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Abstract: The sexual morph Leptosphaeria taiwanensis Yen and Chi and its asexual morph Stagonospora
tainanensis W. H. Hsieh is an important necrotrophic fungal phytopathogen, which causes sugarcane
leaf blight, resulting in loss of cane tonnage and sucrose in susceptible sugarcane varieties. Decoding
the genome and understanding of the basis of virulence is vitally important for devising effective
disease control strategies. Here, we present a 38.25-Mb high-quality genome assembly of S. tainanensis
strain StFZ01, denovo assembled with 10.19 Gb Nanopore sequencing long reads (~267×) and 3.82 Gb
Illumina short reads (~100×). The genome assembly consists of 12 contigs with N50 of 2.86 Mb of
which 5 belong to the telomere to telomere (T2T) chromosome. It contains 13.20% repeat sequences,
12,543 proteins, and 12,206 protein-coding genes with the BUSCO completeness 99.18% at fungi
(n = 758) and 99.87% at ascomycota (n = 1706), indicating the high accuracy and completeness of our
gene annotations. The virulence analysis in silico revealed the presence of 2379 PHIs, 599 CAZys,
248 membrane transport proteins, 191 cytochrome P450 enzymes, 609 putative secreted proteins, and
333 effectors in the StFZ01 genome. The genomic resources presented here will not only be helpful for
development of specific molecular marker and diagnosis technique, population genetics, molecular
taxonomy, and disease managements, it can also provide a significant precise genomic reference for
investigating the ascomycetous genome, the necrotrophic lifestyle, and pathogenicity in the future.

Keywords: Stagonospora tainanensis; sugarcane leaf blight; pathogenicity; Nanopore sequencing;
genome assembly

1. Introduction

Sugarcane (Saccharum spp. hybrids), cultivated in more than 120 countries, is a
crucial sugar crop accounting for 80% of the world’s and nearly 90% of China’s sugar
production [1,2]. Similar to other crops, sugarcane is also exposed to many different
diseases during cultivation. Among them, fungal diseases are the most serious due to
the production of a large number of conidia, which can be transmitted by air, wind, and
the splash of water during rain, and lead to the elimination of many elite cultivars [3–6].
Unlike the stalk-infected diseases, such as smut and pokkah boeng caused by Sporisorium
scitamineum and Fusarium sp., respectively, which lead to serious economic losses almost
every year in susceptible varieties, the foliar diseases are confined to leaves and outbreaks
in susceptible varieties during monsoon, which increase wounds and humidity, a steady
stream of wet weather and after the monsoon season. It means that the foliar diseases
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do not cause outbreaks every year and thus the economic repercussions caused by them
are uncertain. Therefore, less attention has been paid to the foliar diseases especially for
those with limited distribution, such as sugarcane leaf blight (SLB). However, we note an
increasing concern of foliar diseases in sugarcane due to minor diseases becoming major
diseases. For example, pokkah boeng was a minor disease in past decades [7], but it has
become a major disease in India [8,9]. The first severe outbreaks of brown rust caused
by Puccinia melanocephala on sugarcane were reported in 1978 in Florida [10] and recently
reported in India [11]. Orange rust caused by Puccinia kuehnii was also considered a minor
disease in most countries, including Australian before 1999; however, severe epidemics
occurred in cultiver Q124 during 1999–2001, which resulted in 50% of yield losses, overall
losses estimated to be A$150–210 millions [4], and an outbreak of this disease in America in
2007 [12]. Additionally, brown spot caused by Cercospora longipes was found to be alarming
in India [13], peanut collar rot caused by Aspergillus niger in Asia [14,15], and brown stripe
caused by Helminthosporium stenospila have been major diseases in China [16]. Similarly,
SLB has been alarming recently in Yunnan and Guangxi provinces in China, due to the
changed climate and the expansion of susceptible varieties, such as Guitang42, Taitang25,
and Liucheng03-182 [16].

Sugarcane leaf blight caused by Stagonospora tainanensis was first reported in the year
1952 in Taiwan, China, and its asexual morph was first named Cercospora tainanensis [17]
and then changed to S. tainanensis W. H. Hsieh, according to the further study on the
isolates and inoculation, together with the pathogenic morphological features [18]. It
occurred through the year in the east coast area with high rainfall, but not in the west
coast area with less rain fall. The prevalence conditions for SLB were similar to that of the
disease of Stagonospora nodorum blotch caused by Stagonospora. nodorum in wheat [19,20]
of which the sexual morph is Leptosphaeria nodorum [21]. For a long time, research on
SLB has been limited to pathogen isolation and identification, although it is one of the
most harmful fungal diseases threatening the sugarcane industry and causing high cane
yield and sugar losses in susceptible cultivars [17,22] because the pathogenic conidia
are highly virulent, cause blight symptoms on sugarcane leaves, and result in loss of
photosynthetic capacity [23]. Morphologically, S. tainanensis is an ascomycete, belonging
to Stagonospora of Phaeosphaeriaceae within the class Dothideomycetes and the order
Pleosporales. Its asci are slightly curved, 62–115 × 21–33 µm in size, born in scattered and
dark brown perithecia [22]. Each ascus contains eight fusiform bent ascospores with one
septum and its cylindrical conidia are straight to slightly curved in shape with three septa
generally, containing three to eight oil droplets [20]. Recently, the efficient PCR detection
technology of S. tainanensis and SLB were developed based on genomic information [24],
and identification of SLB-resistance associated loci/genes were reported [25,26]. These will
advance our understanding of the molecular mechanisms of pathogen infection and host
resistance.

In the recent 10 years, the revolutionary progress of the third-generation sequencing
(TGS) technologies led by PacBio and Oxford Nanopore Technology (ONT) has brought
genome research into a new era [27,28]. Third-generation sequencing can produce long
reads from 10 kb to 1 Mb, which dramatically reduce the time and cost for genome as-
sembling and thus makes it possible to finish a high-quality non-model fungus genome
assembly of approximately 50 Mb for a small lab [29]. For a model plant pathogenic fungi,
such as Pyricularia oryzae and Fusarium graminearum, TGS-based chromosome-level refer-
ence genome and more than 100 genome assemblies are available in NCBI [30–33]. For
fungi in the Massarinaceae family, only three species, including Byssothecium circinans [34],
Massarina eburnea [35], and Stagonospora sp. [36], have been reported. However, in our
studied genus Stagonospora, only S. nodorum, a model species of necrotrophic Pleosporales
pathogens, had been sequenced. Additionally, S. nodorum genome was the first Doth-
ideomycete genome, which was sequenced in 2005 and published in 2007 [37], and had a
revolutionary impact on the understanding of this important pathogen and other fungal
pathogens due to the limited genomic information available.
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Until now, the genome of S. tainanensis has not been publicly available. In this study, we
employed Nanopore sequencing and Illumina sequencing together to finish a near telomere-
to-telomere chromosome-level genome assembly and RNA-seq based gene annotation of
this necrotrophic infecting fungus S. tainanensis strain StFZ01. It can provide a more precise
understanding of the pathogen and the fungal pathogenicity and can offer a series of
putative proteins in the fungal pathogenesis, such as effectors, and it is thus beneficial for
developing a new disease management strategy and for sugarcane improvement of leaf
blight resistance.

2. Materials and Methods
2.1. Sample Preparation and Sequencing

Sugarcane leaf blight-susceptible sugarcane cultivar Yuetang93-159 was planted in
Fuzhou, China (26◦5′0′′ N, 119◦13′45′′ E) and the S. tainanensis strain StFZ01 was collected
from its leaves with the typical symptoms of SLB. After the isolates were testified using
ITS detection (Figure 1) and by pathogenic morphology [24], one assigned as StFZ01
was used for genome sequencing and analysis. The fresh mycelia cultivated on potato
dextrose broth (PDB) media was collected for DNA and RNA extraction. For long-read
genomic sequencing, high-quality genomic DNA was extracted using Ligation Sequencing
Kit (SQK-LSK110), then BluePippin DNA size selection system was used to select large
DNA fragments (>20 kb) for sequence library preparation following the manufacturer’s
instructions, and the sequencing was conducted on PromethION sequencing platform from
Oxford Nanopore Technologies (ONT). For Illumina short-read sequencing, genomic DNA
and mRNA were extracted, purified, and prepared for sequencing libraries using Illumina
DNA Prep Kits (Illumina, Inc., San Diego, CA, USA) and Illumina Stranded mRNA Prep
(Illumina, Inc., San Diego, CA, USA), respectively. Illumina genomic DNA sequencing and
RNA-seq were performed on the Illumina HiSeq 3000 sequencing platform (350 bp library
and PE150 strategy).

2.2. Genome Size Estimation

The genome size of strain StFZ01 was estimated using GenomeScope v2.0 [38] based
on the k-mer frequencies of genomic Illumina short reads (k = 21, p = 1) computed by KMC
v3.1.1 [39].

2.3. De Novo Genome Assembly

The de novo assembly of ONT long reads was performed using NextDenovo v2.5.0
(https://github.com/Nextomics/NextDenovo) (accessed on 10 January 2022) with the
“correct-then-assemble” strategy. Then, base errors (SNPs/Indels) of the draft genome
assembly were fixed by NextPolish v1.4.0 [40] using both ONT long reads and Illumina
short reads (task = best model) to generate a high-continuity and high-accuracy genome
assembly of strain StFZ01.

2.4. Genome Completeness Assessment

The software Benchmarking Universal Single-Copy Orthologs (BUSCO) v5.3.2 [41]
was used to evaluate the completeness of the genome assembly and annotated genes with
the lineage dataset of fungi_odb10 (n = 758) and ascomycota_odb10 (n = 1706). Furthermore,
the completeness of the genome assembly was also assessed by mapping of sequenced
reads. RNA-Seq reads were aligned to the repeat-masked genome assembly using HISAT2
v2.2.1 [42]. The ONT long reads and genomic Illumina short reads were mapped to the
unmasked genome assembly with minimap2 v2.21-r1071 [43] and BWA-MEM2 v2.2.1 [44],
respectively (Table S1).

Telomeric repeats (5′-TTAGGG-3′)n or (5′-CCCTAA-3′)n were searched at both ends
of the contigs. The gapless contig ending with telomeric repeats should be an telomere-to-
telomere (T2T) chromosome [45].

https://github.com/Nextomics/NextDenovo
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phylogenetic tree analysis (bootstrap = 1000) conducted by MEGA v11 (https://www.megasoftware.
net/) (accessed on 17 August 2022) based on ITS sequences with high similarity collected from NCBI.
Table S1 Summary of sequencing reads.

2.5. Repeat Masking

Transposable element (TE) of the StFZ01 genome was annotated using a combi-
nation of ab initio and homology-based methods. First, a high-quality ab initio TE li-
brary was constructed with RepeatModeler v2.02 [46]. Next, RepeatMasker v4.1.2-p1
(http://repeatmasker.org/) (accessed on 20 April 2021) was applied to perform a homology-
based TE search throughout the StFZ01 genome using the ab initio TE database. Finally, The
StFZ01 genome was repeat-masked as the hard-masked (repeat sequences replaced with
N) sequence used in mapping of RNA-seq reads and the soft-masking (repeat sequences
masked as low case) genome for gene annotation.

2.6. Annotation of Protein-Coding Genes

Protein-coding genes were annotated using BRAKER v2.1.6 genome annotation
pipeline [47], which integrates both ab initio gene predictions generated by Augustus
v3.4.0 [48] and GeneMark-ET [49], and gene structure evidence, including fungal homolo-

https://www.megasoftware.net/
https://www.megasoftware.net/
http://repeatmasker.org/
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gous protein sequences in fungi_odb10 (https://busco-data.ezlab.org/v5/data/lineages/)
(accessed on 31 December 2021) as well as a de novo transcriptome assembly generated
from RNA-seq data in this study.

2.7. Identification of Non-Coding RNAs

Transfer RNAs (tRNAs) were identified by tRNAscan-SE v2.0.9 with eukaryote param-
eters [50]. Ribosomal RNA (rRNA) and other non-coding RNAs (ncRNAs) were predicted
using Infernal v1.1.4 [51] by searching against the RNA families database Rfam v14.8 [52].

2.8. Functional Annotation of Protein-Coding Genes
2.8.1. General Functional Annotation

Gene Ontology (GO) and Pfam terms were grouped into categories based on results
from InterProScan v5.55-88.0 [53]. EuKaryotic Orthologous Groups (KOG) were annotated
by eggNOG-mapper v2 [54]. The predicted protein-encoding genes were assigned KEGG
(Kyoto Encyclopedia of Genes and Genome) using KofamKOALA [55], then these KOs
were used to reconstruct KEGG metabolic pathway maps at KEGG Mapper Reconstruction
online web service (https://www.genome.jp/kegg-bin/find_pathway_object) (accessed
on 8 June 2022).

2.8.2. Fungal Pathogenicity-Related Gene Annotation

Annotation of pathogenicity-related genes was conducted by DIAMOND v2.0.11 [56]
against a set of databases including PHI-base v4.12 (http://www.phi-base.org/) (accessed
on 21 September 2021), dbCAN2 (https://bcb.unl.edu/dbCAN2) (accessed on 31 July
2022), and TCDBs (https://tcdb.org/) (accessed on 31 July 2022) for identification of
pathogen–host interaction related genes (similarity ≥ 30% and alignment length ≥ 100 aa),
carbohydrate-active enzymes (CAZys) (verified by HMMER v3.1b2 [57] via bCAN and
dbCAN-sub databases, number of tools ≥ 2), and membrane transport proteins (similar-
ity ≥ 50% and alignment length ≥ 200 aa), respectively.

The putative secreted proteins were identified following a pipeline in the previous
study [30], of which proteins with signal peptide and without transmembrane helix were
identified by SignalP v5.0 [58] and TMHMM v2.0 [59], respectively, and those with extra-
cellular location were identified using ProtComp v9.0 from MolQuest v2.4 (Softberry Inc.,
New York, USA). Furthermore, these effectors were further scanned by EffectorP v3.0 [60]
and divided into cytoplasmic and apoplastic effectors.

2.8.3. Secondary Metabolite Biosynthetic Gene Clusters Analysis

Online web service (https://fungismash.secondarymetabolites.org) (accessed on 8
June 2022) of AntiSMASH v6.0 [61] for fungi was employed for identification of secondary
metabolite biosynthetic gene clusters (SMBGCs).

2.9. Comparative Genomic Analysis

Whole-genome protein sequences of nine fungi species, including three of the Massari-
naceae family and six of the Pleosporaceae familiy in the Pleosporales order, were downloaded
from NCBI (Table S2). The longest proteins for each gene were selected and clustered
using OrthoFinder v2.5.4 [51] with the following parameters: -S diamond, -M msa [62].
Single-copy core orthologous proteins were aligned using MAFFT v7.490 [63] and then the
phylogenetic tree of species was constructed with FastTree v2.1.11 [64] and visualize by
Interactive Tree Of Life (iTOL) v6.5.8 online services [65].

3. Results and Discussion
3.1. The Morphology of the Pathological Lesions and Pathogenic S. tainanensis Used for
Genome Sequencing

The typical single mature or early-mature lesion of sugarcane leaf blight on the infected
leaves caused by S. tainanensis is spindly and elongated, which is observed on variety

https://busco-data.ezlab.org/v5/data/lineages/
https://www.genome.jp/kegg-bin/find_pathway_object
http://www.phi-base.org/
https://bcb.unl.edu/dbCAN2
https://tcdb.org/
https://fungismash.secondarymetabolites.org
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Yuetang93-159 (Figure 2A). The color of pathological leaf tissues was found to change from
early yellowish to yellow, then to red-brown (Figure 2B). Therefore, the typical symptoms
of SLB are relatively easy to identify in later stages of lesion development (Figure 2B). The
mycelia of the pathogenic S. tainanensis strain StFZ01 used for DNA isolating were collected
from the culture growth on PDA agar medium (Figure 2C) and the pathogenic conidia
(Figure 2D), and sexual asci and ascospores (Figure 2E) were observed.
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Figure 2. The phenotypic symptoms of sugarcane leaf blight (SLB) on sugarcane cultivar Yuetang93-
159 initiated by Stagonospora tainanensis and the morphological characteristics of the strain StFZ01.
(A) The phenotypic symptoms of SLB on plants. (B) Development of the lesions of SLB on leaves.
(C) The pathogenic colony and mycelia. (D) The pathogenic conidia. (E) The sexual asci and
ascospores.

3.2. Genome Sequencing and Assembly

After quality control, a total of 10.19 Gb clean ONT long reads (depth: ~267×, N50:
21,784 bp, maximum length: 133,873 bp) were used for de novo genome assembly, 3.82 Gb
Illumina short reads (depth: ~100×, 2× 150 bp) for estimation of genome size and polishing
of draft genome assembly, and 6.08 Gb RNA-seq reads (2 × 150 bp) for gene annotation
(Figure 3A and Table S1).

We estimated genome size of S. tainanensis strain StFZ01 to be 40,445,307 bp (Model
fit = 98.13%, ploidy = haploid), based on k-mer distribution (k = 21, average k-mer depth
76×) of Illumina short reads (Figure 3B and Table S3). The estimated repeat is 19.09%
(7,720,991 bp) of the genome sequence. The 38.25 Mb genome assembly (GC: 51.49%) of
StFZ01 contained 12 contigs with N50 of 2.86 Mb (L50 = 4), N90 of 2.11 Mb (L90 = 10), and a
maximum contig of 7.12 Mb (Table 1 and Figure 3C). The length of genome assembly is
slightly smaller than the estimated genome size (94.58% of 40,445,307 bp). Its genome size
is comparable to another species S. nodorum (37.21 Mb) in the same genus and Bipolaris
maydis (36.23 Mb) causing Southern corn leaf blight [66], but smaller than the Leptosphaeria
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maculans (45.12 Mb), a pathogenic fungus closely related to S. nodorum, and much smaller
than the genomes of Colletotrichum higginsianum (53.4 Mb) and Colletotrichum graminicola
(57.4 Mb) [67].
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(B) Genome size estimation with NGS genomic reads; (C) Circos plot of genome assembly features.
Circles from outside to inside present contigs (1st circle, the smallest contig ctg12 was not shown),
distribution of protein-coding genes (2nd), TEs (3rd), and putative secreted proteins (4rd) per 50 kb
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the synteny blocks (≥10 kb) between different contigs.

Table 1. Genome Assembly Features of Stagonospora Tainanensis Strain StFZ01.

Features StFZ01

Assembly size (bp) 38,252,541
Contig number 12
Contig N50 (bp) 2,858,663

L50 4
Contig N90 (bp) 2,113,312

L90 10
Average contig length (bp) 3,187,712

Maximum contig length (bp) 7,120,155
GC content 51.49%

Repeat sequences 13.20%
Protein-coding genes 12,206

tRNAs 162
rRNAs 142

Other ncRNA 43

A total of nine contigs (ctg1-ctg9) were found to start or end with telomeric repeat,
(5′-TTAGGG-3′)n or (5′-CCCTAA-3′)n, of which five contigs (ctg1, ctg3, ctg5, ctg6, ctg7, and
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ctg9) contain telomeric repeats at both contig ends, indicating that these contigs reached
perfect gapless T2T chromosome level [45] (Table S4).

3.3. Genome Quality Assessment

The BUSCO completeness values were estimated to be 99.34% at fungi (n = 758) and
97.54% at ascomycota (n = 1706) for genome assembly of StFZ01 (Figure 4A). All clean
ONT long reads and Illumina genomic reads were aligned to unmasked genome assembly,
and the mapping rate of ONT long reads and Illumina genomic reads are 99.20% and
99.02%, respectively (Figure 4B and Table S1). Furthermore, one RNA-seq sample of StFZ01
was mapped to repeat-masked genome assembly, and 91.89% (85.9% properly paired) of
RNA-seq reads showed unique mapping to gene regions (Figure 4B and Table S1). All of
these results attest to the high continuity and completeness of our assembled genome.
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3.4. Repeat Analysis

Repetitive sequences were identified using a combination of ab initio and homology-
based approaches. In total, 13.20% (5,048,126 bp) of the assembled StFZ01 sequences were
annotated as repeat sequences (Tables 1 and 2), which is less than the C. graminicola (22.3%)
but more than the C. higginsianum (9.1%) [67]. Interspersed repeats, as the major compo-
nent (90.41% of total repeats) were found to account for 11.28% of the genome, including
1,927,917 bp long terminal repeats (LTRs), 1,242,571 bp DNA transposons, 498,662 bp
long interspersed nuclear elements (LINEs), 12,515 bp short interspersed nuclear elements
(SINEs), and 1,242,571 bp unclassified interspersed repeats (Table 2). The dynamic poly-
morphism of repeat insertion in phytopathogenic fungi usually associated with virulence
variations, hence, high frequent interspersed repeats will be candidate DNA markers for
identification of different virulent strain, similar to Pot2 rep-PCR fingerprinting analysis
in rice blast fungus [68]. In addition, we identified several types of non-coding RNAs,
including 162 tRNAs, 142 rRNAs, and 48 other ncRNAs (Table 1).
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Table 2. Repeats Identified in Stagonospora Tainanensis Strain StFZ01.

Features Count Length (bp) Percentage (%)

Interspersed repeats

SINEs 1 62 12,515 0.03
LINEs 2 288 498,662 1.30

LTR 3 elements 2592 1,927,917 5.04
DNA transposons 1101 1,242,571 3.25

Unclassified 3246 882,135 2.31

Tandem repeats

Small RNA 137 111,320 0.29
Simple repeats 7496 312,397 0.82

Low complexity 1175 60,609 0.16
Total repeats - 5,048,126 13.20

1 short interspersed nuclear elements; 2 long interspersed nuclear elements; 3 long terminal repeat.

3.5. Gene Structural Annotation

In total, 12,206 high-confidence protein-coding genes were predicted by the BRAKER2
pipeline, which was more than the Magnaporthe grisea PMg_Dl (10,218) though its genome
size (38.25 Mb) was less than the M. grisea (47.89 Mb) [69], and this phenomenon was also
observed in the other necrotrophic fungal pathogen Pyrenophora teres f. teres (41.95 Mb
size, 11,799 genes) [70] and L. maculans ‘brassicae’ WA74 (44.20 Mb size, 10,624 genes) [71].
However, the gene number and the genome size of S. tainanensis were comparable to
M. oryzae (on average 12,684 genes, 40.12 Mb size) [72]. In addition, this number is less
than the other species in the same genus Stagonospora, i.e., model species S. nodorum SN15
(37.02 Mb size, 17,580 genes) (https://www.ncbi.nlm.nih.gov/assembly/GCA_016801
405.1/) (accessed on 30 August 2022), substantially higher than the known filamentous
fungi though the gene number changed from first 10,792 supported by EST [35] to 12,382
supported by integrated multidimensional omics [73] and now 17,580 [74], while the
gene number was comparable to the other typical species in filamentous fungi. These
genes encode 12,543 proteins and 97.42% (11,891) of genes were predicted, encoding only
one protein isoform. Only 315 genes were predicted with alternatively spliced protein
isoforms, including 294 genes encoding two protein isoforms, 20 genes encoding three
protein isoforms, and only 1 gene encoding 4 protein isoforms (Table S5). The number of
exons per gene ranged from 1~18, and most genes contained 1~5 exons (Table S6). The
BUSCO completeness of genes is 99.18% at fungi (n = 758) and 99.87% at ascomycota
(n = 1706) (Figure 4A), indicating high accuracy and completeness of our gene annotations.

The gene distribution is not uniform on the contigs. In most cases, it is opposite to
the distribution of repetitive sequences, especially in the repeat-riched telomeric region at
both ends of the contig, which contains almost no genes (Figure 3C). This phenomenon is
common in repeat-rich pathogenic fungi, such as like rice blast fungus P. oryzae [30] and
soil borne plant pathogen Verticillium dahliae [75].

In addition, no protein-coding gene was identified in the smallest contig ctg12
(154,536 bp). Blastn against with NCBI nr database revealed it is mitochondrion DNA, the
most similar sequence is mitochondrion from B. sorokiniana (NC_047242.1, 92.83% similarity
and 26% coverage). Thus, we did not show it in the genome circos plot (Figure 3C).

3.6. General Gene Functional Annotation

W General gene functional annotation estimated that 69.24% (8452) of genes con-
tain conserved protein domains, and 41.95% (5121) were classified by GO terms, with
36.40% (4443) mapping to KEGG pathways and 74.37% (9078) assigned to KOG categories
(Tables 3 and S7–S10).

https://www.ncbi.nlm.nih.gov/assembly/GCA_016801405.1/
https://www.ncbi.nlm.nih.gov/assembly/GCA_016801405.1/
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Table 3. Summary of Gene Functional Annotation.

Annotation Gene Number Percentage (%)

Pfam 8452 69.24%
GO 1 5121 41.95%

KEGG 2 4443 36.40%
KOG 3 9078 74.37%

CAZys 4 599 4.91%
PHIs 5 2379 19.49%

Cytochrome P450 enzymes 191 1.56%
Membrane transport proteins 248 2.03%

Putative secreted proteins 606 4.96%
Effectors 332 2.72%

SMBGCs 6 58 0.48%
1 Gene Ontology; 2 Kyoto Encyclopedia of Genes and Genome; 3 EuKaryotic Orthologous Groups; 4 Carbohydrate-
Active enZymes; 5 Pathogen–Host Interaction genes; 6 Secondary Metabolite Biosynthetic Gene Clusters.

The top five GO annotations mainly referred to protein transport and binding activity,
including ‘transmembrane transport’ (562 genes), ‘transmembrane transporter activity’
(417 genes), ‘ATP binding’ (466 genes), ‘protein binding’ (446 genes), and ‘zinc ion binding’
(313 genes) (Table S11). The top KEGG annotation referred biosynthesis pathway, including
‘biosynthesis of secondary metabolites’ (325 genes), ‘microbial metabolism in diverse
environments’ (179 genes), ‘biosynthesis of cofactors’ (113 genes), and ‘biosynthesis of
amino acids’ (105 genes) (Table S12).

KOG annotated genes were divided into 24 categories of which, ‘E: Amino acid trans-
port and metabolism’ (527 genes), ‘G: Carbohydrate transport and metabolism’ (702 genes),
‘O: Posttranslational modification, protein turnover, chaperones’ (605 genes), ‘Q: Secondary
metabolites biosynthesis, transport and catabolism’ (675 genes), and ‘U: Intracellular traf-
ficking, secretion, and vesicular transport’ (489 genes) were top five terms associated with
candidate pathogenicity-related genes (Figure 5A).
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The Pfam annotation revealed a set of candidate pathogenicity-related genes, including
‘Cytochrome P450′ (191 genes) (Table S13), ‘fungal Zn(2)-Cys(6) binuclear cluster domain’
(183 genes), ‘fungal specific transcription factor domain’ (124 genes), ‘Sugar (and other)
transporter’ (92 genes), and ‘WD domain, G-beta repeat’ (91 genes) (Figure 5B).

3.7. Annotation of Pathogenicity-Related Genes

To understand the pathogenicity mechanism of S. tainanensis, we identified a large
number of pathogenicity-related proteins, including 599 CAZys, 248 membrane transport
proteins, and 2379 PHIs (Table 3), and the number of CAZys was more than in the M. grisea
(539) [59]. CAZys mainly consisted of 280 (46.20%) glycoside hydrolases (GHs), 163 (26.90%)
auxiliary activities (AAs), 93 (15.35%) glycosyl transferases (GTs), and 51 (8.42%) carbohy-
drate esterases (CEs) (Figure 6A and Table S14). The top three membrane transport proteins
included 33 ‘The Major Facilitator Superfamily (MFS)’, 15 ‘The Mitochondrial Carrier (MC)
Family’, 14 ‘The P-type ATPase (P-ATPase) Superfamily’, 11 ‘The ATP-binding Cassette
(ABC) Superfamily’, and 9 ‘The H+ or Na+-translocating NADH Dehydrogenase (NDH)
Family’ (Figure 6B and Table S15).
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Blast analysis of genomic loci using PHI-base revealed a total of 2625 PHI-associated
genes, which is much more than the M. grisea PMg-ID (868) [74] but less than those in
16 Sporothrix strains (from 3083 to 4750) [76]. Among 2625 genes, 99 enhance virulence,
1173 reduce virulence, 109 are lethal, 213 are pathogenicity lost, and 1031 are pathogenicity
unaffected (Figure 6C and Table S16).

We identified 1323 proteins with a signal peptide and 609 proteins (encoded by
606 genes) with extracellular location that were defined as putative secreted proteins
(PSPs) after removing proteins containing transmembrane helix (Table 3). Among these
secreted proteins, we deciphered 333 effectors (encoded by 332 genes), including 187 cyto-
plasmic and 145 apoplastic effectors (Figure 6D and Table S17), and the number of effectors
was much less than that in the M. grisea PMg-ID (594) [70]. Interestingly, we found the
putative secreted proteins were enriched in or nearby the high repeat regions (Figure 3C),
which is consistent with other pathogenic fungi, such as Magnaporthe oryzae [46].
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3.8. Secondary Metabolite Biosynthetic Gene Clusters (SMBGCs)

A total of 58 SMBGCs were identified, including 23 nonribosomal peptide synthetases
(NRPS), 9 NRPS-like, 32 type I polyketide synthases (T1PKS), 1 type III polyketide synthases
(T3PKS), 3 indoles, and 13 terpenes (Figure 7A and Table S18). More than half of the
SMBGCs (33) were located in ctg1, ctg2, and ctg3, the top three longest contigs (Figure 7B).
Eight SMBGCs were found to have more than a 50% similarity with the known SMBGCs,
with four having a 100% similarity with the clavaric acid biosynthetic gene cluster from
Hypholoma sublateritium, melanin biosynthetic gene cluster from B. oryzae, AbT1 biosynthetic
gene cluster from Aureobasidium pullulans, and (-)-Mellein biosynthetic gene cluster from
Parastagonospora nodorum, respectively (Figure 7C). The rest of the 50 novel SMBGCs will
provide a chance for mining novel secondary metabolites in S. tainanensis.
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Interestingly, clavaric acid was reported to be an inhibitor of the human Ras-farnesyl
transferase [77,78]; it thus has antitumor activity [79], and its terpene biosynthetic gene
cluster was also detected in Aspergillus terreus [80] and Sporothrix species [76]. Melanin, a
black pigment synthesized by T1PKS type SMBGCs, has a central role in the pathogenicity
of plant pathogenic fungi, such as rice blast fungus P. oryzae [81,82].

3.9. Comparative Genomic Analysis

To figure out the genome differentiation with close relationship species, whole-genome
orthologous gene cluster analysis was performed among S. tainanensis, three species were
from the Massarinaceae family and the other six species were from the Pleosporaceae family
in the Pleosporales order (Table S2). We collected 125,793 genes from the 10 species, and
114,719 genes (91.20%) were clustered into 14,038 orthorgroups (Table S19). For the genome
of S. tainanensis StFZ01, 114,77 out of 12,206 genes (94.03%) were clustered into 9782 or-
thorgroups, which include 5981 (61.14%) core orthorgroups shared by all other nine fungi,
and 47 (0.48%) species-specific orthorgroups with 163 genes (Figure 8A,B and Table S20).
Together with the 729 unclustered genes, we identified 892 species-specific genes (7.31%) in
S. tainanensis StFZ01 (Figure 8A and Table S20).

We selected 4750 single-copy orthorgroups to construct phylogenetic trees (Figure 8C),
which showed that S. tainanensis and Stagonospora sp. were placed on a branch outside of
Massarina eburnea and Byssothecium circinans (Figure 8C).
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4. Conclusions

In conclusion, this study presented the first T2T chromosome-level genome assembly
and high-quality gene annotation of the pathogenic fungus S. tainanensis strain StFZ01
causing sugarcane leaf blight, integrating with Nanopore sequencing and Illumina se-
quencing. The well annotated repeats and genes, such as CAZys and effectors will play
as the reference genome for designing species-specific molecular markers and identifying
pathogenicity-related genes in the future.
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