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A B S T R A C T   

Objective: Classification tasks are an open challenge in the field of biomedicine. While several machine-learning 
techniques exist to accomplish this objective, several peculiarities associated with biomedical data, especially 
when it comes to omics measurements, prevent their use or good performance achievements. Omics approaches 
aim to understand a complex biological system through systematic analysis of its content at the molecular level. 
On the other hand, omics data are heterogeneous, sparse and affected by the classical “curse of dimensionality” 
problem, i.e. having much fewer observation, samples (n) than omics features (p). Furthermore, a major problem 
with multi-omics data is the imbalance either at the class or feature level. The objective of this work is to study 
whether feature extraction and/or feature selection techniques can improve the performances of classification 
machine-learning algorithms on omics measurements. 
Methods:: Among all omics, metabolomics has emerged as a powerful tool in cancer research, facilitating a deeper 
understanding of the complex metabolic landscape associated with tumorigenesis and tumor progression. Thus, 
we selected three publicly available metabolomics datasets, and we applied several feature extraction techniques 
both linear and non-linear, coupled or not with feature selection methods, and evaluated the performances 
regarding patient classification in the different configurations for the three datasets. 
Results:: We provide general workflow and guidelines on when to use those techniques depending on the 
characteristics of the data available. To further test the extension of our approach to other omics data, we have 
included a transcriptomics and a proteomics data. Overall, for all datasets, we showed that applying supervised 
feature selection improves the performances of feature extraction methods for classification purposes. Scripts 
used to perform all analyses are available at: https://github.com/Plant-Net/Metabolomic_project/.   

1. Introduction 

Personalized medicine concerns the development of approaches able 
to stratify patients based on their disease subtype, risk, prognosis, or 
treatment response using specialized diagnostic tests [1]. The key idea is 
to identify medical decision elements based on individual patient 
characteristics, including molecular biomarkers, rather than on popu
lation averages [2]. Lately, the development of precision medicine has 
seen unprecedented growth, thanks to the development of omics tech
nologies and machine learning approaches [3]. 

Omics technologies provide a global view of the molecules that 

compose a cell, a tissue or an organism. They are mainly aimed at the 
universal detection of genes (genomics), mRNAs (transcriptomics), 
proteins (proteomics) and metabolites (metabolomics) in a specific 
biological sample [4]. The fundamental aspect of these approaches is 
that a complex system can be understood more thoroughly if it is 
considered as a whole. Each omics represents a layer of information of 
this complex system and the objective is to study the biological mech
anisms in their entirety and the complexity of their interactions. 

Modern metabolomics produces high-dimensional datasets 
comprising hundreds or even thousands of measured metabolites in 
large-scale human studies involving thousands of participants [5]. One 
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of the key goals of metabolomics, mainly when applied in cancer 
research, is the discovery of robust and reliable biomarkers for early 
detection, diagnosis, prognosis, and treatment response prediction. 
Traditionally, cancer biomarker discovery has focused on genomics and 
proteomics approaches; however, metabolomics offers several advan
tages in this regard [6]. Metabolites represent the downstream products 
of cellular processes, capturing the integrated effects of genetic and 
environmental factors, as well as dynamic changes in the tumor 
microenvironment [7]. Moreover, metabolites are accessible through 
minimally invasive techniques, such as blood or urine sampling, 
enabling their potential translation into clinical practice [8]. 

The drawback that prevents wider use of metabolomics, as well as for 
other omics, is that data collection is financially costly, and the number 
of clinical research participants is usually limited. This yields uneven 
datasets in which the number of metabolites measured (features) far 
exceeds the number of patients (observations) [9]. This issue is known as 
the curse of dimensionality. Also, with many features, learning models 
tend to overfit, which may cause performance degradation on unseen 
data. Furthermore, most of the features are highly correlated and some 
features are not always directly connected with disease explanation, 
thus resulting in a high-dimensional space composed of many redundant 
and non-informative features that can mislead the algorithm training. 
Therefore, extracting systemic effects from high-dimensional datasets 
requires dimensionality reduction approaches to untangle the high 
number of metabolites into the processes in which they participate. 

Dimensionality reduction is one of the most powerful tools to address 
the previously described issues. It can be mainly categorized into two 
main components: feature selection and feature extraction. Feature se
lection finds a subset of the original features that maximise the accuracy 
of a predictive model [10]. It can be based on prior knowledge such as 
evidence from known literature or based on existing databases [11,12]. 
Feature extraction methods project the original high-dimensional fea
tures to a new feature space with low dimensionality. The newly con
structed feature space is usually a linear or nonlinear combination of the 
original features. Among the different techniques of feature extraction, 
we focused here on latent representation learning, which is a machine 
learning technique that attempts to infer latent variables from empirical 
measurements [13]. Latent components also called latent space, in 
contrast to observed variables, are information that is not measurable 
therefore have to be inferred from the empirical measurements. Several 
techniques have been developed to infer the latent space with successful 
applications on omics data however, how to choose the model that fits 
the best with the available data is very challenging. These difficulties 
arise because models are often tested on very specific omics datasets 
with peculiar characteristics (i.e. number of sample/features, biological 
question) or combinations of multi-omics and thus hardly generalizable 
to other omics modalities [14–17]. 

While during recent years there has been a lot of enthusiasm about 
the potential of ‘big data’ and machine learning-based solutions, there 
exist only a few examples that impact current clinical practice [18]. This 
can be due to technical limitations that can lead to insufficient perfor
mance of predictive models and difficulties to interpret complex model 
predictions [19,20]. To improve the performances of predictive models, 
it would be necessary to dispose of a comprehensive list of validated 
biomarkers to design proper training, testing and validation strategies to 
evaluate models’ performances. The objective of our work is to explore 
the performances in patient classification based on their metabolomics 
profile of several linear and non-linear techniques of feature extraction, 
feature selection and to provide general guidelines on when to use those 
techniques depending on the data available. To study the generalization 
of the proposed techniques, we expanded our testing on transcriptomics 
and proteomics datasets obtaining similar results. 

2. Materials and methods 

2.1. Datasets 

We used three metabolomics datasets, one transcriptomics and one 
proteomics dataset whose characteristics are summarized in Table 1. 
The metabolomics datasets are from three different types of cancer: 
brain, breast, and lung cancers, and the transcriptomics and proteomics 
datasets are from breast cancer. 

2.1.1. Metabolomics datasets 

2.1.1.1. BRAIN dataset 

The BRAIN dataset consists of 7017 metabolites from 88 samples of 
glial tumors: 38 isocitrate dehydrogenase (IDH) wild-type tumors and 
50 IDH-mutant tumors. Tumor samples were analyzed in an unbiased 
metabolomics using Liquid Chromatography coupled to tandem Mass 
Spectrometry (LC-MS/MS) [21]. 

2.1.1.2. BREAST dataset 

The BREAST dataset includes 162 metabolites from 271 breast can
cer tissues: 204 samples which have receptors for estrogen (ER+) and 67 
samples which do not have receptors for estrogen (ER− ) [22]. The 
metabolomic analysis was performed by gas chromatography followed 
by time-of-flight mass spectrometry (GC–TOFMS) as described here [23] 
and is very peculiar with respect to the other two metabolomics datasets 
used in this study. 

2.1.1.3. LUNG dataset 

The LUNG dataset is composed of 2944 metabolites concerning urine 
samples from 469 Non-Small Cell Lung Cancer (NSCLC) patients prior to 
treatment and 536 controls [24]. The dataset was obtained after an 
unbiased liquid chromatography/mass spectrometry approach. It is 
available at MetaboLights (study identifier MTBLS28). 

It is important to notice the very different characteristics of the three 
metabolomic datasets, both in terms of the number of features and 
number of patients, furthermore the BREAST dataset was obtained with 
a different experimental technique as explained before (Table 1). The 
BRAIN dataset contains a limited number of patients (88) with several 
features (7017). The BREAST dataset contains a moderate number of 
patients (271) with a small number of features (162). The LUNG dataset 
contains a very large number of patients (1005) with a large number of 
features (2944). 

2.1.2. Transcriptomics and proteomics datasets 

The transcriptomics and proteomics dataset comes from the TCGA 
database [25]. Gene expression profiles and/or proteomics profiles were 
downloaded from the BRCA project. For both omics, we kept only 
samples from primary tumors and healthy individuals. The tran
scriptomics dataset is composed of a large number of features, i.e. 48, 
405, and 1224 patients of which 1111 cancer patients and 113 healthy 
individuals. The proteomics dataset includes 464 features and 914 pa
tients, of whom 33 are healthy and 881 have a tumor. 

2.2. Feature selection methods 

Feature selection is a strategy widely adopted in machine learning to 
effectively reduce dimensionality. The primary objective is to select a 
subset of relevant features from the original set, based on specific rele
vance evaluation criteria. This selection often results in improved 
learning performance, marked by greater classification accuracy, 
reduced computational expense and improved model interpretability 
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[26–29]. Here, we define feature selection as a data preprocessing 
strategy aimed at finding a subset of the original features that maximize 
the accuracy of a predictive model. The aim is to prepare understandable 
and clean data to build a simpler and more comprehensible model. 

Feature selection methods can be classified into three groups: su
pervised [30,31], unsupervised [32,33] and semi-supervised [34,35] 
approaches, depending on the nature of the training set. Each method 
addresses the challenges posed by labeled and unlabeled datasets, of
fering tailored solutions for optimizing feature subsets on the basis of 
available information. There are three main categories in supervised 
feature selection approaches: filter models, wrapper models and 
embedded models. Filter-based approaches evaluate the value of each 
feature regardless of the performance of a specific machine learning 
algorithm, yielding the bias of a learning algorithm not interacting with 
the bias of a feature selection algorithm [36–38]. The wrapper model 
evaluates the quality of selected features, based on the predictive ac
curacy of a predefined learning algorithm [39]. However, the use of 
these methods becomes impractical when dealing with datasets con
taining a large number of features, due to their high computational 
costs. Embedded models incorporate feature selection within the 
learning algorithm itself [10,37,40,41]. 

We have used two supervised feature selection methods, namely the 
Kolmogorov–Smirnov (KS) test which is a filter model and Boruta 
feature selection which is a wrapper model, as well as three unsuper
vised methods which are filters on the variance of the features. The KS 
test is a statistical test used to determine whether two distributions differ 
significantly from each other. It compares the cumulative distribution 
functions of the two samples and assesses the probability that they come 
from the same underlying distribution. We used this test to identify the 
features with the most significant difference between the two classes of 
samples (e.g., diseased vs healthy). Boruta is a feature selection method 
based on Random Forest classification [42,43]. It aims to identify and 
retain only the most relevant variables while iteratively eliminating less 
pertinent features through statistical analysis. 

The three unsupervised feature selection methods included in this 
study are based on variance filters. We first calculated the variance of 
each feature, then filtered the features according to different thresholds. 
The first filter, named VarQ1, removes all features whose variance is less 
than the value of quartile 1, i.e. the value separating the first quarter 
from the rest of the distribution. The second filter, named Median, 
removes all features whose variance is less than the value of the median. 
And the last filter, named VarQ3 retains all features whose variance is 
greater than the value of the third quartile, i.e. the value separating the 
last quarter from the rest of the distribution. The idea was to progres
sively remove features with low variance, as this could reflect a small 
difference in features values between the two populations being 

compared. 
We applied these five feature selection methods on all the datasets, 

the number of selected features for each method and dataset are re
ported in supplementary table 1. 

2.3. Feature extraction methods 

We tested linear and non-linear techniques. Linear techniques sup
pose that there is a linear relationship between the observed variables 
and the latent space. Under this assumption, the latent space can then be 
inferred from observed variables. We test six linear methods: Principal 
Component Analysis (PCA), Mixture of Probabilistic PCA (MPPCA), 
High dimensional discriminant analysis (HDDA), Factor Analysis (FA), 
Linear Discriminant Analysis (LDA) and Partial Least Squares Discrim
inant Analysis (PLS-DA) and two non-linear: Kernel PCA (KPCA) and 
Gaussian Process Latent Variable Modeling (GPLVM). We have also run 
these latent space inference methods on pre-selected features to analyze 
the impact of this preprocessing on the performance metrics. HDDA, 
MPPCA and GPLVM methods were implemented in R. All other methods 
were implemented in Python. 

2.3.1. Linear techniques 

2.3.1.1. Principal Component Analysis (PCA) 
PCA [44] is a dimensionality reduction technique that transforms 

high-dimensional data into a new coordinate system, in which the first 
few principal components capture the maximum variance of the original 
data. These components are linear combinations of the original features. 
PCA uncovers the most informative aspects of the data, enabling them to 
be represented in a reduced-dimensional space while preserving as 
much variance as possible. In PCA, it is possible to identify key variables 
that contribute to PCA score profiles. For instance, Wu et al. used PCA to 
identify potential biomarkers to distinguish patients with laryngeal 
cancer from healthy individuals [45]. 

2.3.2. Mixture of probabilistic PCA (MPPCA) 

MPPCA is a probabilistic model that combines multiple probabilistic 
PCA (PPCA) models into a mixture model [46]. MPPCA extends the 
concept of PPCA to capture more complex data distributions and capture 
data points that may belong to different clusters or components. PPCA is 
a linear dimensionality reduction technique that assumes a linear rela
tionship between the observed variables and a lower-dimensional latent 
space. PPCA assumes that the observed data points are generated by 
adding Gaussian noise to a low-dimensional subspace, which is repre
sented by a linear mapping from the latent space to the observed space. 

Table 1 
Description of the characteristics of the metabolomics, transcriptomics and proteomics datasets used in this study.  

Dataset Omics Experimental strategy # 
Features 

# 
Samples 

Type of sample Classes References 

BRAIN Metabolomics LC-MS/MS 7017 88 Glial tumor tissue IDH wild-type 
tumor/ 
IDH-mutant tumor 

Chardin et al. BMC Bioinformatics 
(2022) 

LUNG Metabolomics GC–TOFMS 2944 1005 Urine Cancer patient/ 
Healthy patient 

Mathé E, et al. Cancer Res. (2014) 

BREAST Metabolomics LC-MS 162 271 Tumor tissue ER+ tumor/ER- 
tumor 

Budczies J et al. J Proteom. (2013) 

BREAST Transcriptomics Reverse Phase Protein 
Array 

48405 1224 Tumor and normal 
tissues 

Cancer patient/ 
Healthy patient 

Weinstein et al. Nat Genet (2013) 

BREAST Proteomics RNA-Sequencing 464 914 Tumor and normal 
tissues 

Cancer patient/ 
Healthy patient 

Weinstein et al. Nat Genet (2013) 

A comprehensive table summarizing key features, such as the omics studied, the experimental strategy to obtain data, the number of features and samples, the different 
sample types and classes in three cancer datasets. 
The abbreviations for experimental strategies are LC-MS/MS: Liquid Chromatography coupled to tandem Mass Spectrometry; GC–TOFMS: gas chromatography fol
lowed by time-of-flight mass spectrometry; LC-MS: liquid chromatography/mass spectrometry. The abbreviations for classes are: IDH: Isocitrate DeHydrogenase; ER: 
Estrogen Receptors. 
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In MPPCA, a mixture model framework is employed to account for 
multiple components in the data. MPPCA assumes that each observed 
data point is associated with a latent variable, which indicates the 
component to which it belongs. The model further assumes that the 
latent variables follow a certain probability distribution, such as a 
Gaussian distribution. The mixing coefficients represent the probability 
of a data point belonging to each component. Nyamundanda et al. 
successfully used PPCA to identify metabolites which were responsive to 
pentylenetetrazole (the treatment used in the study) [47]. They also 
used MPPCA to simultaneously cluster and reduce the dimension of 
metabolites data. They have demonstrated that the application of those 
techniques helps in the identification of disease phenotypes or 
treatment-responsive phenotypes. 

2.3.3. Linear Discriminant Analysis (LDA) 

LDA is a statistical technique used to find the linear combinations of 
features that best differentiate several classes in a dataset [48]. LDA aims 
to maximize the ratio of the variance between classes to the variance 
within classes, resulting in a set of discriminant functions. These func
tions serve as decision boundaries, allowing for effective classification of 
data points into predefined classes. LDA assumes that the features are 
normally distributed and that the covariance matrices of different clas
ses are equal. By transforming the data into a lower-dimensional space, 
LDA reduces dimensionality while preserving class-related information, 
making it a powerful method for feature extraction and classification 
tasks. LDA has been used in several studies to find linear combinations of 
metabolic variables and usually achieve very good performances in 
patients classification [49,50]. 

2.3.4. High dimensional discriminant analysis (HDDA) 

HDDA extends traditional Linear Discriminant Analysis (LDA) to 
handle situations where the number of variables or features is large 
compared to the number of samples [51]. HDDA addresses the chal
lenges of high-dimensional data by incorporating regularization and 
shrinkage techniques. Regularization methods are employed to stabilize 
the estimation of the covariance matrix. HDDA performs dimensionality 
reduction by projecting the high-dimensional data onto a 
lower-dimensional subspace. This subspace is determined by a set of 
linear discriminant directions that maximize the separation between 
classes. The number of discriminant directions is typically smaller than 
the original dimensionality, allowing for a reduced representation of the 
data. After dimensionality reduction, HDDA can be used for classifica
tion tasks. New samples can be projected onto the reduced subspace, and 
their class labels can be predicted based on their proximity to the 
class-specific centroids or by using other classification algorithms. 

2.3.5. Partial least squares discriminant analysis (PLS-DA) 

PLS-DA is a multivariate statistical method that combines aspects of 
partial least squares regression and discriminant analysis to model the 
relationship between predictor variables (features) and categorical 
response variables (class labels) [52,53]. It involves finding latent var
iables that capture the maximum covariance between predictor and 
response variables. These latent variables are used to create a discrim
inant model, enabling efficient discrimination of different classes within 
the data. PLS-DA has been popular in the field of chemometrics, which is 
why it can handle high-dimensional datasets and be applied to omics 
data, particularly metabolomics data [54]. 

2.3.6. Factor analysis (FA) 

FA is a statistical method that analyzes the relationships among 
observed variables to uncover the latent factors that explain their 
covariation [55]. Hamzehzarghani et al. [56] used factor analysis to 

profile the metabolic of spikelets of wheat cultivars, Roblin and Sumai3, 
susceptible and resistant to fusarium head blight, respectively. 

In general, FA assumes that the observed variables are influenced by 
a smaller number of unobserved factors, also known as common factors. 
First, the correlation matrix from the observed variables is calculated. 
This matrix represents the pairwise relationships and covariation among 
the variables. Then, the factor extraction step identifies the underlying 
factors that explain the observed covariation. However, the application 
of FA requires certain conditions: the observed variables must be highly 
correlated, and the number of samples must be at least four times greater 
than the number of features. The number of factors to be retained is a 
crucial decision, which is why it is determined by various methods, such 
as the Kaiser criterion, scree plot examination or the use of more so
phisticated statistical criteria such as the Bayesian Information Criterion 
(BIC) or the Minimum Partial Mean (MPM) test. By combining factors 
and factors loading they were able to identify metabolites involved in 
pathogen-stress and their metabolic pathways of synthesis. Choosing the 
appropriate number of factors requires a balance between capturing 
sufficient variance in the data and avoiding overfitting. 

To check that if the variables in our datasets are highly correlated, 
we run the Kaiser-Mayer-Olkin (KMO) test. If the KMO value is higher 
than 0.7, then FA can be performed, otherwise, it is not possible. To 
determine the optimal number of factors to select, we ran an exploratory 
factor analysis (EFA) [55] and we selected the most frequently used 
number of factors. 

2.3.7. Non-linear techniques 

Non-linear techniques assume that the relationship between the 
latent space and observed variables is not linear. However, some non- 
linear techniques can, under some constraints, help to infer linear 
relationship while linear techniques can only infer linear relationships. 
We tested 2 non-linear methods: Kernel PCA (KPCA) and Gaussian 
Process Latent Variable Modeling (GPLVM). 

2.3.8. Kernel PCA (KPCA) 

KPCA is a non-linear extension of PCA, designed to deal with non- 
linear relationships within data [57]. This technique has already been 
applied to nuclear magnetic resonance-based metabolic profiling anal
ysis [58]. It uses a kernel function to map input data into a 
higher-dimensional space, where linear structures are more apparent. In 
this expanded space, standard PCA is applied to extract principal com
ponents. The main advantage lies in its ability to capture complex, 
non-linear patterns that traditional PCA might overlook. By utilizing 
kernel functions such as radial basis function, polynomial, or sigmoid, 
kernel PCA allows for a more flexible representation of data, making it a 
powerful tool for dimensionality reduction and non-linear feature 
extraction. But unlike PCA, it is impossible to determine the importance 
of features. 

2.3.9. Gaussian process latent variable modeling (GPLVM) 

GPLVM is a probabilistic dimensionality reduction technique that 
combines Gaussian processes with latent variable models [59]. GPLVM 
aims to learn a low-dimensional representation of high-dimensional 
data by modeling the underlying structure and uncertainty in the data. 

GPLVM assumes that the observed high-dimensional data points are 
generated from a lower-dimensional latent space. Each data point is 
associated with a set of latent variables that lie in the lower-dimensional 
space. Gaussian processes are non-parametric models that can represent 
complex functions. In GPLVM, a Gaussian process is used to model the 
mapping from the latent space to the observed space. This mapping 
represents how the latent variables influence the observed data. Then, 
GPLVM employs Bayesian inference to estimate the latent variables and 
the parameters of the Gaussian process. It aims to find the most likely 
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values of the latent variables given the observed data. Once the latent 
variables are estimated, GPLVM provides a reduced-dimensional rep
resentation of the data. This lower-dimensional representation retains 
the most important information and captures the underlying structure in 
the data. 

2.4. Cross-validation 

To ensure the development of a predictive model capable of 
discerning patterns in unbalanced data, a five repeated four4-fold cross- 
validation approach was employed with default parameters of XGBoost. 
This technique involves partitioning the dataset into four subsets, uti
lizing three of them for training and the remaining one for validation in 
each iteration. This process is repeated four times, with each fold serving 
as the validation set in a distinct iteration. To ensure a more robust 
evaluation of the model’s performances, we repeated this process five 
times, it provides multiple independent estimates of how well the model 
generalizes to unseen data. Finally, the model undergoes training and 
evaluation several times, enabling a more thorough assessment of its 
predictive capabilities in various data subsets. By applying this strategy, 
we aimed to mitigate the impact of unbalanced class distribution, 
ensuring that the classifier model learns from patterns effectively and 
generalizes well to novel and unseen instances, thus contributing to the 
reliability and efficiency of the predictive modeling process. 

2.5. Classification 

For feature extraction techniques that do not perform classification 
already in their model, namely PCA, FA and KPCA, we used the XGBoost 
classifier model [60]. XGBoost is an implementation of 
gradient-boosting decision trees sequentially combine decision trees to 
create an ensemble model, particularly used for classification and 
regression. It was selected for its speed, scalability, and superior per
formance, making it a popular choice in various analyses. 

2.6. Calculation of metrics for performances evaluation 

We have chosen to report seven metrics to evaluate performances of 
the models. 

The accuracy is the number of correct predictions whether positive 
or negative, defined as: 

Accuracy =
TP + TN

TP + FP + TN + FN  

Where True Positive (TP) is the number of correct positive predictions, 
False Positive (FP) is the number of incorrect positive predictions, True 
Negative (TN) is the number of correct negative predictions and False 
Negative (FN) is the number of incorrect negative predictions. 

The precision quantifies the number of correct positive predictions 
out of the positive predictions made by the model: 

Precision =
TP

TP + FP 

The recall, also called the sensitivity, is the number of TP among the 
real positive samples (TP and FN) that the model obtains, calculated 
with the following formula: 

Recall =
TP

TP + FN 

The specificity is the number of correct negative predictions the 
model can detect. 

Specificity =
TN

TN + FP 

The F1 score keeps the balance between precision and recall. 

F1score = 2 ×
precision × recall
precision + recall 

The AUC measures the performance of a binary classification model 
by quantifying the Area Under the Receiver Operating Characteristic 
(ROC) curve. 

For the two unbalanced datasets we calculated the balanced accu
racy. It’s the arithmetic mean of sensitivity and specificity. 

Balanced accurracy =
sensitivity + specificity

2 

For all these metrics, we have computed a 95% confidence interval 
on results of the four-folds repeated five times of the cross validation. 

2.7. Feature importance 

In the context of cancer, the identification of biomarkers is crucial. 
Features with a high importance score may be potential biomarkers, 
indicating their relevance in disease characterization. Understanding 
the importance of features is essential to accurately identify diagnostic 
or prognostic biomarkers, to facilitate early detection, risk assessment 
and personalized treatment strategies for cancer patients. 

HDDA, MPPCA, KPCA and GPLVM do not allow to determine the 
significance of the features. Thus, we performed feature importance only 
for NFE model, PCA, FA, PLS-DA and LDA. 

To compute feature importance for the NFE model, we used SHAP 
(Shapley Additive exPlanations) values [61]. SHAP values allow us to 
attribute a specific contribution to each feature for a given prediction 
and to understand the unique role each feature plays in influencing the 
model’s decisions. By leveraging SHAP values, we gain a comprehensive 
and interpretable view of feature importance, contributing to a more 
informed and transparent analysis of the XGBoost model’s predictive 
capabilities. 

For PCA and FA, feature importance can be calculated with SHAP to 
extract the principal components or factors contributing the most to 
classification performances. 

In PLS-DA, Variable Importance in Projection (VIP) scores are 
commonly used to quantify the importance of each feature in the model. 
The VIP score of a variable is calculated as a weighted sum of the 
squared correlations between the PLS-DA components and the original 
variable. The weights correspond to the percentage variation explained 
by the PLS-DA component in the model. Features with a high VIP score 
are those that contribute significantly to class separation. 

In LDA, the importance of each feature is assessed by its contribution 
to the discriminative criterion. Features with higher coefficients in the 
linear discriminant function are considered more important in sepa
rating classes. 

2.8. Computational workflow 

We set up a workflow consisting of three main pipelines (Fig. 1). The 
two main steps are the execution of a feature extraction model followed 
by the classification of patients using the newly calculated features. We 
also included feature selection before the feature extraction model and 
then classification, or directly the classification. 

Then the performances on the classification task are evaluated using 
the aforementioned metrics. When possible (only for NFE, PCA, FA, LDA 
and PLS-DA), we also calculated the features importance to extract po
tential biomarkers in each dataset. 

Overall, we trained 208 models by feeding with either one of the 
three metabolomics (124 models) or transcriptomics (38 models) or 
proteomics (42 models) datasets as features or after performing feature 
selection. Scripts used to perform all analysis are available at: https://gi 
thub.com/Plant-Net/Metabolomic_project/. 
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2.9. Permutation test 

To assess the robustness and performance significance of the best- 
performing models, we permutated the data labels before performing 
feature extraction model for each dataset. The aim is to differentiate 
between models with true predictive power and those that randomly 
predict labels. 

To do this, we randomly permuted class labels 100 times while 
keeping the original feature values to create a scenario in which the 
relationships between features and class labels are disrupted. Next, we 
ran the feature extraction model that performed the best among all the 
models tested and compared the performance of the permuted models 
with the performance of the best model without permutation. By 
comparing the performances, we can determine whether the observed 
classification accuracy has occurred by chance. If the model performs 

well even on shuffled data, this suggests that the classification accuracy 
could be due to chance rather than capturing a true pattern in the data. 
Conversely, if model performance drops significantly on shuffled data, 
this reinforces confidence that the observed classification success is 
based on meaningful relationships between features and cancer classes. 

3. Results 

We applied the experimentation workflow to the three metabolomics 
datasets as described in the methods section and Fig. 1. Briefly, we 
implemented five feature selection techniques: two supervised methods 
(KS test and Boruta) and three unsupervised by applying two filters on 
the variance distribution and the median (see methods for details). The 
number of features selected by each method for each dataset is indicated 
in supplementary table 1. Regarding feature extraction we tested eight 

Fig. 1. Workflow used in this study to evaluate the classification performances of several feature extraction techniques coupled or not with feature selection. The 
input of the workflow consists in one omics dataset at the time. The workflow consists of four steps. The first step is the feature selection based on two supervised or 
three unsupervised methods. Abbreviations for feature extraction method are: HDDA: High dimensional discriminant analysis; MPPCA: Mixture of Probalistic PCA; 
PCA: Principal Component Analysis (PCA); PLS-DA: Partial least squares discriminant analysis; LDA: Linear discriminant analysis; KPCA: Kernel PCA; GPLVM: 
Gaussian Process Latent Variable Modeling. The second step is the feature extraction. We included six linear and two non-linear methods. The third step is the sample 
classification by cross-validation, using their own classification method (indicated with an *) or XGBoost model. Next, from classification results, we calculate metrics 
to evaluate performances of models. Finally, we perform feature importance when it is possible to find potential biomarkers with Shapley Additive exPlanations 
(SHAP) values, Variable Importance in Projection (VIP) scores and weights coefficients. 
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methodologies both linear and non-linear, namely HDDA, MPPCA, PCA, 
FA, PLS-DA, LDA, KPCA, GPLVM; applied upon each feature selection 
technique or without feature selection first. For each dataset we also 
directly used the classifier without feature extraction or selection (NFE). 
In total we implemented 208 models in our workflow. The main char
acteristics of the datasets are reported in Table 1. Briefly, the BRAIN 
dataset contains a limited number of patients (88) with a high number of 
metabolites (features) (7017). The BREAST dataset contains a moderate 
number of patients (271) with a small number of features (162). This 
dataset is very different from the other not only for the different number 
of variables and samples, also extremely unbalanced and contains me
tabolites extracted with a different mass spectrometry technique. The 
LUNG dataset contains a very large number of patients (1005) with a 
large number of features (2944). 

3.1. Cross-validation helps to handle unbalanced and small 
datasets 

To evaluate the model’s performance the most commonly used 
techniques are dataset split into train and test sets, leave one out cross- 
validation, cross-validation and bootstrap. When it comes to overcoming 
the challenges posed by small and unbalanced datasets, data set split is 
not applicable and cross-validation-like methods emerge as a crucial and 
indispensable strategy in machine learning [62–65]. Cross-validation 
and bootstrap are very similar, with the main difference depending on 
sampling samples with or without replacement. Due to the drawing with 
replacement, a bootstrapped data set may contain multiple instances of 
the same original cases, and may completely omit other original cases 
[66]. In scenarios with unbalanced class distributions or limited data, 
traditional model evaluation can lead to biased and unreliable results 
[67]. The type of cross-validation that selects a test set with one single 
example is called LOOCV (leave one out cross-validation). Sub setting a 
dataset using LOOCV is computationally expensive, not necessarily 
leading to better results [67]. Cross-validation, with its ability to itera
tively partition the dataset into training and test subsets, offers a more 
robust solution [66]. By ensuring that each data point participates 
several times in the evaluation process, cross-validation provides a more 
complete understanding of a model’s performance. This approach is 
particularly valuable when dealing with unbalanced datasets, where 
instances of minority classes may be overlooked. Furthermore, in the 
context of small datasets, cross-validation maximizes the usefulness of 
limited samples by systematically evaluating model performance in 
different partitions. Therefore, in our study, we used cross-validation for 
evaluating all models’ performances. 

3.2. Feature selection improves classification performances on 
all datasets 

To evaluate the performances of the 208 different models illustrated 
in Fig. 1, we used the balanced accuracy, the precision, the recall, the 
specificity and the F1 score because together they give an overview of 
model’s performances (supplementary table 2, 3 and 4). A high preci
sion can mask poor performances in capturing positive instances cor
responding to low recall, thus a focus on F1 score helps us to find a 
balance between precision and recall, while specificity gives us an idea 
of the rate of true negatives. For all datasets, the feature selection per
formed by the Boruta algorithm provided the best results either with or 
without feature extraction. 

In supplementary table 2, we summarize all the results for the BRAIN 
dataset. We could not perform FA because the KMO value was equal to 
0.56, thus smaller than the required threshold for applicability. For this 
dataset, when the Boruta algorithm is used, all the scores have compa
rable ranges for all models, and we do not observe dramatic changes in 
terms of performances depending on the extraction technique (Fig. 2A). 
This is probably due to the similar number of samples in the two classes. 
The best performances were obtained with the Boruta feature selection 

combined with PLS-DA feature extraction achieving an average 
balanced accuracy of 89.5 ( ± 6.5%), an average recall of 92.0 
( ± 7.5%), an average specificity of 89.0 ( ± 10.7%) and an average F1 
score of 96.9 ( ± 2.8%). Overall, we observe that supervised feature 
selection with Boruta or KS-test improves the performances of all feature 
extraction methods, also for methods like PCA and KPCA which ob
tained very poor scores, almost comparable to a random classifier 
without supervised feature selection. 

Regarding the BREAST dataset, the best performances are achieved 
by combining Boruta feature selection and the LDA with an average 
balanced accuracy of 85.9% ( ± 4.7%), an average recall of 92.7% 
( ± 2.8%), an average specificity of 76.7% ( ± 9.9%) and an average F1 
score of 93.7% ( ± 3.4%) (supplementary table 3). We can also observe 
that similar scores were obtained with PLS-DA after Boruta feature se
lection. Independently by the feature extraction technique used, for the 
best-performing feature selection method, we observe overall good 
recall but low specificity (Fig. 2B). Contrarily to the previous dataset, the 
BREAST dataset is highly unbalanced with one class heavily more rep
resented than the other. Although F1 score is a more stable metric 
especially for unbalanced datasets, it is always preferable to evaluate all 
the metrics because they have different meanings. Depending on the 
biomedical question one may prefer to have better specificity or better 
recall to the detriment of the other. In general, for this dataset, all 
feature selection techniques but VarQ3 strongly improved the perfor
mances of feature extraction methods. 

Finally, for the LUNG dataset, feature extraction techniques do not 
improve the performances obtained by feature selection methods mainly 
of the supervised techniques. Indeed, the method that achieved the best 
performances is the combination of Boruta feature selection and 
XGBoost model, with an average accuracy of 80.9% ( ± 2.0%), an 
average recall of 81.1% ( ± 2.6%), an average specificity of 84.1% 
( ± 2.9%) and an average F1 score of 77.8% ( ± 4.1%) (refer to sup
plementary table 4 for results for the LUNG dataset). For this dataset, 
achieving a high recall rather than high precision is crucial as we seek to 
distinguish healthy from cancer individuals, hence patients erroneously 
predicted as healthy (FNs) can have dramatic consequences. Overall, we 
observe that when the Boruta algorithm is applied, for all models we 
achieve specificity higher than the other metrics, and mainly when PLS- 
DA is applied on Boruta selection (Fig. 2C). In summary, for two datasets 
out of three, the combination of feature selection and feature extraction 
method achieves the best performances. While for BRAIN and BREAST 
datasets Boruta feature selection combined with PLS-DA and LDA 
respectively achieved the best performances, for LUNG dataset, the only 
application of Boruta feature selection without extraction method yiel
ded the best achievement. Overall, we can observe that supervised 
feature selection before feature extraction always improves classifica
tion metrics. 

3.3. ROC curves as a useful tool to compare model performances 
among multiple datasets 

The ROC curve and its associated AUC serve as critical tools for 
evaluating and comparing the performance of different classification 
methods. The AUC ROC curve evaluates the ratio between a model’s 
true-positive and false-positive rates for different threshold values, 
providing an overview of its discriminatory power. A higher AUC value 
indicates better model performance, as it means a greater ability to 
distinguish positive from negative instances. 

We calculated ROC curves for all feature extraction methods and NFE 
model before and after feature selection. For the BRAIN dataset, per
formances vary widely from one method to another (Fig. 3A). The two 
methods that best perform are NFE and PLS-DA when supervised feature 
selection is used first (KS test and Boruta). The worst-performing method 
is KPCA, whose performances are close to a random classifier if no 
feature selection or non-supervised feature selection is employed. 
Regarding the BREAST dataset, unlike the BRAIN dataset, all the 
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Fig. 2. Metrics to evaluate the performances of the model used in this study for metabolomics data. Performances after Boruta feature selection application for each 
feature extraction method in terms of balanced accuracy (salmon), recall (blue), specificity (yellow) and F1 score (green) for BRAIN dataset (A), BREAST dataset (B) 
and LUNG dataset (C). The abbreviations for feature extraction methods are: NFE: No Feature Extraction; HDDA: High dimensional discriminant analysis; MPPCA: 
Mixture of Probabilistic PCA; PCA: Principal Component Analysis (PCA); FA: Factor Analysis; PLS-DA: Partial least squares discriminant analysis; LDA: Linear 
discriminant analysis; KPCA: Kernel PCA; GPLVM: Gaussian Process Latent Variable Modeling. For BRAIN and BREAST dataset, two FA were performed with different 
numbers of features. For BREAST dataset, five feature were used for FA1 and 12 for FA2. For LUNG dataset, 16 features were used for FA1 and 34 for FA2. For BRAIN, 
we were unable to perform FA. 
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methods, except for KPCA without feature selection or FA1 after VarQ3 
feature selection, achieved comparable results (Fig. 3B). For the LUNG 
dataset, all methods achieved comparable performance if supervised 
feature selection is used before feature extraction (Fig. 3C). Perfor
mances of all feature extraction techniques diminish if a non-supervised 
feature extraction technique is used for this dataset. 

To further test the validity of the models, for the best-performing 
model for each dataset, we also performed a permutation test after 
feature selection and before feature extraction to test whether model 
performances are impacted. As shown in supplementary figure 1, model 
performances are strongly affected suggesting that the best models 

without permutation have captured a true pattern in the data, they have 
a true predictive power and that performances are not due to chance 
(supplementary tables 5, 6 and 7). 

In summary, the KPCA method is the worst performer, suggesting 
that is not suitable for extracting relevant features in the context of 
metabolomics cancer data. There is no clear difference in performances 
between linear and non-linear methods. The most stable method, inde
pendent of the dataset, appears to be NFE, namely the use of XGBoost 
model coupled with feature selection to classify samples. Supervised 
feature selection techniques, especially Boruta, strongly improve the 
performances of all feature extraction methods. 

Fig. 3. ROC curves to compare multiple model performances on multiple datasets for metabolomics data. ROC curves obtained before and after performing feature 
selection and feature extraction are shown for BRAIN dataset (A), BREAST dataset (B) and LUNG dataset (C). The blue curve represents the ROC curve for no feature 
extraction (NFE) method, the orange one is for High dimensional discriminant analysis (HDDA), the green one for Mixture of Probabilistic PCA (MPPCA), the beige 
one for Principal Component Analysis (PCA), the purple one and brown one for Factor Analysis (FA), the yellow one for Partial Least Squares Discriminant Analysis 
(PLS-DA), the red one for Linear Discriminant Analysis (LDA), the cyan one for Kernel PCA (KPCA) and the pink one for Gaussian Process Latent Variable Modeling 
(GPLVM). The dashed grey line corresponds to a random classifier. Abbreviations for feature selection methods are: KS: Kolmogorov–Smirnov; VarQ1: variance filter 
by removing the first quartile; Median: variance filter retaining all features whose variance is greater than the median; VarQ3: variance filter by keeping the 
third quartile. 

Fig. 4. Feature importance barplots. Barplots are reported for the top contributing features according to Variable Importance on Projection (VIP) scores for Partial 
Least Squares Discriminant Analysis (PLS-DA) model, weight coefficients for Linear Discriminant Analysis (LDA) model and Shapley Additive exPlanations (SHAP) 
values for no feature extraction (NFE) model for BRAIN dataset (A and B), BREAST dataset (C and D) and LUNG dataset (E, F). On x axis, VIP scores, weight co
efficients or SHAP values are represented, depending on the model used. On y-axis, there are the top metabolites/features that contribute to the model. KS: Kol
mogorov–Smirnov feature selection. 
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3.4. Features importance allows identification of potential 
biomarkers 

As last step of our analysis, we inspected features’ importance of the 
best-performing models for each dataset using SHAP explainer [61] 
when possible to implement, or the feature importance score associated 
with the model. To note that some models such as HDDA, MPPCA, 
KPCA, or GPLVM, do not allow the application of an explainer algorithm 
and do not provide an internal solution to calculate feature importance. 
We consider these models as black-box and of less employability in the 
biomedical context. By calculating the features’ contribution to the 
classification, we can identify the metabolites with the most discrimi
native pattern of expression that might be proposed as putative 
biomarkers. 

The best model for BRAIN dataset is PLS-DA of features selected by 
either KS-test or Boruta. PLS-DA provides the VIP scores for each feature 
(metabolites for our dataset) to estimate the contribution to the model 
performance. By extracting the top ten for each method (Fig. 4A and B), 
we observe that only two metabolites are not in agreement between the 
two. All the metabolites in the top 10, with the exception of the 7th and 
10th correspond to different isotopes and adducts of 2-hydroxygluta
rate, a specific product of mutated glial cells, as already found in the 
previous study (Fig. 4A) [21]. Mutations of isocitrate dehydrogenase 
(IDH) enzyme can produce high levels of 2-hydroxyglutarate to inhibit 
glioma stem cell differentiation, increase tumor microenvironment for
mation and produce high levels of hypoxia-inducible factor-1α to pro
mote glioma invasion. Mutations in the IDH enzyme worsen the 
prognosis of gliomas. It is therefore important to distinguish between the 
two types of glial tumor in order to tailor treatments and improve 
prognosis [68]. 

For the BREAST dataset, the aim is to distinguish the cancer status 
depending on the hormone receptor (ER) that is crucial for determining 
which treatment to administer to patients. Indeed, hormone therapy 
drugs can be used for ER+ breast cancer samples but will be ineffective 
for ER- breast tumors. The two best-performing methods for discrimi
nating ER+ and ER- tumors are PLS-DA and LDA combined with Boruta 
feature selection, LDA also provide its own score for feature importance. 
For both methods we found among the top ten metabolites the beta- 
alanine and the xhantine (Fig. 4C and D). Both metabolites have 
already been shown to have significantly different concentrations in 
ER+ and ER- breast tumors and they have already been suggested to be 
used as biomarkers to distinguish the two types of breast tumors. We 
also notice the glutamic acid that indicates higher glutaminolysis, a key 
feature of metabolic changes in cancer cells [22]. 

Then we inspected the contribution of the metabolites to the best 
classification model for the LUNG dataset, which is the simple applica
tion of Boruta feature selection without feature extraction. Identifying 
potential biomarkers for this cancer is fundamental since early detection 
is pivotal for treating this aggressive cancer. For this model, we applied 
the SHAP algorithm to calculate feature importance. The advantage of 
SHAP is that, not only calculates the feature contribution (Fig. 4E), but 
also indicates whether the contribution is positive or negative to the 
overall model performances (Fig. 4F). The metabolite that ranked at the 
first position in feature importance corresponds to the creatine riboside 
(Fig. 4E and F). This metabolite was described as the most important 
metabolite to discriminate between lung cancer patients and healthy 
individuals [24]. 

Overall, the feature importance on the best-performing models 
allowed the identification of the most contributing metabolites to 
discriminate the samples depending on the phenotype and is a valid tool 
to identify potential biomarkers. 

3.5. Application to transcriptomics and proteomics data 

To test the generality of our workflow, we applied all models to two 
other omics datasets (i.e. transcriptomics and proteomics) related to 

BREAST cancer from the TCGA database [25]. By applying the same 
workflow, we obtain comparable results as discussed for metabolomics 
data (Fig. 5, supplementary tables 8 and 9). Overall, feature selection 
combined with feature extraction improves the performances. While for 
transcriptomics, supervised feature selection yields the best AUC scores, 
for proteomics we observe that non-supervised feature extraction tech
niques obtain the best performances. We then calculated the feature 
importance for the best-performing model (supplementary figure 2). By 
inspecting the VIP scores of the top ten genes for the PLS-DA after Boruta 
feature selection model, we can see that almost all genes are known to be 
involved in breast cancer (supplementary figure 2 A). VEGF-D has been 
demonstrated to be involved in promoting tumor angiogenesis and 
lymphangiogenesis [69] and to be up-regulated in breast cancer [70]. 
Like VEGF-D, OXTR is up-regulated in breast cancer, creating a micro
environment that promotes mammary tumor growth and metastasis 
[71]. 

PAMR1, CAVIN2, ADAMTS5, PDE2A and CAV1 were all found to be 
down-regulated in breast cancer samples compared with normal breast 
tissue [72–75]. PAMR1 is known as a putative breast cancer tumor 
suppressor [72], while PDE2A significantly regulates the growth and 
invasion of human breast cancer [75]. CAVIN2 plays an important role 
in inhibiting breast cancer development, so significant down-regulation 
of CAVIN2 is associated with patient prognosis and correlated with 
advanced tumor stage [73]. For proteomics, two models achieved 
comparable performances: LDA combined either with non-supervised 
VarQ1 feature selection or with Median (supplementary figure 2B and 
C). Despite the very comparable performances, the top ten proteins in 
common between the two methods are very few. The gene that ranked at 
the first position for both models is RAB11A/RAB11B which encodes for 
RAB11 protein. RAB11A has previously been shown to be up-regulated 
in the majority of breast cancer tumors [76], suggesting that RAB11A 
plays an important role in the development and proliferation of human 
breast cancer. The permutation test applied to the best-performing 
methods led to similar conclusions as for metabolomics data (supple
mentary figure 3, supplementary tables 10 and 11). 

Overall, these results show that the workflow presented in this study 
can be applied to omics data beyond metabolomics. 

4. Discussion and conclusions 

In this paper, we have proposed a workflow to classify two groups of 
samples using feature selection and feature extraction methods. We 
discussed the importance of using cross-validation for achieving good 
classification performances with unbalanced and small datasets, that are 
very common in the biomedical field. The drawback of implementing 
cross-validation consists of a considerable extension of training time and 
a substantial computational cost, requiring significant processing power. 

We showed that, independently of the feature extraction technique 
applied, feature selection is a necessary step method to improve the 
performances and mainly when supervised methods are used. On the 
other hand, feature selection can eliminate important features, therefore 
the feature selection method must be chosen very carefully and adapted 
to the data and biomedical model under investigation. Importantly, 
although usually we are seeking for the best performing model, it might 
be useful to consider that some models do not allow the calculation of 
feature importance, thus preventing the identification of the molecules 
that distinguish cancer patients from non-cancer patients or distinguish 
two different tumor types. In this scenario, the model is not transferable 
in a prognostic, diagnostic or treatment context. 

Unexpectedly, we have found that performances of linear and non- 
linear methods are similar. Our hypothesis is that the metabolites 
measurements used in this study are not entangled among each other as 
for other complex diseases, thus both types of techniques are able to 
capture the essential characteristics to classify the patients depending on 
their phenotype. Indeed, urine sample is influenced by many factors 
such as race, age, lifestyle (diet, smoke, physical activity) and 
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microbiota. Although we have proven the applicability of our workflow 
to other omics (transcriptomics and proteomics) achieving similar re
sults as for metabolomics, we might expect that in other cases, perfor
mances can be different. 

Importantly, metabolomics has the potentiality to be a clinical tool 
for detecting cancer as early as possible to improve survival rates, and 
for distinguishing between two types of tumors to tailor treatment and 
improve efficacy. Therefore, the possibility of using metabolomics to 
find cancer biomarkers, which is an inexpensive and non-invasive 
method, might be preferred if the performances are good, as shown in 
our study. 

The integration of metabolomics with other omics approaches, such 
as transcriptomics and proteomics would offer a global perspective not 
only in cancer biology but in any complex disease, revealing metabolic 
dysregulations and their interaction with other molecular pathways. In 
this scenario the datasets will be even more unbalanced than using a 
single omics because the number of features will increase dramatically, 
reaching several thousand depending on the omics, and would be hardly 
comparable to the number of patients. In such perspective the use of 
features selection and feature extraction methods will become indis
pensable, and we believe that the guidelines set on this study would help 
to benchmark these techniques on more complex datasets paving the 
way toward a more effective precision medicine using multi-omics data. 
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extraction (NFE) method, the orange one is for High dimensional discriminant analysis (HDDA), the green one for Mixture of Probabilistic PCA (MPPCA), the beige 
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