where br ¼ 0:5�jbq0:025 � bq0:975j,
with bq0:025 and bq0:975 corresponding to estimates of the 2.5th and

97.5th percentiles of the logarithm transformed glucose. The 95%

prediction interval is calculated as exp bq0:025ð Þ; exp bq0:975ð Þf g. Addi-

tionally, the performance of algorithms is benchmarked against us-

ing the previous blood glucose measure as the forecast (last

observation carried forward).

We perform analyses using R version 3.545 and Python version

3.7, prepare data using data.table version 1.18,46 produce graphics

using ggplot2 version 3.3,47 and fit the models using Catboost ver-

sion 2.4. Code for the analysis can be found at https://github.com/

oizin/glucose-data-driven-prediction.

Model validation
The dataset is randomly split into a 70% training (13 279 ICU

admissions) and 30% test (5682 ICU admissions) sets. Sample splits

are performed by ICU admission ID to avoid potential information

leakage. We evaluate all models on the test set only after finalization

of hyperparameter settings to ensure unbiased assessments of model

generalizability. As the algorithms were computationally expensive

to train, we perform hyperparameter tuning by randomly splitting

the training set into 80% development and 20% validation sets.

Performance metrics
We calculate several model performance metrics to assess the ability

of the model to accurately provide point estimates in clinically

meaningful circumstances, and to provide adequate indications of

prediction uncertainty. Clarke error grid analysis (CEGA) was

designed to compare a new blood glucose measurement method

with a reference standard.48 In this case, the model prediction corre-

sponds to the new approach, with the reference value—point of care

blood glucose measurement. CEGA divides predictions into 5

groups that are classified based on A) predictions within 20% of the

reference value, B) predictions that are outside of 20% but would

not lead to inappropriate treatment, C) predictions leading to unnec-

essary treatment, D) predictions that fail to identify a potentially

dangerous hypoglycemic or hyperglycemic event, and E) predictions

that would confuse hypoglycemia for hyperglycemia and vice versa.

We additionally report the root mean square error (RMSE), the

mean absolute percentage error (MAPE), median absolute deviation

(MAD), and the coverage of the 95% prediction intervals across the

entire sample and for specific blood glucose ranges. The RMSE and

MAD both quantify the average deviation of a prediction from the

measured value. However, the RMSE places relatively greater

weight on larger deviations compared to the MAD. The MAPE is

the MAD divided by the measured value, it is the “percentage

error.” Prediction interval coverage is calculated as the proportion

of time the observed blood glucose value falls inside the prediction

interval.

Performance by cluster
To assess the performance of the models across patient subgroups,

we cluster the ICU admission blood glucose trajectories using the

CLARA clustering algorithm.49 This algorithm is designed to scale

on large datasets by clustering on subsamples and then aggregating

the results across the whole dataset. The Euclidean distance is cho-

sen as the measure of similarity between patients. The number of

clusters is determined via the elbow method as the point of inflection

in the curve describing the decrease within cluster variation with the

number of clusters. We report the patient daily average blood glu-

cose level for day 1 and 2 of their ICU stay, diabetic status, and 30-

day mortality rate for each cluster.

Model interpretation
For each feature we calculate the associated change in the loss func-

tion that would occur with removal of the feature to assess its im-

portance in forecasting blood glucose.39

RESULTS

Cohort description
Our dataset includes 14 742 patients. Accounting for readmission,

the total number of ICU admissions is 18 691 with an average stay

of 3.9 days. Most admissions are nondiabetic (76.7%), and the co-

hort is evenly split between medical (42%) and surgical (46%) ICU

patients, with a small number of cardiac ICU admissions (11%).

There are 318 574 glucose measurement events, an average of 4.3

per patient per day with 22.5% of these above 170 mg/dL and 1.3%

below 70 mg/dL. Insulin is administered fairly frequently during

ICU admissions (37.0% of admissions), with the most common

route of insulin administration being bolus injection (31.3% of

admissions), followed by IV infusion (19.9% of admissions). Nutri-

tional intake information, in the form of enteral and parenteral nu-

trition, is present for 18.0% and 3.5% of admissions. Further details

on the cohort are available in Table 1 including a comparison of the

training and test splits. As with all EMR systems, absence of a re-

cord cannot be taken as absence of an event.41

Model performance
The overall performance of the models is outlined in Table 2. The

95% prediction intervals for the quantile regression and uncertainty

regression models include 94% and 93%, respectively, of the mea-

sured postadmission blood glucose values. There was no clear differ-

ence between the models in terms of point prediction error (MAPE

and RMSE), with the quantile regression model marginally better.

Both models perform best in the most frequently observed glycemic

range (100–200 mg/dL), followed by the hyperglycemic (� 200 mg/

dL) and then hypoglycemic ranges (< 70 mg/dL), with the uncer-

tainty regression model achieving MAPEs of 12.4%, 22.5%, and

96.3% for these ranges. Additionally, there is variation in model

performance by ICU admission type, with the uncertainty regression

model performance highest for surgical (including cardiac surgery)

(MAPE: 15.1%), followed by cardiac (MAPE: 17.9%) and medical

admissions (MAPE: 19.0%). We show further breakdown of the

results below (Figures 1–3) for the uncertainty regression model.

These illustrate that the majority (97.1%) of model predictions lead

to clinically acceptable decisions (Figure 2) and that the performance

of the model varies by observed blood glucose value with better per-

formance in terms of point prediction accuracy and prediction inter-

val coverage for blood glucose values in the range 100–200 mg/dL

(Figure 3). We see that due to the difficulty of predicting hypoglyce-

mic, and to a lesser extent, hyperglycemic events, the prediction

intervals are conservative in the range 100–169 mg/dL near and be-

low intended coverage (95%) elsewhere. We provide additional

model performance metrics stratified by factors such as admission

diagnosis, admission type, and temporal factors in Supplementary

Appendix.
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Performance by cluster
Based on the elbow method the blood glucose trajectories were clus-

tered into 3 clusters. Cluster descriptive statistics and performance

metrics are displayed in Table 3. Cluster 1 contained the largest per-

centage of diabetics and had the highest blood glucose values and

30-day mortality rates, with clusters 2 and 3 exhibiting increasingly

fewer diabetic admissions and lower mortality and blood glucose

values, respectively. Based on the MAPE and MAD, the model per-

forms best for patients in Cluster 2, those patients with the greatest

stability in their blood glucose measurements. Examples of observed

blood glucose values, forecasts, and the cluster means for 4 patients

are shown in Figure 4.

Model interpretation
The variable importance measures for the 30 most important fea-

tures are shown in Table 4.

DISCUSSION

We report a predictive ML algorithm using routinely collected EMR

data that takes as input a patient’s medical history during their ICU

stay, and at baseline, and forecasts blood glucose at 2-hour ahead

time-steps from ICU entry. The model achieves performance that is

comparable to previous models developed in planned research stud-

Table 1. Descriptive statistics of the analysis cohort

Description Overall Training Test

ICU admission characteristics

Number of ICU admissions 18 961 13 279 5682

Number of patients 14 742 10 938 5172

Age (median) 66 66 65

Female (%) 43.5 56.5 56.6

Male (%) 56.5 43.5 43.4

Type of ICU admission

Medical 8026 (42%) 5607 (42%) 2419

Surgical 8787 (46%) 6170 (46%) 2617

Cardiac 2148 (11%) 1502 (11%) 646

Type of admission

Elective 2774 (14.6%) 1996 (15.0%) 778 (13.7%)

Emergency/urgent 16 187 (85.0%) 11 283 (85.0%) 4904 (86.3%)

Diabetic status

Diabetic (%) 23.3 23.4 23.1

Nondiabetic (%) 76.7 76.6 76.9

Glycemic control

Number of serum blood glucose measurements 318 574 224 315 94 259

Above 170 mg/dL (%) 71 565 (22.5%) 50 429 21 136

Below 70 mg/dL (%) 4054 (1.3%) 2761 1293

Median number of serum blood glucose measurements per ICU admission (25th, 75th percentiles) 10 (5, 19) 10 (5, 19) 10 (5, 19)

Average blood glucose on day of ICU admission 139.1 mg/dL 138.9 mg/dL 141.7 mg/dL

Number above 170 mg/dL (%) 3518 (18.6%) 2427 (18.3%) 1091 (19.2%)

Number below 70 mg/dL (%) 55 (0.3%) 32 (0.2%) 23 (0.4%)

ICU admissions with insulin administered during stay 7030 (37.1%) 4982 (37.5%) 2048 (36.0%)

Infusion (average hours) 3775 (26.8) 2688 (26.4) 1067 (28.1)

Bolus injection (average times) 5952 (2.5) 4224 (2.5) 1728 (2.6)

IV push (average times) 2583 (2.6) 1882 (2.6) 701 (2.7)

Nutrition

ICU admissions with enteral nutrition 3398 (18.0%) 2405 (18.1%) 993 (17.5%)

ICU admissions with parenteral nutrition 655 (3.5%) 470 (3.5%) 185 (3.3%)

Other ICU admissions and treatments

ICU admissions with mechanical ventilation 8868 (46.8%) 6247 (47.0%) 2621 (46.1%)

ICU admissions with vasopressors administered 3449 (18.2%) 2432 (18.3%) 1017 (17.9%)

ICU stay outcomes

Average length of ICU stay 3.9 days 3.9 days 3.9 days

Died within 30 days of ICU stay 14.4% 14.4% 14.5%

Table 2. Model performance metrics for blood glucose forecasting models using forecast and observed blood glucose values from the test

dataset

Metric Quantile regression (Catboost) Uncertainty regression (Catboost) Last observation carried forward

RMSE (mg/dL) 49.7 49.9 65.5

MAPE (%) 16.5 16.8 21.2

MAD (mg/dL) 15.4 16.1 20.0

Coverage (nominal 95%) 94.0% 93.2% n/a
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ies using continuous blood glucose monitoring devices and, like

these, performs better for some patient groups and blood glucose

values with relatively poor performance for predicting hypoglyce-

mia.

Our proposed ML model demonstrates a high degree of accuracy

in forecasting blood glucose in the range 70–200 mg/dL. The overall

and surgical patient MAPEs of 16.5% and 15.1% for 2-hour fore-

casts of serum blood glucose compares with 15.9% (for a 135-min

forecast) achieved in a planned research study on surgical ICU

patients using continuous glucose monitoring.35 While other re-

search has achieved lower error margins, this was through shorter

forecasting timeframes (30–75 min) reducing comparability.36–38

The current approach aimed to have the potential to assist with gly-

cemic control as practiced in the ICUs studied, with the forecast

timeframe a lower bound on the frequency of observed blood glu-

cose measurement.9 As assessed using CEGA, the majority of predic-

tions (97.2%) will lead to a clinically appropriate response. The use

of prediction intervals is a strength, with quantification of uncer-

tainty important for glycemic prediction due to potentially complex

dynamics decreasing point prediction performance50 and the pres-

ence of measurement error.23

One strength of data-driven approaches to glucose prediction in

the ICU is the ability to incorporate a wide range of predictor varia-

bles, as seen in previous research.35–38 This contrasts with mathe-

matical modeling approaches that generally rely on previous blood

glucose measures along with insulin and glucose intake informa-

tion.24 However, as noted in previous research,35 a risk of ML meth-

ods is their “black-box” nature and the potential learning of

spurious relationships local to the dataset. Indeed, an approach to

comprehensive interrogation (from a physiological standpoint) of

the data-driven approaches used in the past research is missing from

the literature. In the current research, the variable importance meas-

ures are unsurprising, with previous measures of blood glucose, dex-

trose/carbohydrate intake, diabetes, insulin, and patient weight

being of high predictive importance. The presence of ICU unit type

as a relatively important feature may account for variation in patient

characteristics and treatment patterns unaccounted for in the mod-

eled input features.

Our model performs best in cardiac surgical ICU patients. Gen-

erally, these patients are seen as the least critically ill51 and have

been a focus of several previous studies using data-driven methods

to forecast blood glucose in the ICU.35,36,38,52 However, no previous

articles have compared predictive performance between medical and

surgical patients for large numbers of patients. The greater stability

in their metabolic state may ease forecasting through less shift in

their blood glucose distribution over time or with treatment (eg, in-

sulin). Blood glucose in metabolically unstable groups, such as

patients with diabetic ketoacidosis (MAPE: 26.5%), or emergency

compared to elective admissions in general (MAPE: 17.3% vs
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15.0%), is more difficult to predict. Previous theoretical research us-

ing dynamic models has shown that time dependent variations in in-

sulin resistance and feeding patterns common to ICU patients can

result in complex glucose responses.32,50,53This further highlights

the importance of quantifying uncertainty.

EMRs are a messy data source not designed for medical research.

However, the current research has highlighted their practical value

in the development of predictive models. A major strength of the

current ML based approach is the easy incorporation of large num-

bers of input features which can be modeled without manual feature

engineering. Further, the model easily accounted for the irregularly

recorded and missing data common in EMRs. With up to 60% of

blood glucose measurements not observed at every 2-hour time-step,

this was of vital importance. Indeed, the model achieved a level of

performance comparable to previous planned research studies based

on extensive measurement of a small number of patients. This dem-

onstrates that using sparser data from many patients should be a key

aspect of future research on glycemic prediction or control algo-

rithms. The current research has limitations. As noted, performance

was worse for more extreme values of blood glucose. In order to

have clinical utility, it is important that the model can detect hyper-

glycemia and hypoglycemia. Detection of hyperglycemia was only

slightly worse than values in the ICU normal blood glucose range.

However, similar to previous research, our point estimates were un-

able to detect hypoglycemia at 2-hour forecasts.35 However, by fore-

casting an interval, we increase the potential to flag circumstances in

which hypoglycemia is a risk, with 41% of hypoglycemic events

captured within the prediction intervals. A postanalysis investigation

Table 3. Cluster descriptive statistics and model performance metrics for the uncertainty regression model

Cluster 1 Cluster 2 Cluster 3

Cluster descriptive statistics

% of admissions 26.8 51.8 21.4

Mean (SD) blood glucose

Day 1 200.6 (80.0) 131.8 (96.0) 104.5 (30.4)

Day 2 170.2 (69.5) 133.6 (42.5) 120.5 (42.5)

Day 3 163.5 (64.5) 133.6 (43.7) 124.4 (43.1)

Diabetic (%) 44.4 22.9 11.0

Died within 30 days of ICU stay 17.8 15.5 9.4

Model performance metrics

RMSE (mg/dL) 47.7 58.7 30.2

MAPE (%) 18.6 15.4 16.7

MAD (mg/dL) 21.1 14.2 13.9

Coverage (nominal 95%) 92.5 93.8 93.2

A B

C D

Figure 4. Example glucose and prediction trajectories for 4 patients. The model forecasts blood glucose in 2 hours, and these graphs unroll the predictions over a

48-hour period: (A) is a patient from Cluster 1, (B) and (C) are patients from Cluster 2, (D) is a patient from Cluster 3. The red dashed lines indicate the relevant

cluster mean trajectories.
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of a 2-hour ahead hypoglycemic prediction model showed poor

results with the model unable to do more than predict the base rate

of �1.3% (Supplementary Appendix D). This difficulty of forecast-

ing hypoglycemic clearly warrants further research and analysis. An

issue is ensuring the accuracy of a hypoglycemic reading, with the

potential that bedside capillary measurements are not an accurate

enough tool in critically ill patients.54 Indeed, previous research has

identified poor perfusion as a cause of inaccurate hypoglycemia

measurements.55 In the current study patients, the average diastolic

blood pressure was 56.8 mmHg during hypoglycemic events com-

pared with an average measure of 60.4 mmHg. Alternatively, oscil-

lation in blood glucose, as seen in theoretical ultradian insulin–

glucose dynamic model studied in previous research53 may account

for transient hypoglycemia.

It is also important to consider the extent to which these results

are dataset specific. As the data are from a single institution, the de-

gree to which institutional factors impact the results cannot be quan-

tified. There exists evidence of variation in glycemic control

protocols between institutions,26 and future research would be re-

quired to investigate the degree of model retraining required to

adapt to local protocols. The dataset also constrained the timeframe

of predictions. Previous research using continuous blood glucose

monitoring devices could be trained on and, hence, predict blood

glucose every 5 min for up to 2 hours. Using a sparsely measured

EMR to predict over such short time frames would likely be an

unjustifiable extrapolation given evidence of nonlinear glucose dy-

namics.53 Both of these limitations point a way forward for future

research. Through pooling EMRs from several institutions, along

with data from continuous blood glucose monitoring devices (for

potentially a subset of a patients), we may be able to develop robust

predictive models.

CONCLUSION

In conclusion, we demonstrate that EMRs can be used to develop blood glu-

cose prediction models that achieve a high degree of accuracy. There is strong

potential for developing EMR-based ICU decision support systems for glyce-

mic control and other key ICU physiological parameters. The uncertainty in

blood glucose dynamics necessitates the quantification of uncertainty in any

forecasts which we demonstrate can be achieved using ML tools. There re-

main challenges, such as detection of hypoglycemia and assessing the impact

of variation of institutional glycemic control policies on model performance.

Future research on glycemic control will benefit from greater emphasis on in-

corporation of real-world data, such as those from EMRs.
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