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A B S T R A C T   

Nowadays ferrofluids (magnetic nanofluids) are at the center of many researches because of their 
major biomedical applications such as drug delivery and cancer treatment. The effects of chemical 
reaction, temperature gradient induced mass transfer and concentration gradient induced heat 
transfer on the stability of ferrofluid flow are of great importance. This paper deals with a stability 
analysis of a ferrofluid composed of blood as base fluid and magnetic nanoparticles. The study 
integrates the effects of chemical reactions, the effects of mass transfer (Soret effect), the effects of 
heat transfer (Dufour effect) and the effects of the Buoyancy force. The flow is exposed to a 
magnetic field and thermal radiation. A system of eigenvalue equations governing the evolution 
of disturbances is derived by assuming a normal mode analysis. This system of equations is then 
solved numerically by the method of collocation. It appears from this study that the addition of 
nanoparticles to the blood increases its inertia, which dampens the amplitude of the disturbances 
and stabilizes the flow. The Casson parameter affects the stability of the flow by increasing the 
amplitude of the disturbances, which reflects its destabilizing effect. It appears from this study 
that taking into account the non-Newtonian nature of blood is very important when modeling the 
dynamics of the system because it shows more important and very different results than when 
blood is treated as a Newtonian fluid. The chemical reaction between the fluid and the nano-
particles leads to the redistribution of disturbances within the flow, which amplifies the in-
stabilities and reflects the destabilizing character of the chemical reaction. On the other hand, 
temperature gradient induced mass transfer effects and concentration gradient induced heat 
transfer effects play an essential role on the stability of the flow because they attenuate the 
amplitude of the disturbances in the flow. The Darcy number exhibits a stabilizing effect on the 
flow. It appears from this analysis that the porosity of the medium increases the contact surface 
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between the fluid and the nanoparticles. Buoyancy forces, thermal radiation parameter and wave 
number contribute to the stability of the flow. The magnetic field through the Lorentz force 
decreases the kinetic energy of the flow, which dissipates the disturbances and thus reflects the 
stabilizing character of the magnetic field. It should be noted that heat and mass transfer on 
magnetohydrodynamic flows through porous media taking into consideration the effect of 
chemical reaction appears in many natural and artificial transport processes in several branches 
of science and engineering applications. This phenomenon plays an important role in the 
chemical industry, power and cooling industry for drying, chemical vapor deposition on surfaces, 
cooling of nuclear reactors and petroleum industry. The effects of thermal radiation, mass and 
heat transfer are used in many situations in biomedical engineering and aerospace engineering.   

Nomenclature 

u, v Velocity component 
x, y Cartesian coordinates 
t Time 
Cp specific heat capacity 
B Magnetic field 
B0 Applied magnetic field 
E Electric field 
T Temperature 
T∞ Fluid temperature in the free stream 
T1, T2 Temperature at the wall 
k Thermal conductivity 
g Gravity acceleration 
k Permeability of the medium 
qr Radiative heat flux 
M Hartmann number 
Rd Radiation parameter 
Pr Prandtl number 
Da Darcy number 
SC Schmidt number 
Sr Soret number 
Du Dufour number 
Ri Richardson number 
N Buoyancy parameter 
Re Reynold’s number 
P Pressure 
Dm Mass diffusion ration, 
KT Thermal diffusion ration, 
Cs Concentration susceptibility, 
k0 Chemical reaction parameter, 
J Current density vector, 
C Speed of disturbances 
U Mean velocity 
Kc Chemical reaction parameter 
A, B Matrices 
an, bn, cn Chebyshev coefficients 
I Identity matrice 
Ti Chebyshev polynomial 

Greek symbols 
βT Thermal expansion coefficient 
βc The mass transfer expansion 
α Wave number 
Φ Concentration 
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1. Introduction 

Nowadays, the therapeutic treatment of diseases is based on the targeted administration of drugs using magnetic nanoparticles in 
the human cardiovascular system. Widder and Senyer were the first scientists to put forward the idea of using magnetic nanoparticles 
to deliver drugs to a patient. In this therapeutic treatment technique, magnetic nanoparticles and drug molecules are injected into the 
blood and are transported to the target organs using magnetic fields which are generally applied locally and facilitate the release of 
drugs encapsulated by the magnetic nanoparticles. This technique is used in several biomedical applications such as the treatment of 
cancer, the transport of drugs by targeted administration, the treatment of wounds, separation of blood cells, reduction of bleeding 
during surgical operations and also the magnetization of blood. It should be noted that the set consisting of blood and magnetic 
nanoparticles forms a new category of fluid called nanofluid [1]. A nanofluid is a composition of nanoparticles of nanometric size 
suspended in a base fluid. In the literature, we find several types of nanoparticles, namely silver, copper, alumina, iron, aluminum 
oxide, titanium oxide, iron oxide, gold, single wall carbon nanotube, multi wall carbon nanotube etc [2,3]. As base fluid, mention may 
be made of water, blood, glycol, ethylene, etc. Thus several types of nanofluid exist thus depending on the type of nanoparticle used or 
on the type of base fluid chosen. Nanofluids have applications in the field of medicine, in renewable energy systems, transport, 
chemical manufacturing, automobiles, solar collector, nuclear reactor, industrial cooling, solar synthesis, gas sensing, bio-sensing, 
petroleum engineering, thermal engineering etc [4,5]. These dispersed nanoparticles significantly improve the thermal conductiv-
ity of the nanofluid and improve the coefficients of conduction and convection taking into account greater heat transport. Recent 
developments in technology necessitate an innovative revolution in the field of heat transfer. Researchers on nanofluids have been 
amplified rapidly and reports have revealed that nanofluids are advantageous heat transfer fluids for engineering and manufacturing 
and biomedical applications. 

The flow of blood carrying magnetic nanoparticles through blood vessels is similar to a problem of fluid flow in pipes and is in fact a 
problem of fluid mechanics. Like any fluid flow, the dynamics can evolve and pass from a laminar flow to a turbulent flow. The 
laminar-turbulent transition is caused by the birth and growth of instabilities. The origin of instabilities may be due to gravity, surface 
tension, a difference in density within the flow or even a significant production of kinetic energy during the flow. In most practical 
cases, it is necessary and very important to control the flow, which justifies the interest of such a study. 

Magnetohydrodynamics (MHD) is the part of fluid mechanics that deals with the dynamics of electrically conductive fluids such as 
blood, electrolytes and metallic liquids in the presence of the magnetic field. MHD has applications in medicine, MHD generators, MHD 
pumps, chemical engineering, electrostatic filter, petroleum engineering [6–8]. 

Theoretically, the magnetic field acts on a moving electrically conductive fluid through the Lorentz force which generally slows the 
motion of the fluid and increases the temperature and concentration of the fluid. In the literature, there are several works related to 
MHD. Kapen et al. [2] showed the stabilizing effects of the magnetic field on a flow of hybrid nanofluid. Khashi’ie et al. [9] presented 
the effects of the magnetic field on a hybrid nanofluid boundary layer over a stretching/shrinking sheet. Their study also takes Joule 
effects into account. Kapen et al. [10] carried out a study based on a linear stability analysis of blood flow with iron oxide nano-
particles. It emerges from their study that the magnetic field impacts the flow by contributing to the stability of the suspension. Zainal 
et al. [11] investigated MHD nanofluid convection with convective boundary conditions. Their results show that the magnetic field 
increases the speed of the flow. Lanjwani et al. [12] performed MHD boundary layer stability of nanofluid flow treated as Casson’s 
fluid. He observed a double solution during their studies, the first of which is stable. 

When density differences within a fluid are important, the Soret and Dufour effects should not be neglected. The Soret effect 
translates in fact a mass transfer within a flow created by a temperature gradient and the Dufour effect represents a heat transfer within 
a flow created by a concentration gradient. The combined effects of heat and mass transfer have contributions in thermal insulation, 

Φ1, Φ2 Concentration at the wall 
μ Dynamic viscosity 
β Thermal expansion coefficient 
ρ Density 
σ Electrical conductivity 
(βCp) Heat capacitance 
φ Volume fraction of magnetic nanoparticle 
σ∗ Stefan-Boltzmann constant 
θ Dimensionless temperature 
βR Absorption coefficient 
μ0 Magnetic permeability of emptiness 
ε0 Permissiveness of emptiness 

Sub scripts 
s Solid nanoparticles 
f Base fluid 
nf Nanoliquid 
hnf Hybrid nanoliquid  
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compact heat exchangers, paper production, catalytic reactor, separation of isotopes and in the mixture of gases of different molar mass 
[13]. Sheikholeslami et al. [14] studied the thermal diffusion and heat generation effects on the unsteady MHD flow of radiating and 
electrically conducting nanofluid past over an oscillating vertical plate through porous medium. The effects of Soret and Dufour 
number on convective boundary layer flow have been examined by Ahmma and Krishna [15]. Umavathi and Chamkha [16] presented 
a stability analysis of a nanofluid flow in a porous channel taking into account the Soret and Dufour effects. Their work shows that the 
Dufour and Soret effects help stabilize the flow. Maiti et al. [17] showed that Dufour effects have an impact on the growth of the Nusselt 
number. Bég et al. [18] showed the Soret and Dufour effects on natural convection from a spherical body. Mishra et al. [19] presented 
the Soret effect on the micropolar fluid on a streching sheet with hydromagnetic effects. Mittal [20] discussed heat and mass transfer of 
nanofluid flow through two horizontal parallel plates in a rotating system subject to magnetic field effects. Postelnicu [21] explored the 
effects of Soret and Dufour on heat and mass transfer. Chamkha and Rashad [22] highlighted in their work the effects of the chemical 
reaction and the magnetic field, of Soret and of Dufour on the stability of the convective mixed flow on a vertical cone. Other works on 
the Soret and Dufour effects are available in the following literature [23–25]. 

The chemical reaction results from an interaction between one or more bodies which produce one or more new bodies. Many 
chemical reactions require heat or a catalyst to occur. A distinction is made between homogeneous chemical reactions and hetero-
geneous chemical reactions. A homogeneous chemical reaction is a reaction in which the reactants and the catalyst are in the same 
phase. Whereas a heterogeneous reaction is a reaction for which the reactants and the catalyst are not in the same phase. 

Umavathi and Chamkha [16] during the analysis of the stability of the convective flow of nanofluid in porous channel showed that 
the chemical reactions affect the stability of the flow and have a destabilizing effect. Maiti et al. [17] showed that chemical reactions 
increased wall shear stress. The same effect of the chemical reaction was observed by Mekheimer et al. [26] when analyzing the 
stability of Jeffrey’s nanofluid flow. Krishna et al. [27] showed the effects of the chemical reaction, the Hall effect, the effects of ionic 
sliding on the MHD convection of microplastic fluid on a porous plate. Other works integrating the effects of chemical reactions on flow 
dynamics are available in the following literature [28, 29]. 

In most flow applications, the treated fluids are non-Newtonian fluids. These classes of fluid have attracted the attention of 
physicists, engineers and mathematicians. Non-Newtonian fluids have applications in medicine, chemical industry, biotechnology etc. 
The mathematical modeling of non-Newtonian fluids is based on non-linear behavior laws which generally links stress rates to strain 
rates. In the literature several mathematical models exist to represent the dynamics and mechanisms of heat transport in non- 
Newtonian fluids. Among the various mathematical models, we have Casson’s modeling which is widely accepted. Casson’s fluids 
have applications in fields such as biomedical and industrial engineering, power generation, mechanics and geophysical fluid dy-
namics. A casson’s fluid is a fluid that exhibits an elastic limit. If a stress is applied which is lower than the elastic limit, the fluid does 
not flow and behaves like a solid. On the other hand, if the stress applied is greater than the elastic limit, the fluid flows [30,31]. Thus, 
Casson’s fluid exhibits zero viscosity at infinite shear rate and infinite viscosity at zero shear rate. Examples of casson fluid include 
human blood, tomato sauce, honey, biological fluids, jelly, honey. Krishna et al. [30] explored the unsteady radiative magnetohy-
drodynamic (MHD) flow on a porous surface in vertical motion. Their results showed that velocity increased with thermal buoyancy 
and concentration forces. Rasool et al. [32] discussed the characteristics of non-Newtonian nanofluid flowing through an absorbent 
medium past a nonlinear stretching surface with a view to enhancing mass and heat transport. A numerical study of Casson’s nanofluid 
on a parallel stretching surface with hydromagnetic and Joule heating effects with slip and thermal convection boundary condition 
was presented by Kamran et al. [33]. Mousavi et al. [34] investigated the effect of Casson’s model for stable laminar MHD hybrid 
nanofluid flow due to sheet stretching/shrinking with effects of suction, radiation and convective boundary conditions. Dual solutions 
to the problem were also considered. Hamid [35] studied the mixed convection of a two-dimensional flow of non-Newtonian nano-
fluids in the presence of thermal radiation and heat source/sink effects. 

The scrutinize of thermal radiation in heterogeneous areas in engineering such as nuclear power plants, multifarious propulsion 
devices for missiles, liquid metal fluids, gas turbines and so forth, due to small coefficient of convective heat transfer, demonstrates the 
surface heat transfer. Thermal radiation is distinguished in numerous applications because of the perspective in which radiant emission 
relies on temperature. The unstable MHD boundary layer of nanofluid flowing over a moving vertical surface incorporating the 
phenomenon of thermal radiation absorption have been explored by Krishna et al. [36]. Their study shows that Radiation-absorbed 
parameter plays a prominent role in enhancing the velocity as well as the temperature in the boundary layer region. Ketchate et al. 
[37] investigated a linear stability analysis of mixed convection of a Newtonian nanofluid flow through a porous channel exposed to 
thermal radiation transverse to the flow direction. Their result shows that the thermal radiation parameter affects the stability of the 
flow and has a stabilizing effect. Sobamowo [38] studied the heat transfer effects of thermal radiation on free convection flow of 
Casson nanofluid over a vertical plate. Ahmmed et al. [39] discussed the unstable MHD free convection flow of a nanofluid through an 
exponentially accelerated tilted plate embedded in a porous medium with variable thermal conductivity in the presence of radiation. 

Most problems involve the heat, mass, and momentum transfer processes that take place with chemical reactions. Based on these 
observations, an analysis of the flow stability of treated blood as a casson fluid transporting magnetic nanoparticles through a porous 
artery and integrating hydromagnetic and thermal radiation effects has not yet been investigated. Therefore, the effects of Soret, 
Dufour for mass and heat transfer and chemical reactions on the stability of the flow have been examined in detail by the existence of 
thermal radiation and the magnetic field. This investigation is organized as follows: Section 2 presents the mathematical modeling of 
the problem followed by section 3 which is reserved for an analysis of linear stability. Section 4 and section 5 respectively present the 
numerical method for solving the equations governing the stability of the flow and the results resulting from this numerical resolution. 
Finally, the conclusion is presented in the final section. 
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2. Mathematical formulation of the problem 

The present study focuses on the flow of blood modeled as Casson’s fluid through a 1D rigid artery. Blood flow is placed under the 
influence of a uniform magnetic field perpendicular to the direction of flow and is also exposed to thermal radiation. The effects of mass 
diffusion being very important the effects of Dufour and Soret are taken into consideration. As a hypothesis, blood is treated as a 
viscous and incompressible fluid, flowing at low magnetic Reynolds number. The flow through the considered artery transports the 
magnetic nanoparticles whose distribution within the flow is uniform and homogeneous. No external electric field is applied such that 
the effect of polarization of fluid is negligible. A radiative heat flux qr is applied in the normal direction to the flow. 

Under the above assumptions, master equations (1)–(1)–(9)(1)–(9) such as continuity, Navier-Stokes, energy, concentration [2,17] 
and Maxwell equation [6] that govern the dynamics shown in Fig. 1 are. 

∇V→= 0 (1)  

ρnf
d V→

dt
= − ∇P+ μnf

(

1+
1
β

)

Δ V→− μnf
V→

k
+ J→Λ B→+(ρβT)nf (T − T1) g→+ (ρβC)nf (Φ − Φ1) g→ (2)  

(ρCP)nf
dT
dt

= knf ΔT +
DmKT ρnf

Cs
ΔΦ −

∂qr

∂y
(3)  

dΦ
dt

=DmΔΦ+
DmKT

Tm
ΔT − k0(Φ − Φ1) (4)  

∇Λ B→= μ0

(

J→+ ε0
∂ E→

∂t

)

(5)  

∇Λ E→= −
∂ B→

∂t
(6)  

∇.B→= 0 (7)  

∇.E→= 0 (8)  

∇. J→= 0 (9)  

J→= σnf

(
E→+ V→Λ B→

)
(10) 

The thermophysical parameters of the nanofluid are defined using Brinkman’s model [40–42]. 

ρnf =(1 − φ)ρf + φρs (11)  

μnf = μf (1 − φ)− 2.5 (12)  

σnf =

[
(1 + 2φ)σs + 2(1 − φ)σf

(1 − φ)σs + (2 + φ)σf

]

σf (13)  

knf =

[(
ks + 2kf

)
− 2
(
kf − ks

)
φ

(
ks + 2kf

)
+
(
kf − ks

)
φ

]

kf (14)  

(ρβ)nf =(1 − φ)(ρβ)f + (ρβ)sφ (15) 

Fig. 1. Geometry of the problem.  
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(ρCP)nf =(1 − φ)(ρCP)f + (ρCP)sφ (16) 

The radiative flux is expressed as follows through the Rooseland approximation [43,44]. 

qr = −
4σ
3βR

∂T4

∂y
(17) 

For small temperature differences within the flow [37], T can be decomposed into Taylor series as follows (18) [37]: 

T4 = 4T3
∞T − 3T3

∞ (18)  

Thus, equation (17) becomes: 

qr = −
16σT3

∞

3βR

∂T
∂y

(19) 

The equations governing the problem in Cartesian coordinates are (20–24) [2,17,37]: 

∂u
∂x

+
∂v
∂y

= 0 (20)  

ρnf

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)

= −
∂p
∂x

+ μnf

(

1+
1
β

)

Δu − μnf
u
k
− σnf B2

0u (21)  

ρnf

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)

= −
∂p
∂y

+ μnf

(

1+
1
β

)

Δv − μnf
v
k
+ g(ρβT)nf (T − T1) + g(ρβc)nf (Φ − Φ1) (22)  

(ρCP)nf

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)

= knf ΔT +
ρnf DmKT

Cs
ΔΦ +

16σT3
∞

3βR

∂2T
∂y2 (23)  

(
∂Φ
∂t

+ u
∂Φ
∂x

+ v
∂Φ
∂y

)

=DmΔΦ+
DmKT

Tm
ΔT − k0(Φ − Φ1) (24) 

The boundary conditions of the problem shown in Fig. 1 [17]: 

u= v = 0, T = 0,Φ = 0 at t = 0 for all y (24a)  

u= v = 0, T = T1,Φ = Φ1, t ≻ 0 at y = − h (24b)  

u= v = 0, T = T2,Φ = Φ2, t ≻ 0 at y = +h (24c) 

To ease the manipulation of the equations, we can introduce the dimensionless parameters [2,37] below: 

x̃=
x
h
, ỹ =

y
h
, ũ =

u
U
, ṽ =

v
U
, t̃ = t

U
h
, p̃ =

p
ρf U2, θ̃ =

T − T1

T2 − T1
, Φ̃ =

Φ − Φ1

Φ2 − Φ1
(25) 

By means of equation (25), we obtain the following equations (26-(26-30)(26-30): 

∂ũ
∂x̃

+
∂ṽ
∂ỹ

= 0 (26)  

∂ũ
∂̃t

+ ũ
∂ũ
∂x̃

+ ṽ
∂ũ
∂ỹ

= −
1
fs

∂p̃
∂x̃

+
β1

fReRe
Δũ −

ũ
fReDaRe

−
M2

fMRe
ũ (27)  

∂ṽ
∂̃t

+ ũ
∂ṽ
∂x̃

+ ṽ
∂ṽ
∂ỹ

= −
1
fs

∂p̃
∂ỹ

+
β1

fReRe
Δṽ −

ṽ
fReDaRe

+ fRiRiθ̃ + fNNΦ̃ (28)  

(
∂θ̃
∂̃t

+ ũ
∂θ̃
∂x̃

+ ṽ
∂θ̃
∂ỹ

)

=
Δθ̃

fPrPrRe
+

Du

fDuRe
ΔΦ̃ +

Rd

fRdPrRe

∂2θ̃
∂y2 (29)  

(
∂Φ̃
∂̃t

+ ũ
∂Φ̃
∂x̃

+ ṽ
∂Φ̃
∂ỹ

)

=
ΔΦ̃
ReSc

+
Sr

Re
Δθ̃ − KcReΦ̃ (30) 

The non-dimensional boundary conditions are (30a-30c) [17,37]: 

ũ= ṽ = 0, θ̃ = 0, Φ̃ = 0 at t = 0 for all y (30a)  
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ũ= ṽ = 0, θ̃ = 0, Φ̃ = 0, t ≻ 0 at y = − 1 (30b) 

ũ = ṽ = 0, ̃θ = 1, Φ̃ = 1, t ≻ 0 at y = +1 (30c) Re is Reynolds number [2], Da is Darcy number [2], M is Hartmann’s number [2], Ri 

is Richarson’s (thermal buoyancy parameter) [37], N is buoyancy ratio parameter [17], Du is Dufour’s number, Sc is Schmidt’s number 
[17], Pr is the Prandlt number [17], Rd is the thermal radiation parameter [37], Sr is the Soret number [17] and Kc is the chemical 
reaction parameter [16,17] defined as follow: 

Re =
ρf hU

μf
,M =B0h

̅̅̅̅̅
σh

μf

√

, β1 = 1+
1
β
,Ri =

gβT(T2 − T1)h
U2 ,N =

gβc(Φ2 − Φ1)h
U2 (31)  

Du =
DmKT(Φ2 − Φ1)

Csυf (T2 − T1)CP
,Rd =

16σT3
∞

3βRkf
,Pr =

μf

ρf αf
, Sc =

υf

Dm
,Kc =

k0υf

U2 , Sr =
DmKT(T2 − T1)

υf T∞(Φ2 − Φ1)
(32)  

Where, fRe, fM, fs, fRi, fN, fPr, fDu, fRd denote adjustment factors defined as follows (33–34) [2,3]: 

fs =
ρnf

ρf
, fRe =

ρnf

ρf

μf

μnf
, fM =

ρnf

ρf

σf

σnf
, fPr =

(ρCP)nf

(ρCP)f

kf

knf
, fRd =

(ρCP)nf

(ρCP)f
(33)  

fRi =
(ρβT)nf

(ρβT)f

ρf

ρnf
, fN =

(ρβC)nf

(ρβC)f

ρf

ρnf
, fDu =

(ρCP)nf

(ρCP)f

ρf

ρnf
(34)  

3. Linear stability analysis 

For a linear stability analysis the solutions of equations (26-(26-30)(26-30) are sought in the form: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũ(x, y, t) = U(y) + u(x, y, t)
ṽ(x, y, t) = v(x, y, t)
p̃(x, y, t) = P(x) + p(x, y, t)
θ̃(x, y, t) = θ(y) + θ(x, y, t)
Φ̃(x, y, t) = Φ(y) + Φ(x, y, t)

(35) 

Equation (35) shows a decomposition of the flow into base flow and disturbed flow. By means of equation (35), the following 
disturbance evolution equations emerge (36–40) [2,17]: 

∂u
∂x

+
∂v
∂y

= 0 (36)  

∂u
∂t

+U
∂u
∂x

+ v
∂U
∂y

= −
1
fs

∂p
∂x

+
β1

fReRe
Δu −

u
fReDaRe

−
M2

fMRe
u (37)  

∂v
∂t

+U
∂v
∂x

= −
1
fs

∂p
∂y

+
β1

fReRe
Δv −

v
fReDaRe

+ fRiRiθ + fNNΦ (38)  

∂θ
∂t

+U
∂θ
∂x

+ v
∂θ
∂y

=
Δθ

fPrPrRe
+

Du

fDuRe
ΔΦ +

Rd

fRdPrRe

∂2θ
∂y2 (39)  

∂Φ
∂t

+U
∂Φ
∂x

+ v
∂Φ
∂y

=
ΔΦ
ReSc

+
Sr

Re
Δθ − KcReΦ (40) 

The divergence of the perturbation equations [2] gives (41): 

Δp=
M2fs

RefM

∂v
∂y

+ fsfRiRi
∂θ
∂y

+ fsfN
∂Φ
∂y

− 2fs
dU
dy

∂v
∂x

(41) 

The Laplacian of equation (38) gives 
(

∂
∂t
+U

∂
∂x

+
1

fReDaRe
−

β1

fReRe
Δ
)

Δv=
d2U
dy2

∂v
∂x

−
M2

fMRe

∂2v
∂y2 + fRiRi

(

Δθ −
∂2θ
∂y2

)

+ fN N
(

ΔΦ −
∂2Φ
∂y2

)

(42) 

The stability analysis carried out in this study is based on an analysis in normal mode, thus the solution of equations (38, 40 and 42) 
is sought in the following form (43) [2,36]: 

(v, θ,Φ)(x, y, t)= (v̂, θ̂, Φ̂)(y)eiα(x− ct) (43) 

v̂, θ̂, Φ̂ are respectively the amplitudes of the velocity, temperature and concentration disturbances. 
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α is the wave number, C is the propagation speed of disturbances which in a stability analysis is complex and has the following form 
(44) [2]: 

C=Cr + iCi (44) 

The real part of equation (42) represents the propagation speed of the disturbances and the imaginary part is the rate of ampli-
fication of the disturbances. When this imaginary part is positive (Ci > 0), the disturbances propagate while increasing and the flow is 
unstable, when this imaginary part is negative (Ci < 0) the disturbances evolve while attenuating and the flow is stable and finally 
when this imaginary part is zero (Ci = 0), the disturbances propagate without amplification or attenuation and the flow is neutral. 

Thus, (43) in equations (39), (40) and (42) gives: 
[

(U − C)
(
D2 − α2) −

i
(
D2 − α2

)

αfReDaRe
+ i

β1

αfReRe

(
D2 − α2)2

]

v̂ =
d2U
dy2 v̂ + i

M2

αfMRe
D2 v̂ + iαfRiRi θ̂ + iαfNNΦ̂ (45)  

[

(U − C)+
i

αfPrPrRe

(
D2 − α2)+ i

Rd

αfRdPrRe
D2
]

θ̂ =
i
α

dθ
dy

v̂ − i
Du

αfDuRe

(
D2 − α2)Φ̂ (46)  

[

(U − C) −
i
αKcRe +

i
αScRe

(
D2 − α2)

]

Φ̂ =
i
α

dΦ
dy

v̂ − i
Sr

αRe

(
D2 − α2)θ̂ (47) 

Equations (45-(45-47)(45-47) form a system of eigenvalue equations with which are associated the following boundary conditions 
(48) [40]: 

⎧
⎪⎪⎨

⎪⎪⎩

v̂’(− 1) = v̂’(1) = 0
v̂(− 1) = v̂(1) = 0
θ̂’(− 1) = θ̂’(1) = 0
Φ̂’(− 1) = Φ̂’(1) = 0

(48) 

Equations (45-(45-47)(45-47) and boundary conditions (48) form the equations governing the disturbance dynamics. These 
equations do not admit analytical solutions but can be solved by an appropriate numerical method. Thus the numerical resolution of 
these equations will be made in the next section. 

4. Numerical approach 

This section presents the numerical resolution of the stability equations. This numerical resolution is based on Chebyshev’s spectral 
collocation method [2,3,45]. The idea of this method is to search for unknown functions ̂v, θ̂ and Ψ̂ in the following form (49) [2,17]: 

v̂(y)=
∑N

n=0
anTn(y), θ̂(y) =

∑N

n=0
bnTn(y), ψ̂ (y) =

∑N

n=0
cnTn(y) (49)  

Tn is the Chebyshev polynomials defined byTn(cos θ) = cos nθ. an, bn and cn are the Chebyshev coefficients. 
Substituting the expression (49) in the stability equations (45-(45-47)(45-47) results in the following generalized eigenvalue 

problem (50) [17]: 

Aψ =CBψ (50)  

Where ψ = (a0, ...,aN,b0, ...,bN, c0, ...cN), A and B are 3(N+1) × 3(N+1) matrices defined as follows (51) [17]: 

A=

⎡

⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦ andB=

⎡

⎣

B11 0 0

0 B22 0

0 0 B33

⎤

⎦ (51) 

A11, A12, A13, A21, A22, A23, A31, A32, A33, B11, B22, B33 are block matrices of size (N+1) × (N+1) defined by (52-(52-55)(52-55) 
[17]: 

A11 =U
(
D2 − α2I

)
− i
(
D2 − α2I

)

αfReDaRe
+ i

β1

αfReRe

(
D2 − α2I

)2
−

d2U
dy2 I − i

M2

αfMRe
D2A12 = − iαfRiRiI (52)  

A13 = − iαfNNI,A21 = −
i
α

dθ
dy

I,A22 =UI +
i

αfPrPrRe

(
D2 − α2I

)
+

iRd

αfRdPrRe
D2 (53)  

A23 = i
Du

αfDuRe

(
D2 − α2I

)
,A31 = −

i
α

dΦ
dy

I,A32 = i
Sr

αRe

(
D2 − α2I

)
(54)  
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A33 =UI −
i
αKcReI +

i
αScRe

(
D2 − α2I

)
,B11 =D2 − α2I,B22 =B33 = I (55) 

The boundary conditions become (56) [17]: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = aN = 0
∑N

n=0
D0nan = 0

∑N

n=0
DNnan

b0 = bN = 0
c0 = cN = 0

(56)  

5. Results and discussion 

This section is reserved for the presentation of the results obtained from the numerical resolution of the aforementioned equations. 
Table 1 below presents the physical properties of blood and the magnetic nanoparticle. On the different figures that will be presented, 
the yellow line is just there to separate the zone of stability from the zone of instability. The eigenvalues of the system of equations were 
calculated using Matlab software. To verify our numerical scheme, we have shown in Fig. 2 the variation in the rate of amplification of 
the disturbances as a function of the Reynolds number. We have made the approximation of a flow without nanoparticles and in the 
absence of various effects such as the magnetic field, the thermal radiation, the Dufour and Soret effects, the chemical reactions and the 
porosity of the medium. The model in Fig. 1 is therefore reduced to the flow model studied by Makinde [46]. It is observed through this 
figure that the critical Reynolds number corresponding to a critical wave number a = 1.02 for which there is transition to instabilities is 
Rec = 5772.17. This value of the Reynolds critical number is in agreement with those obtained by Makinde [46]. 

Fig. 3 presents the effects of the presence of magnetic nanoparticles on the stability of the flow. This figure shows that for α = 1 and 
α = 1.02, there is an increase in the critical Reynolds number for which the flow becomes unstable. This growth in the value of the 
critical Reynolds number increases with the volume fraction of the nanoparticles. For the wavenumbers α = 2 and α = 3, there is a 
complete stabilization of the flow and the disturbances see their amplitudes being attenuated when the volume fraction of the 
nanoparticles increases. So the combined effects of the volume fraction of the nanoparticles and the wave number fully stabilize the 
flow. This result is in good agreement with those of the literature, in particular Turkyilmazoglu [3], Kapen et al. [2]. It appears from 
this paper that the addition of nanoparticles in the blood increases its inertia blood. The inertia being greater, this attenuates the 
disturbances and helps to stabilize the flow. 

Fig. 4 presents the behavior of Casson’s parameter on the evolution of disturbances. In this figure, the amplification rate of the 
disturbances is represented as a function of the Reynolds number and this for different values of the wave number. For α = 1 and α =

1.02, we observe for β = 0.5 and β = 1 that the flow is completely stable but the amplitude of the disturbances increases when passing 
from the values β = 0.5 to β = 1 which already promises a destabilizing effect of the Casson parameter. For β = 5 and β = 10, we 
observe a certain transition in the flow obviously from stability to instability. Another relevant remark which is observed is that the 
critical Reynolds number which corresponds to the transitions β = 5 and β = 10 decreases when the Casson parameter increases: which 
confirms the destabilizing effect of this parameter. For α = 2 and α = 3 the flow is stable but a redistribution of the disturbances is 
observed when the Casson parameter increases, which undoubtedly makes it possible to affirm that the Casson parameter has a 
destabilizing effect on the flow. This result is similar to those observed by Ketchate et al. [40]. It appears from this analysis that the 
non-Newtonian behavior of blood has an effect on its dynamics, so it is very important to take this property of blood into consideration 
when administering drugs to a patient. Moreover, it appears from this article that taking into account the non-Newtonian behavior of 
blood offers better results compared to the case where blood is considered as a Newtonian fluid. 

Fig. 5 presents the effects of the Buoyancy ration parameter on the stability of the flow. Through this figure, we see that this 
parameter has an impact on the stability of the flow. For α = 1 and α = 1.02, the critical Reynolds number for which there is a 
transition increases when the Buoyancy ratio parameter increases, which means that this parameter has a stabilizing effect. It should be 
noted that for slightly larger values of the wave number, i.e. α = 2 and α = 3, no transition is observed and the flow is entirely stable 
and the buoyancy ratio parameter presents negligible effect on flow stability. The effects of the Richardson number (thermal buoyancy 
parameter) are presented through Fig. 6. This informs us that the Richardson number has the same effect as the Buoyancy ratio 
parameter on the stability of the flow. This result is in agreement with those obtained by Mekheimer et al. [26]. It emerges from the 
present analysis that the Buoyancy forces have an effect on the stability of the blood flow and that their growth decreases the kinetic 
energy which attenuates the disturbances and contributes to the stability of the flow. 

Fig. 7 shows the effects of the chemical reaction through the chemical reaction parameter Kc on the stability of the flow. This figure 

Table 1 
Properties of blood and magnetic nanoparticle [36].   

ρ (kg.m− 3) Cp(J.kg− 1K− 1) K (w. m− 1K− 1) σ (S.m− 1) β× 10− 5(K− 1)

Blood 1050 3617 0.52 0.8 0.18 
Fe3O4 5200 670 9.7 25,000 1.3  
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Fig. 2. Perturbation growth rate as a function of Reynolds number.  

Fig. 3. Effect of volume fraction of nanoparticle on the disturbances Da → ∞,: (a) α = 1; (b) α = 1.02; (c) α = 2; (d) α = 3.  
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informs us that the chemical reaction parameter Kc has a very significant impact. For α = 1 and α = 1.02, we observe a decrease in the 
critical Reynolds number when the chemical reaction parameter increases: This justifies a destabilizing character of the chemical 
reaction parameter Kc. For α = 2 and α = 3, no transition is observed and there is a superposition of the curves when the parameter Kc 
increases. This superposition provides the information that the combined effect of the chemical reaction parameter and wave number 
has negligible effects on the stability of the flow. It appears from this paper that the chemical reactions which are the result of an 
interaction between the fluid and the magnetic nanoparticles favor the distribution of the disturbances within the flow which 
maintains the instabilities. Such behavior of the chemical reaction parameter has been observed by authors such as Umavathi and 
Chamkha [16], and Mekheimer [26]. 

The effects of thermal radiation on flow stability are shown in Fig. 8. This figure shows that thermal radiation affects flow stability. 
When the thermal radiation parameter increases, the transition in the flow increases which attenuates the propagation of disturbances 
in the flow and thus helps in the stabilization of the flow. This stabilizing effect of thermal radiation is of great importance in medicine 
because it increases the rate of heat transfer from nanoparticles to target areas. This allows the destruction of cancer cells. 

The effects of the magnetic field through the Hartmann number are presented in Fig. 9. For α = 1 and α = 1.02, we observe that in 
the absence of the magnetic field (M = 0), the flow is unstable. In the presence of the magnetic field (M ∕= 0), the flow is entirely stable. 
When the Hartmann number increases, an exponential decrease in the amplitude of the disturbances is observed. For α = 2 and α = 3, 
the flow is completely stable but the attenuation of disturbances is greater when the wave number increases. So the combined effects of 
the magnetic field and the wave number further increase the stability field of the flow. We can thus conclude through this analysis that 
the magnetic field through the Lorentz magnetic force reduces the kinetic energy of the flow which dissipates the disturbances and 
stabilizes the flow. The stabilizing effects of the magnetic field can be used in biomedical applications to control blood circulation, 
adjust blood flow during surgical operations, control blood pressure, transport therapeutic agents to a target location in the body and 
also to the body. With the help of the stabilizing effects of the magnetic field, one can thin the blood. 

Fig. 4. Effect of Casson parameter on the evolution of disturbance, Da → ∞, Rd = Ri = N = 0, Du = Sr=Kc = 0, Sc = 1, Pr = 21: (a) α = 1; (b) α =
1.02; (c) α = 2; (d) α = 3. 
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Fig. 10 shows the effects of small values of the Darcy number on the stability of the suspension. Through this figure, we see that the 
amplitude of the disturbances decreases when the Darcy number increases but the flow remains unstable. This allows us to say that the 
porosity of the medium promises a stabilizing effect on the stability of the flow. To confirm the stabilizing effect of the Darcy number 
on the stability of the flow, we have presented in Fig. 11 the effects of large values of the Darcy number on the stability of the flow. For 
Da = 1, the flow always remains unstable. For Da = 10 and Da = 100, two transitions are observed in the flow: a first transition from 
stability to instability and a second transition which brings the flow back to the stability zone. It is very important to mention that the 
critical Reynolds number corresponding to the transition increases with the Darcy number. It appears from the present study that the 
Darcy number contributes to the stability of the flow. 

The effects of large values of the Darcy number are presented in Fig. 12. This figure shows a superposition of the curves when the 
Darcy number goes from Da = 1000 to Da = 10,000. This makes it possible to conclude that the very large values of the Darcy number 
have negligible effects on the stability of the flow and one has the impression of having a flow in a non-porous medium and the flow 
model is similar to that studied by Makinde [46]. Our study thus reflects the importance of transporting nanofluids through porous 
media because in porous media, the exchange surface between the fluid and the nanoparticles is large, which increases the rate of heat 
transfer. The porosity of the medium also prevents the aggregation of the nanoparticles, which prevents the sedimentation of the 
nanoparticles. 

Figs. 13 and 14 present respectively the effects of Dufour and Soret on the stability of the flow. Through these figures, it is clear that 
these parameters have a significant impact on the growth rate of disturbances. When the Dufour and Soret numbers increase (Fig. 13a, 
b, and 14a), we see that the critical Reynolds number for which there is a transition increases. For larger values of the wave number 
(Fig. 13c, d, 14b) there is stability without transition and the amplitude of the disturbances decreases when these parameters increase. 
It emerges from this analysis that the Dufour and Soret numbers have a stabilizing effect. Such results are consistent with those ob-
tained by Umavathi and Chamkha [16]. We can thus conclude that the mass transfers induced by the temperature gradients and the 
heat transfers induced by the concentration gradients within the flow prevent the distribution of the disturbances within the flow 
which contributes to the stabilization of flow. Thus, the fluid particles located in the zone where the temperature is high have a higher 

Fig. 5. Effect of buoyancy parameter on the evolution of disturbance, Da → ∞: (a) α = 1; (b) α = 1.02; (c) α = 2; (d) α = 3.  

C.G. Njingang Ketchate et al.                                                                                                                                                                                        



Heliyon 9 (2023) e12962

13

Fig. 6. Effect of Richardson number on the evolution of disturbance, Da → ∞: (a) α = 1; (b) α = 1.02; (c) α = 2; (d) α = 3.  
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energy level, which moves the particles towards the zone of low temperature. Thus, the energy transfer processes are accelerated from 
the hottest area to the coldest area. This transport process is significant only at the lowest fluid velocities. 

6. Conclusion 

In this paper, we presented a stability analysis in normal mode of a blood flow treated as Casson’s fluid carrying within it magnetic 
nanoparticles. The study took into account the effects of chemical reaction, mass transfer (Soret effect), energy transfer (Dufour effect), 
Buoyancy forces, the porosity of the medium, thermal radiation and the magnetic field. The system of eigenvalue equation governing 
the dynamics was solved by a numerical scheme which exploits the spectral method of collocation. It emerged from the study that the 
addition of nanoparticles in the blood increased its inertia which helped to stabilize the flow. 

The Casson parameter affects the stability of the flow by increasing the amplitude of the disturbances, which reflects its desta-
bilizing effect. It appears from this study that taking into account the non-Newtonian nature of blood is very important when modeling 
the dynamics of the system because it shows more important and very different results than when blood is treated as a Newtonian fluid. 
The Darcy number exhibits a stabilizing effect on the flow. It appears from this analysis that the porosity of the medium increases the 
contact surface between the fluid and the nanoparticles, which increases the rate of heat transfer. The porosity of the medium also 
prevents the sedimentation of the nanoparticles. Chemical reactions affect flow stability and have a destabilizing effect. It appears from 
this paper that the reaction between the magnetic nanoparticles and the fluid increases the redistribution of the disturbances within the 
flow which maintains the instabilities in the flow. The thermal radiation prevents the redistribution of disturbances in the flow, which 
contributes to the increase in the rate of heat transfer of the nanoparticles in the target areas. The Richardson number, the Buoyancy 
ratio parameter affect the stability of the flow and contribute to the stability of the flow because they decrease the kinetic energy 
produced by the flow which prevents the growth of the amplitude of the disturbances and advances the transition in the flow. The 
Dufour and Soret number contribute to the stability of the flow. We can say that the temperature gradient induced mass transfer effects 
and the concentration gradient induced heat transfer effects attenuate the amplitude of the disturbances, which delays the transition in 
the flow. The analysis of the effects of the magnetic field shows that the magnetic field plays a very big role on the stability of the flow. 

Fig. 7. Effect of chemical reaction parameter on the disturbance evolution, Da → ∞: (a) α = 1; (b) α = 1.02; (c) α = 2; (d) α = 3.  
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Fig. 8. Effect of thermal radiation on stability of flow, Da → ∞: (a) α = 1; (b) α = 1.02; (c) α = 2; (d) α = 3.  
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Fig. 9. Effect of Hartmann number on the stability of flow, Da → ∞: (a) α = 1; (b) α = 1.02; (c) α = 2; (d) α = 3.  

Fig. 10. Effect of small values of Darcy number on the growth of perturbation.  
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Fig. 11. Effect of large values of Darcy number on the growth of perturbation.  

Fig. 12. Effect of very large values of Darcy number on the growth of perturbation.  
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Fig. 13. Effect of Dufour number on the stability of the flow, Da → ∞,: (a) α = 1; (b) α = 1.02; (c) α = 2; (d) α = 3.  

Fig. 14. Effect of Soret number on stability of flow, Da → ∞,: (a) α = 1; (b) α = 2.  

C.G. Njingang Ketchate et al.                                                                                                                                                                                        



Heliyon 9 (2023) e12962

19

Through the Lorentz force, the magnetic field absorbs the kinetic energy produced by the flow, which dissipates the disturbances and 
thus stabilizes the flow. 

A study taking into consideration the joules effects and the elasticity of the arterial wall may be the subject of future work. 
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