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Abstract
Background: Population structure is an important cause leading to inconsistent results in
population-based association studies (PBAS) of human diseases. Various statistical methods have
been proposed to reduce the negative impact of population structure on PBAS. Due to lack of
structural information in real populations, it is difficult to evaluate the impact of population
structure on PBAS in real populations.

Results: We developed a genetic simulation platform, HAPSIMU, based on real haplotype data
from the HapMap ENCODE project. This platform can simulate heterogeneous populations with
various known and controllable structures under the continuous migration model or the discrete
model. Moreover, both qualitative and quantitative traits can be simulated using additive genetic
model with various genetic parameters designated by users.

Conclusion: HAPSIMU provides a common genetic simulation platform to evaluate the impact of
population structure on PBAS, and compare the relative performance of various population
structure identification and PBAS methods.

Background
Population-based association studies (PBAS) are powerful
for disease gene mapping, and are widely applied to the
identification of genetic determinant of human diseases
[1,2]. However, it is still an issue as to how to effectively
evaluate and reduce the negative impact of population
structure on PBAS [1,3].

Population structure, a common feature in real popula-
tions [4,5], is an important cause leading to inconsistent
results in PBAS [1,6]. Various statistical methods have
been proposed to reduce the negative impact of popula-

tion structure on PBAS, [7-10]. Because of different
hypotheses and algorithms, the performance of these
PBAS methods may be different in different situations.
Therefore, a comparison of the relative performance of
various PBAS methods in heterogeneous populations may
provide a practical guideline for empirical researchers to
choose proper study methods which are best suitable for
their respective situations, and make appropriate interpre-
tation of their results.

Due to lack of structural information in real populations,
it is difficult or impossible to accurately evaluate the
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impact of population structure on PBAS in real popula-
tions. Simulation, which can generate heterogeneous
populations with known structures, is therefore an alter-
native choice for the studies aforementioned. Currently,
several genetic simulation programs are available [11,12].
Most of these programs can simulate only genotype data,
and not phenotype data. Furthermore, very few of these
programs can generate heterogeneous populations with
various known and controllable structures. Therefore, it is
difficult to apply them to evaluate the impact of popula-
tion structure on PBAS. To address the problems discussed
above, we developed a genetic simulation platform, HAP-
SIMU, based on real haplotype data from the HapMap
ENCODE project [see Additional file 1].

Methods
Genotype simulation
The HapMap ENCODE project genotyped dense sets of
SNPs across ten 500 kb regions in four populations.
Phased haplotype data of Caucasian with northern and
western European ancestry (CEPH) and Yoruba from
Ibadan (YRI) of Africa were downloaded from HapMap
ENCODE website http://www.HapMap.org/downloads/
phasing/2005-03_phaseI/ENCODE/. Within each
ENCODE region, we selected the set of informative
marker loci that were genotyped in both CEPH and YRI
and were polymorphic in at least one population or mon-
omorphic, but had different alleles in the two popula-
tions. There were 12,867 highly informative marker loci
selected from 10 ENCODE regions. We converted the
genetic map distances reported by the HapMap ENCODE
project to recombination fractions between adjacent
informative marker loci using the Kosambi map function
[13]. Based on the phased CEPH and YRI haplotype data
and derived recombination fractions for the informative
marker loci, 1000 CEPH individuals and 1000 YRI indi-
viduals will be first simulated and used as CEPH and YRI
founder populations. Then, heterogeneous populations
composed of CEPH and YRI will be simulated under two
selectable population admixture models: the continuous
migration model and the discrete model [14]. As illus-
trated in Figure 1, under the continuous migration model,
in each generation, the simulated heterogeneous popula-
tion (1000 children from previous generation) will be
mixed with the simulated YRI subpopulation (1000 indi-
viduals) according to users designated proportions, and
then mate randomly and produce offspring in the mixed
population to generate a new heterogeneous population
with 1000 individuals. This simulation procedure will
continue until the proportion of YRI in the simulated het-
erogeneous population reach the admixture proportions
designated by users. Under the discrete model, the simu-
lated CEPH (1000 individuals) and YRI (1000 individu-
als) subpopulations will separately, randomly mate and
produce offspring for users designated generations. Dur-

ing this process, population size will be kept constant.
Finally, the simulated CEPH and YRI subpopulations will
be mixed together according to the proportions assigned
by users. We assume that all markers were under Hardy-
Weinberg equilibrium and randomly recombined accord-
ing to the derived recombination fractions in both admix-
ture models.

Phenotype simulation
Additive genetic model is implemented in HAPSIMU to
simulate qualitative and quantitative. For qualitative trait,
the relationship among population prevalence (K), geno-
type relative risk (GRR) (r), frequency of causal allele (p)
and penetrance (fi) of genotype at a causal locus in simu-
lated heterogeneous populations can be expressed as:

f0 = K/(1-2p+2pr),

f1 = rf0,

f2 = 2rf0-f0,

where fi denotes the penetrance of the genotypes at the
causal locus with i copy (copies) of the disease susceptible
allele (i = 0, 1 or 2). For quantitative trait, the additive
genetic effect of quantitative trait loci (QTL) j (aj) is given
by:

where Vj denotes the phenotypic variation explained by
the QTL j, and pj denotes the frequency of the disease sus-
ceptible allele at the QTL j.

Results
HAPSIMU can simulate heterogeneous populations with
various known population structures under the continu-
ous migration model or the discrete model. In the contin-
uous migration model, population structure is controlled
by the admixture proportion of YRI in the simulated het-
erogeneous populations. In the discrete model, frequency
difference of disease susceptible allele(s) between the sim-
ulated CEPH and YRI subpopulations, proportions of
CEPH and YRI in cases and controls (for qualitative trait)
or variance explained by population stratification (for
quantitative trait) can be preset by users to simulate heter-
ogeneous populations. Additionally, missing genotype
can be simulated in HAPSIMU at a rate designated by
users.

Both qualitative and quantitative traits can be simulated
in HAPSIMU using additive genetic model (Figure 2). The
phenotypic effect(s) of causal locus (loci) is (are) control-
led by various genetic parameters, such as number of

a
V j

p j p j
j =

−2 1( )
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QTLs (for quantitative trait), frequency (frequencies) of
disease susceptible allele(s), disease prevalence (for qual-
itative trait), phenotypic variance explained by each QTL
(for quantitative trait), and so on.

HAPSIMU can output the simulated data with various
selectable file formats required by five prevailing PBAS
software: Admixmap [15], Plink [16], STRUCTURE &
STRAT [9,10], GC [7] and EIGENSOFT [8]. Currently,
HAPSIMU 1.0 is designed to run on Windows operation
systems. Future versions of HAPSIMU 1.0 will be able to
run on Linux operation systems and to include more prac-
tical functions, for instance, future versions of HAPSIMU
1.0 can simulate heterogeneous populations using the

genotype data provided by researchers in their own stud-
ies.

Discussion
The simulated genotype and phenotype data of heteroge-
neous populations can be used to compare the relative
performance of various PBAS methods in heterogeneous
populations. The comparison results can provide a practi-
cal guideline for researchers to select proper study meth-
ods and make appropriate inference of the results in
PBAS.

The simulated admixed populations can also be applied
to performance comparison studies of various population

Flowchart that illustrates the simulation approach of heterogeneous populationsFigure 1
Flowchart that illustrates the simulation approach of heterogeneous populations.
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structure identification and admixture mapping methods
[10,15,17]. For instance, Sankararaman et al., recently
developed a new method to identify population structure
[17]. They simulated a set of admixed populations using
the genotype data of chromosome 1 from the HapMap
project, and presented the high accuracy of their new
approach in population structure inference. Compared
with their simulation algorithm, there are two significant
differences for HAPSIMU. In Sankararaman et al.,'s study,
genotype data were simulated with the same recombina-
tion fractions (10-8) for all base pairs, while HAPSIMU can
simulate genotype data based on the real genetic map dis-
tances reported by the HapMap ENCODE project. Addi-
tionally, we selected 12,867 highly informative marker
loci from 10 ENCODE regions to conduct simulations,
which may further increase the effectiveness and robust-
ness of our simulation approach for population structure.

Conclusion
In summary, HAPSIMU provides a common genetic sim-
ulation platform for PBAS. The simulated heterogeneous
populations can be used to assess the impact of popula-
tion structure on PBAS, and compare the performance of
various population structure identification and PBAS
methods.

Availability and requirements
Project name: HAPSIMU

Project home page: http://l.web.umkc.edu/liujian/

Operating system(s): Microsoft Windows

Programming language: C++

License: Free for non-commercial usage
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Main interface screens of HAPSIMU for qualitative (A) and quantitative (B) traits simulationFigure 2
Main interface screens of HAPSIMU for qualitative (A) and quantitative (B) traits simulation.
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